
ON COMBINATORIAL MODEL CATEGORIES

J. ROSICKÝ∗

Abstract. Combinatorial model categories were introduced by
J. H. Smith as model categories which are locally presentable and
cofibrantly generated. He has not published his results yet but
proofs of some of them were presented by T. Beke, D. Dugger or J.
Lurie. We are contributing to this endeavour by some new results
about homotopy equivalences, weak equivalences and cofibrations
in combinatorial model categories.

1. Introduction

Model categories were introduced by Quillen [25] as a foundation
of homotopy theory. Their modern theory can found in [20] or [19].
Combinatorial model categories were introduced by J. H. Smith as
model categories which are locally presentable and cofibrantly gener-
ated. The latter means that both cofibrations and trivial cofibrations
are cofibrantly generated by a set of morphisms. He has not published
his results yet but some of them can be found in [7], [14] or [22]. In
particular, [7] contains the proof of the theorem characterizing when a
class W of weak equivalences makes a locally presentable category K
into a combinatorial model category with a given cofibrantly generated
class C of cofibrations. The characterization combines closure proper-
ties of W together with a smallness condition saying that W satisfies
the solution set condition at the generating set X of cofibrations. These
conditions are also necessary, which is based or another result of J. H.
Smith saying that, in a combinatorial model category, W is always ac-
cessible and accessibly embedded in the category K→ of morphisms of
K. Since [14] proved that W is accessibly embedded into K→, it remains
to show that W is accessible. We will give a proof based on the fact
that homotopy equivalences form a full image of an accessible functor
into K→. J. Lurie [22], A.2.6.6 offers a simpler proof of accessibility of
W but our result about homotopy equivalences is of an independent
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interest. Surprisingly, the smallness condition above is automatic in a
set theory with a strong axiom of infinity called Vopěnka’s principle.
We will show that Vopěnka’s principle is equivalent to the fact that the
smallness condition can be avoided.

Nearly all model categories are either combinatorial or Quillen equiv-
alent to a combinatorial one. The example of the latter are topological
spaces because Top is not locally presentable (although both cofibra-
tions and trivial cofibrations are cofibrantly generated). Top is Quillen
equivalent to the combinatorial model category of simplicial sets. Let
us mention that J. H. Smith claimed that one can make Top a com-
binatorial model category by reducing topological spaces to simplex-
generated ones (we were able to prove this statement in [16]). But
there are also model categories which are neither locally presentable
nor cofibrantly generated (see [11]) or model categories which are lo-
cally presentable but not cofibrantly generated (see [2] or [10]). All
known combinatorial model categories have the class C of cofibrations
accessible and accessibly embedded into K→. The consequence is that
the full subcategory Kcf of K consisting of cofibrant and fibrant objects
is accessible and accessibly embedded into K. We will show that it does
not need to be true in general, however, one can prove that both C and
Kcf are the closure under retracts of a full image of an accessible func-
tor (into K→ or into K). This is used in the above mentioned proof of
accessibility of W because a morphism f is a weak equivalence if and
only if its replacement R(f) to Kcf is a homotopy equivalence.

There remains one claim of J. H. Smith which I have not not able
to prove. It concerns the existence of the smallest W making a lo-
cally presentable category K a combinatorial model category with a
given cofibrantly generated class C of cofibrations. This is true under
Vopěnka’s principle but I am not able to avoid its use.

2. Accessible categories and their generalizations

The theory of accessible categories was created by M. Makkai and
R. Paré [24]. They departed from [17] and [6] and their motivation was
model theoretic (these models come from logic and not from homotopy
theory). Applications of this theory to homotopy theory have appeared
during the last ten years. I add that, a month ago, G. Maltsiniotis
sent me the preliminary redaction of the unpublished Grothendieck’s
manuscript [18] where he independently develops a theory of accessible
categories on his own, motivated by homotopy theory in this case. In
[3], we showed that quite a few of properties of accessible categories
depend on set theory, in particular on Vopěnka’s principle. This is a
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large cardinal axiom implying the existence of a proper class of mea-
surable (compact, or even extendible) cardinals. On the other hand,
its consistency follows from the existence of a huge cardinal. One of
benefits of using accessible categories in homotopy theory is the real-
ization that some open homotopy theoretic problems depend (or may
depend) on set theory (see [9], [13], [23] or [8]).

Let us recall that a category K is called λ-accessible, where λ is a
regular cardinal, provided that

(1) K has λ-directed colimits,
(2) K has a set A of λ-presentable objects such that every object

of K is a λ-directed colimit of objects from A.

A category is accessible if it is λ-accessible for some regular cardinal
λ. A cocomplete accessible category is called locally presentable. All
needed facts about locally presentable and accessible categories can be
found in [3] or [24]. A full subcategory L of an accessible category K is
called accessibly embedded if it is closed under λ-directed colimits for
some regular cardinal λ.

Proposition 2.1. Let K be an accessible category. Any union of a set

of accessible and accessibly embedded subcategories of K is accessible

and accessibly embedded in K.

Proof. By [3], 2.36, a full subcategory of K is accessible and accessibly
embedded if and only if it is closed under λ-directed colimits and λ-
pure subobjects for some regular cardinal λ. Thus, given a set Li,
i ∈ I of accessible and accessibly embedded subcategories of K, there
is a regular cardinal λ such that all Li, i ∈ I are closed under λ-
directed colimits and λ-pure subobjects. Then their union L is closed
under λ-pure subobjects as well. Without loss of generality, we can
assume that card I < λ. Consider a λ-directed diagram D : D → L.
Let Di : Di → Li be the pullback of D with the inclusion Li → L.
There is i ∈ I such that the embedding of Di to D is cofinal. In fact,
assuming the contrary, there is an object di in D with di ↓ Di = ∅,
for each i ∈ I, which contradicts to card I < λ. Consequently, L is
closed under λ-directed colimits and thus it is accessible and accessibly
embedded. �

Let F : L → K be an accessible functor. Recall that this means that
both L and K are accessible and F preserves λ-directed colimits for
some regular cardinal λ. The full subcategory of K consisting of objects
FL, L ∈ L is called a full image of F . While accessible categories are,
up to equivalence, precisely categories of models of basic theories, full
images of accessible functors are, up to equivalence, precisely categories
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of structures which can be axiomatized using additional operation and
relation symbols (see [27]); they are also called pseudoaxiomatizable.
In both cases, we use infinitary first-order theories. In [4], a category
K was called preaccessible if there is a regular cardinal λ such that K
has a set A of λ-presentable objects such that every object in K is a
λ-directed colimit of objects from A. Hence accessible categories are
precisely preaccessible ones having µ-directed colimits for some regular
cardinal µ.

Proposition 2.2. Assuming the existence of a proper class of compact

cardinals, every full image of an accessible functor is preaccessible.

Proof. Let F : L → K be an accessible functor. Following the uni-
formization theorem (see [3], 2.19), there is a regular cardinal µ such
that both L and K are µ-accessible and F preserves µ-directed colim-
its and µ-presentable objects. There is a compact cardinal λ > µ and,
by [27], Theorem 1, the inclusion of F (L) to K preserves λ-directed
colimits. Since a compact cardinal is (strongly) inaccessible, we have
µ ⊳λ (see [3], 2.12) and thus F preserves λ-presentable objects (see [3],
2.18 (2)). Hence FL is λ-presentable in F (L) for each λ-presentable
object L in L. Since L is λ-accessible (see [3], 2.11), each object of L is
a λ-directed colimit of λ-presentable objects. Thus F (L) has the same
property. �

Remark 2.3. Let L → K be an accessible functor and assume that
its full image F (L) is closed under λ-directed colimits in K for some
regular cardinal λ. Then, in the same way as in the proof of 2.2, we
show that F (L) is accessible.

Let L be a full subcategory of a category K and K an object in K.
We say that L satisfies the solution-set condition at K if there exists
a set of morphisms (K → Li)i∈I with Li in L for each i ∈ I such that
every morphism f : K → L with L in L factorizes through some fi, i.e.,
f = gfi. L is called cone-reflective in K if it satisfies the solution-set
condition at each object K in K (see [3]). Given a set X of objects of
K, we say that L satisfies the solution set condition at X if it satisfies
this condition at each X ∈ X .

Proposition 2.4. The full image of an accessible functor F : L → K
is cone-reflective in K.

Proof. Let K be an object in K. Like in 2.2, we can assume that there
is a regular cardinal µ such that K is µ-presentable, both L and K
are µ-accessible and F preserves µ-directed colimits and µ-presentable
objects. Hence each morphism f : K → F (L) factorizes through some
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K → F (L′) with L′ µ-presentable in L. It yields the solution set
condition at K. �

Recall that an idempotent f : K → K in a category K (i.e., ff = f)
splits if there exist morphisms i : X → K and p : K → X such
that pi = idX and ip = f . In an accessible category, all idempotents
split. Every category K has a split idempotent completion K̃. This
means that there is a functor H : K → K̃ where all idempotents split
in K̃ such that, whenever G : K → M is a functor into M where
all idempotents split, than there is a unique (up to an isomorphism)

functor G′ : K̃ → M with G′H ∼= G (see [3], Ex. 2.b).

Lemma 2.5. Let L be a cone-reflective subcategory of an accessible

category K. Then the split idempotent completion L̃ is cone-reflective

in K.

Proof. Since all idempotents split in K, L̃ is equivalent with the closure
of L under retracts in K. Let fi : K → Li, i ∈ I be a cone-reflection
of K to L. For each subobject i : X → L, L ∈ L, split by p : L → X
and each f : K → X, there is g : Li → L with gfi = if . Hence
f = pif = pgfi. Thus fi yields a cone-reflection of K to L̃. �

I do not know whether a split idempotent completion of a full image
of an accessible functor is a full image of an accessible functor.

The powerfull theorem of Makkai and Paré says that accessible cat-
egories are closed under all pseudolimits (see [24], 5.1.6 or [3], Exercise
2.n). In particular, they are closed under pseudopullbacks. Recall that
pseudo means commutativity up to isomorphism. It is easy to see that
this result can be extended to full images of accessible functors.

Lemma 2.6. Let F1 : M1 → K and F2 : M2 → K be accessible

functors and L1,L2 their full images. Let L be a pseudopullback

L1
// K

L

OO

// L2

OO

Then L is a full image of an accessible functor M → K.
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Proof. It suffices to take M as a pseudopullback

M1
R // K

M

OO

// M2

OO

Then L is the full image of the induced functor F : M → K. �

3. Weak factorization systems

Let K be a category and f : A → B, g : C → D morphisms such
that in each commutative square

A
u //

f

��

C

g

��
B v

// D

there is a diagonal d : B → C with df = u and gd = v. Then we say
that g has the right lifting property w.r.t. f and f has the left lifting

property w.r.t. g. For a class X of morphisms of K we put

X� = {g|g has the right lifting property w.r.t. each f ∈ X} and
�X = {f |f has the left lifting property w.r.t. each g ∈ X}.

Definition 3.1. A weak factorization system (L,R) in a category K
consists of two classes L and R of morphisms of K such that

(1) R = L�, L = �R, and
(2) any morphism h of K has a factorization h = gf with f ∈ L

and g ∈ R.

A weak factorization system (L,R) is called cofibrantly generated if
there is a set X of morphisms such that R = X�.

This definition and the following basic facts can be found in [7] (or
[1]).

Remark 3.2. (1) Given a weak factorization system (L,R) then L is
cofibrantly closed in the sense that it contains all isomorphisms and is

(a) stable under pushout,
(b) closed under transfinite composition, and
(c) closed under retracts in comma categories K→.
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The first condition says that if

B
g // D

A

f

OO

g
// C

f

OO

is a pushout and f ∈ L then f ∈ L. The second condition means that
L is closed under composition and if (fij : Ai → Aj)i≤j≤λ is a smooth

chain (i.e., λ is a limit ordinal, (fij : Ai → Aj)i<j is a colimit for any
limit ordinal j ≤ λ) and fij ∈ L for each i ≤ j < λ then f0λ ∈ L. In
the third condition, K→ denotes the category of morphisms of K.

In what follows, cof(X ), denotes the cofibrant closure of X , i.e., the
closure of X under isomorphisms and constructions (a)–(c). We always
have

cof(X ) ⊆ �(X�).

(2) Let K be a locally presentable category. Then each set X of mor-
phisms determines a (cofibrantly generated) weak factorization system
(cof(X ),X�).

In what follows, we will often identify a class X of morphisms in K
with the full subcategory of K→ having X as objects.

Proposition 3.3. Let K be a locally presentable category and X a set

of morphisms. Then X� is an accessible category which is accessibly

embedded in K→.

Proof. It suffices to observe that g has a right lifting property w.r.t.
f : A → B if and only if g is injective in K→ to the morphism

(f, idB) : f → idB .

The result then follows from accessibility of small-injectivity classes
(see [3], 4.7). �

Proposition 3.4. Let K be a locally presentable category and X a set

of morphisms. Then cof(X ) is a split idempotent completion of a full

image of an accessible functor M → K→.

Proof. By the proof of [26], 3.1, there is an accessible functor

F : K→ → K→

such that a (cof(X ),X�) factorization of a morphism f : A → B is
gF (f). Since f belongs to cof(X ) if and only if it is a retract of F (f),
cof(X ) is a split idempotent completion of the image of F . �
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The following examples show that cof(X ) is not always accessible.
In these examples, it is a full image of an accessible functor. I do not
know any example where it is not so.

Example 3.5. (1) Let Pos be the category of posets and let L con-
sist of split monomorphisms. It is easy to see that L is the cofibrant
closure of split monomorphisms between finite posets. Since Pos is lo-
cally finitely presentable, the closure of split monomorphisms under λ-
directed colimits in Pos→ precisely consists of λ-pure monomorphisms
(see [3], 2.40). It is easy to see that, for each regular cardinal λ, there
is a λ-pure monomorphism which does not split. On the other hand, L
is the full image of an accessible functor F : M → K→ where objects of
M are pairs (i, p) with pi = id and morphisms are pairs of morphisms
(u, v) : (i, p) → (i′, p′) such that both vi = i′u and us = s′v.

(2) Let Ab be the category of abelian groups and let L be cofibrantly
generated by the morphism

0 → Z.

Then the comma category 0 ↓ L precisely consists of morphisms 0 → A
such that A is free. If we knew that L were accessible then it would
follow that 0 ↓ L was also accessible (see [3], 2.44), and this latter
category is isomorphic to F the category of all free abelian groups.
However, it known that the accessibility of F is not independent of set
theory since (i) F is accessible if there is a compact cardinal and (ii) if
the axiom of constructibility is assumed, then F is not accessible (see
[24], 5.5).

Corollary 3.6. Let K be a locally presentable category and X a set of

morphisms. Then X� is cone-reflective in K→.

Proof. It follows from 3.4, 2.4 and 2.5. �

Definition 3.7. Let K be a category with finite coproducts equipped
with a weak factorization system (L,R). A cylinder object C(K) of an
object K is given by an (L,R) factorization of the codiagonal

∇ : K + K
γK−−−−−→ C(K)

σK−−−−−→ K

We denote by

γ1K , γ2K : K → C(K)

the compositions of γK with the coproduct injections.

This definition was suggested in [21]. As usual, we say that mor-
phisms f, g : K → L are homotopic, and write f ∼ g, if there is a
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morphism h : C(K) → L such that the following diagram commutes

K + K
(f,g)

//

γK

$$HHHHHHHHHHHHH
L

C(K)

h

=={{{{{{{{{{{{

Here, (f, g) is induced by f and g. The homotopy relation ∼ is clearly
reflexive, symmetric, compatible with the composition and does not
depend on the choice of a cylinder object. But, it is not transitive in
general and we will denote its transitive hull by ≈. We get the quotient
functor

Q : K → K/ ≈ .

A morphism f : K → L is called a homotopy equivalence if Qf is the
isomorphism, i.e., if there exists g : L → K such that both fg ≈ idL

and gf ≈ idK . The full subcategory of K→ consisting of homotopy
equivalences w.r.t. a weak factorization system (L,R) will be denoted
by HL.

Proposition 3.8. Let K be a locally presentable category and X a set

of morphisms. Then Hcof(X ) is a full image of an accessible functor

into K→.

Proof. Given n < ω, let Mn be the category whose objects are (4n+2)-
tuples

(f, g, a1, . . . , an, b1, . . . , bn, h1, . . . , hn, k1, . . . , kn)

of morphisms f : A → B, g : B → A, a1, . . . , an : A → A, b1, . . . , bn :
B → B, h1, . . . , hn : C(A) → A and k1, . . . , kn : C(B) → B. Mor-
phisms are pairs (u, v) of morphisms u : A → A′ and v : B → B′

such that f ′u = vf , g′v = ug, uhi = h′
iC(u) and vki = k′

iC(v) for
i = 1, . . . , n. Since the cylinder functor is accessible, Mn is an ac-
cessible category (use [3], 2.67). Let Mn be the full subcategory of
Mn such that h1γA = (gf, a1), hiγA = (ai, ai+1), hnγn = (an, idA),
k1γA = (fg, b1), kiγA = (bi, bi+1) and knγn = (bn, idB) where 1 < i < n.
In the same way as in [3], 2.78, we show that Mn is accessible as well.
We have full embeddings

Mm,n : Mm → Mn,

for m < n, which takes the missing ai, bi, hi, ki as the identities. By
the same reason as above, the union M of all Mn’s is an accessible
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category. Since all Mn’s are accessibly embedded into M, their union
M is accessible by 2.1. Let

F : M → K→

sends each (4n + 2)-tuple above to f . This is an accessible functor
whose image is Hcof(X ). �

4. Weak equivalences

A model category is a complete and cocomplete category K together
with three classes of morphisms F , C and W called fibrations, cofibra-

tions and weak equivalences such that

(1) W has the 2-out-of-3 property, i.e., with any two of f , g, gf
belonging to W also the third morphism belongs to W, and W
is closed under retracts in the arrow category K→, and

(2) (C,F ∩W) and (C ∩W,F) are weak factorization systems.

Morphisms from F ∩W are called trivial fibrations while morphisms
from C ∩ W trivial cofibrations. A cofibrant replacement functor Rc :
K → K is given by the (cofibration, trivial fibration) factorization

0 → Rc(K) → K

of the unique morphism from 0 to K while a fibrant replacement functor

Rf is given by the (trivial cofibration, fibration) factorization of K → 1.
Their composition R = RfRc is called a replacement functor. All three
replacements Rc, Rf and R can be taken as functors K→ → K→ as
well.

A model category K is called combinatorial provided that K is lo-
cally presentable and the both weak factorization systems (C,F ∩W)
and (C ∩ W,F) are cofibrantly generated. In a combinatorial model
category, all three replacement functors Rc ,Rf and R are accessible
both as functors on K and as functors on K→.

Theorem 4.1. Let K be a combinatorial model category. Then W is

accessible and accessibly embedded into K→.

Proof. There is a regular cardinal λ such that W is closed in K→ un-
der λ-directed colimits (see [14], 7.3). A morphism f : K → L is a
weak equivalence if and only if its replacement R(f) is a homotopy
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equivalence. Thus W is a pseudopullback

K→ R // K→

W

OO

// HC

OO

Following 3.8 and 2.6, W is a full image of an accessible functor M →
K→. Thus it is accessible (see 2.3). �

Remark 4.2. [22], A.2.6.6 presents a simpler proof of 4.1 based on
the fact that f is a weak equivalence if and only if h in its (trivial
cofibration, fibration) factorization f = hg is a trivial fibration. I am
grateful to A. E. Stanculescu for pointing this out to me.

Theorem 4.3. Let X be a set of morphisms in a locally presentable

category K. Then C = cof(X ) and W make K a combinatorial model

category if and only if

(1) W has the 2-out-of-3 property and is closed under retracts in

K→,

(2) X� ⊆ W,

(3) cof(X )∩W is closed under pushout and transfinite composition,

and

(4) W satisfies the solution set-condition at X .

Proof. Sufficiency was shown in [7] and necessity follows from 4.1 and
[3], 2.45. �

Corollary 4.4. Let X be a set of morphisms in a locally presentable

category K and Wi, i ∈ I be a set of classes of morphisms of K. Let

C = cof(X ) and Wi make K a combinatorial model category for each

i ∈ I. Then C and ∩i∈IWi make K a combinatorial model category.

Proof. Since an intersection of a set of accessible and accessibly embed-
ded subcategories of K→ is accessible (see [3], 2.37), the result follows
from 4.1 and 4.3. �

Corollary 4.5. Let X be a set of morphisms in a locally presentable

category K. Assuming Vopěnka’s principle, C = cof(X ) and W make

K a combinatorial model category if and only if

(1) W has the 2-out-of-3 property and is closed under retracts in

K→,

(2) X� ⊆ W, and

(3) cof(X )∩W is closed under pushout and transfinite composition.
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Proof. Vopěnka’s principle implies that each full subcategory of K→ is
cone-reflective (see [3], 6.7). Thus condition (4) in 4.3 is automatic. �

The statement is equivalent to Vopěnka’s principle as the following
example demonstrates. Recall, that by our convention, K→ also denotes
the class of all morphisms of K.

Example 4.6. Let A be a reflective full subcategory of a locally finitely
presentable category K. The corresponding reflector will be denoted
by R. Let E be the class of all morphisms f such that R(f) is an
isomorphisms. Then (E , E⊥) is a factorization system where E⊥ consists
of morphisms having a unique lifting property w.r.t. E (it means that
the diagonal d in 3.1 is unique). Then E satisfies conditions (1) and
(3) from 4.5 (see, e.g., [29]).

The weak factorization system (K→, Iso) is cofibrantly generated by
the set X consisting of morphisms f having finitely presentable domains
and codomains. This can be found in the dual form in [15], Proposition
3.1 (see also [5]). In fact, g ∈ X� if and only if it is both a pure
monomorphism and a pure epimorphism. Consequently, C = K→ and
W = E satisfy all assumptions in 4.5. Thus there is a regular cardinal λ
such that E is λ-accessible and closed in K→ under λ-directed colimits.
Let E0 consist of λ-presentable objects in E . Since E is the closure of
E0 under λ-directed colimits in K→, we have

E⊥ = E⊥
0

(see [16], 2.2). Since an object K is orthogonal to E if and only if its
unique morphism t : K → 1 to the terminal object belongs to E⊥, the
reflective subcategory A is a small-orthogonality class. We use the fact
that K ∈ A if and only if K → 1 belongs to E⊥ (see, e.g., [28], 3.2).

We have proved that the statement of 4.5 implies that every reflective
full subcategory of a locally finitely presentable category is a small-
orthogonality class. But, this implies Vopěnka’s principle (see [3], 6.24.)

Corollary 4.7. Let X be a set of morphisms in a locally presentable

category K and Wi, i ∈ I be a collection of classes of morphisms of

K. Let C = cof(X ) and Wi make K a combinatorial model category

for each i ∈ I. Then C and ∩i∈IWi make K a combinatorial model

category.

Proof. It follows from 4.4. �

Remark 4.8. Let X be a set of morphisms of a locally presentable
category. Since C = X→ and W = K→ always form a combinatorial
model category, W = K→ is the largest W with this property. As-
suming Vopěnka’s principle, these classes W form a (large) complete
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lattice. Thus there is the smallest class WX with this property. More-
over, it can be constructed as the closure of X� under properties (1)
and (3) from 4.3. This construction was introduced in [28] where we
called WX left determined. Independently, this construction was con-
sidered by D.-C. Cisinski [12] who proved, without making any large
cardinal assumptions, that one gets a combinatorial model category in
the special case when K is a Grothendieck topos and cof(I) is the class
of all monomorphisms (the latter class is always cofibrantly generated
in this case).

In 2002, J. H. Smith informed me that he is able to prove that the
W’s above form a small-complete lattice without making any large
cardinal assumptions. Thus it always has a smallest element. Under
Vopěnka’s principle, this is our left-determined WX . I do not know
what happens in general and, in particular, I have not been able to
prove Smith’s claim.

Example 4.9. Let K be a locally presentable category and put C =
K→. We have shown in 4.6 that each reflective full subcategory A of K
determines a model category structure with W = E . Conversely, given
a model category structure then (W,W⊥) is a reflective factorization
system and thus W determines a reflective full subcategory of K. This
model category is combinatorial if and only if A is a small-orthogonality
class. Thus the ordered set of model category structures with C = K→

is dual to the ordered set of reflective full subcategories of K while
the ordered set of combinatorial model category structures (with C =
K→) is dual to the ordered set of small-orthogonality classes of K.
Since small-orthogonality classes are closed under small intersections,
combinatorial model category structures form a small-complete lattice
in this case. We will show that, without Vopěnka’s principle, they do
not always form a large-complete lattice.

Assuming the negation of Vopěnka’s principle, there is an epireflec-
tive full subcategory A of a locally presentable category K which is not
a small-orthogonality class (see [3], 6.12). Let

M = !A

consist of all epimorphisms h such that each object A ∈ A is orthogonal
to h. Then

A = M!,

which means that A precisely consists of objects orthogonal to each
morphism of M. We can express M as the union of a chain of subsets
indexed by all ordinals

M0 ⊆ M1 ⊆ . . .Mi ⊆ . . .
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Then A is the intersection of the corresponding small-orthogonality
classes M!

i.
On the other hand, for each small full subcategory X of A,

X = (!X )!

is a small-orthogonality class. In fact,

X = Y !

where Y consists of those epimorphisms H : C → D from !X where C
is a strong subobject of some X ∈ X . This follows from the observation
that, given h : A → B in !X and f : A → X, X ∈ X , we form the
(epi,strong mono) factorization of f (see [3], 1.61)

f : A
g

−−−−→ C −−−→ X

and a pushout

B
g // D

A

h

OO

g
// C

h

OO

Then h ∈ !X and, conversely, if X is orthogonal to all such h then it is
orthogonal to h.

Now, we express A as a union of a chain of small full subcategories
Xi indexed by all ordinals. Then A is the union of small-orthogonality
classes

X 0 ⊆ X 1 ⊆ . . .X i ⊆ . . .

Consequently, neither the infimum of M!
i nor the supremum of X i do

exist in the lattice of small-orthogonality classes of K.
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Astérisque 308 (2006).

[14] D. Dugger, Combinatorial model categories have presentations, Adv.
Math. 164 (2001), 177-201.

[15] J. Dydak and F. R. Ruiz del Portal, Isomorphisms in pro-categories, J.
Pure Appl. Alg. 190 (2004), 85-120.
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