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Model theory started with the first order logic, moved to infinitary
logic and, following the lead of Shelah, was extended to abstract
elementary classes. It happened in 1987, just before the creation of
the theory of accessible categories. But it took nearly 25 years to
realize that abstract elementary classes are special accessible
categories with concrete directed colimits (Lieberman, Beke, JR).

These are accessible categories C with directed colimits equipped
with a faithful functor U : K — Set preserving directed colimits.

In an abstract elementary class, U factorizes through a finitely
accessible category £ by a functor H : L — £ which is iso-full and
coherent. The first property is the fullness w.r.t. isomorphisms and
the second is the fullness w.r.t. f such that H(g)f = H(h) for
some g and h. Moreover, all morphisms of IC are monomorphisms.

One can take £ = Emb X for a finitary one-sorted language ¥.
This is the category of ¥-structures and substructure embeddings.

In this case, the functor U : K — Set is coherent.



Also, iso-fullness of H can be expressed in the terms of U —
interpretable finitary function and relation symbols seeing
IC-morphisms as substructure embeddings are able to detect
isomorphisms.

Thus abstract elementary classes can be characterized as certain
accessible categories with concrete directed colimits.

Thus they can be made not only syntax-free but even
signature-free.

The assumption about monomorphisms is not restrictive. We can
pass from a (coherent) accessible category K with concrete
directed colimits to its iso-full subcategory Ky on the same objects
which is a (coherent) accessible category with directed colimits
whose morphisms are monomorphisms.



Any finitely accessible category whose morphisms are
monomorphisms is an AEC.

More generally, any co, w-elementary category whose morphisms
are monomorphisms is an AEC. These categories are axiomatizable
in Lo, and are precisely limits of finitely accessible categories.

| do not know any example of an abstract elementary class which
is not 0o, w-elementary. With Makkai, we have not succeeded to
prove that the category of uncountable sets and monomorphisms is
not oo, w-elementary.

If there are no measurable cardinals then any (oo, w)-elementary
category is (w1,w)-elementary (Adamek, Johnstone, Makowski,
JR, 1997).



Let KL be a A-accessible category with directed colimits and K an
object which is not A-presentable. Then the smallest regular
cardinal k such that K is k-presentable is a successor cardinal, i.e.,
k = |K|* where |K]| is called the size of K.

An accessible category with concrete directed colimits has objects
of all sizes starting from some cardinal.

If U is coherent then it preserves sizes starting from some cardinal.
Thus our internal size |K| coincides with the cardinality of the
underlying set of K, starting from some cardinal.



Let I be an accessible category with directed colimits and A an
infinite cardinal. KC is A-categorical if it has, up to isomorphism,
precisely one object of size A.

Shelah’s Categoricity Conjecture claims that for every AEC K
there is a cardinal x such that K is either \-categorical for all
A > Kk or K is not A-categorical for any A > k.

This was conjectured by Los for first-order theories in a countable
language in 1954 and proved by Morley in 1965. In 1970, Shelah
extended it for uncountable languages. SCC is the main test
question for AECs.

Of course, SCC was formulated using external sizes, i.e.,
cardinalities of underlying sets. Since they coincide with internal
sizes starting from some cardinal, SCC is the property of the
category K.



In classical model theory, types are maximal consistent sets of
formulas in a single variable.

Shelah introduced (language-free) types for AECs in 1987. His
definition makes sense in any accessible category K with concrete
directed colimits.

Consider pairs (f,a) where f : M — N and a € UN. Two pairs
(fo,a0) and (f1, a1) are equivalent it there is an amalgamation

No N
fo h
M Ny

fi

such that U(ho)(ao0) = U(h1)(a1).

The resulting equivalence classes are called (Galois) types over M.
One needs the amalgamation property to get the equivalence
relation.



Let K be an accessible category with concrete directed colimits, the
amalgamation property and the joint embedding property. Then
(fo,a0) and (f1, a1) are equivalent if and only if there is a square

No —22 ~ 1
fo &1
M Ny

fi

and an isomorphism s : L — L such that sgpfy = g1f and
U(sgo)(a0) = U(g1)(a1)-

Thus types are orbits of automorphism groups.

L can be taken as a \-saturated object of size A where \-saturated
means to be injective with respect to morphisms between
A-presentable objects. It is often called a monster model.



A type (f,a) where f : M — N is realized in K if there is a
morphism g : M — K and b € U(K) such that (f,a) and (g, b)
are equivalent.

Let A be a regular cardinal. We say that K is \-Galois saturated if
for any g : M — K where M is A-presentable and any type (f, a)
where f : M — N there is b € U(K) such that (f, a) and (g, b) are
equivalent.

Theorem 1. Let K be a coherent accessible category with concrete
directed colimits, the amalgamation property and the joint
embedding property and A be a sufficiently large regular cardinal.
Then K is \-Galois saturated if and only if it is \-saturated.

Coherence appears to be indispensable in the "only if" part of the
proof, i.e., in the element-by-element construction of morphisms.



Tameness was introduced by Grossberg and VanDieren in 2006 as
a smallness property of Galois types for AECs.

Let I be an accessible category with concrete directed colimits
and x be a regular cardinal. We say that C is x-tame if for two
non-equivalent types (fy, ag) and (f1, a1) over M there is a
morphism u : X — M with X k-presentable such that the types
(fou, ap) and (fiu, a1) are not equivalent.

IC is called tame if it is k-tame for some k.

Theorem.(Grossberg, VanDieren) Let K be a large, tame AEC
with the amalgamation property and the joint embedding property.
If K is A*-categorical for a sufficiently large cardinal \ then K is
p-categorical for all p > A ™.



An uncountable cardinal « is called strongly compact if every
rk-complete filter can be extended to a k-complete ultrafilter on the
same set.

Equivalently, L, , satisfies the compactness theorem.

Theorem.(Boney) Assuming the existence of arbitrarily large
strongly compact cardinals, every AEC is tame.

Theorem 2. Assuming the existence of arbitrarily large strongly
compact cardinals, every accessible category with concrete directed
colimits is tame.

This generalization of Boney's theorem is the consequence of

Theorem.(Makkai, Paré) Assuming the existence of arbitrarily
large strongly compact cardinals, every powerful image of an
accessible functor is accessible.

The powerful image of a functor G : K — L is the smallest full
subcategory of £ containing G(K) and closed under subobjects.



We expect that Grossberg-VanDieren theorem is valid for coherent
accessible categories with concrete directed colimits, i.e., that one
does not need iso-fullness.

Any accessible category K with concrete directed colimits admits
an EM-functor, i.e., a faithful functor E : Lin — K preserving
directed colimits.

One does not need coherence for this. In abstract elementary
classes one gets this functor from the Shelah’s Presentation
Theorem which involves both the assumption of coherence and the
reintroduction of language into the fundamentally syntax-free
world of abstract elementary classes.



