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In what follows, V will be a combinatorial monoidal model
category such that

(1) it is locally presentable as a closed category,

(2) it has all objects cofibrant.

The main example is SSet and another key example is Cat with
the categorical model structure. We can also take any Cisinski
model category.

Our aim is to introduce homotopy locally presentable V-categories
and to relate them to combinatorial model V-categories.

Let V be locally presentable as a closed category. The trivial model
structure has all morphisms as cofibrations and isomorphisms as
weak equivalences. Our assumptions are satisfied and homotopy
locally presentable V-categories coincide with locally presentable
V-categories.



We have the functors P : V → HoV, HoV(I ,−) : HoV → Set and
their composition U : V → Set.
The homotopy category hoK of a V-category K has the same
objects as K and

hoK(A,B) = U(K(A,B))

For a model V-category M, we now have the standard homotopy
category HoM, and the homotopy category hoM, and these need
not agree. But if IntM is the full subcategory of M consisting of
the fibrant and cofibrant objects, then ho(IntM) is equivalent to
Ho(M).

Let K0 be the underlying category of K. We have a functor
PK : K0 → hoK and a morphism f : A→ B in K is called a
homotopy equivalence if its image in hoK is invertible.



A V-category K is called fibrant if each hom-object K(A,B) is
fibrant in V.

IntM is fibrant for each model V-category M.

In a fibrant K, f is a homotopy equivalence if and only if all
K(C , f ) (or all K(f ,C )) are weak equivalences in V.

For a trivial model category V, homotopy equivalences in a
V-category K coincide with isomorphisms and any K is fibrant.

Let f : A→ B be a morphism in a V-category K. Then an object
K in K is called homotopy orthogonal to f if K(f ,K ) is a weak
equivalence.

For a trivial model category V, we get the usual (enriched)
orthogonality.

Let M be a model V-category and F be a cofibration in IntM.
Then K ∈ IntM is homotopy orthogonal to f iff it is injective to
all f -horns, i.e., to pushout-products i�f with generating
cofibrations i .



An object K is homotopy orthogonal to a class F of morphisms if
it is homotopy orthogonal to each f ∈ F . The class of all objects
homotopy orthogonal to F is denoted by HOrtF and is called a
homotopy orthogonality class. If F is a set, we speak about small
homotopy orthogonality classes.

Any homotopy orthogonality class is homotopy replete, i.e., it is
closed under homotopy equivalent objects.

Theorem 1. Let M be a tractable left proper model V-category.
Assuming Vopěnka’s principle, each homotopy orthogonality class
in IntM is a small homotopy orthogonality class.

For a trivial model category V, any locally presentable V-category
M with the trivial model structure is a tractable left proper model
V-category. Thus Theorem 1 generalizes the fact that, assuming
VP, any orthogonality class in a locally presentable category is
small. This is equivalent to VP.



Let L be a full sub-V-category of a fibrant V-category K. We say
that L is homotopy reflective in K if, for each K in K, there is a
morphism ηK : K → K ∗ with K ∗ in L such that each L in L is
homotopy orthogonal to ηK .

Theorem 2. Let M be a tractable left proper model V-category.
Then each small homotopy orthogonality class in IntM is
homotopy reflective.

For a trivial model category V, homotopy reflective means
reflective. Thus Theorem 2 generalizes the fact that small
orthogonality classes in locally presentable categories are reflective.



Let K a fibrant V-category, S : D → K a diagram, and
G : Dop → V a cofibrant weight. Then a homotopy colimit of S
weighted by G is an object G ∗h S equipped with a natural
transformation β : K(G ∗h S ,−)→ [Dop,V](G ,K(S ,−)) whose
components are weak equivalences.

β corresponds to a cocone δ : G → K(S ,G ∗h S).

For an arbitrary weight, we can define the homotopy colimit by
taking its cofibrant replacement.

For a trivial model category V, every weight is cofibrant and we get
usual weighted colimits.

If G is cofibrant and the weighted colimit G ∗ S exists, then it is a
homotopy colimit G ∗h S .

Weighted homotopy colimits are determined up to homotopy
equivalence.

Weighted homotopy limits {G ,S}h are defined dually.



Ordinary colimits in a V-category can be understood as weighted
colimits ∆I ∗ S where ∆I is constant at I and S is the extension of
the starting diagram on the free V-category.

Theorem 3. Let V be λ-combinatorial, M be a λ-combinatorial
model V-category, I a λ-filtered category and S : I → IntM.
Then the canonical comparison hocolim S → colim S is a weak
equivalence.

A V-functor F : K → L between fibrant V-categories preserves the
homotopy weighted colimit G ∗h S when the composite

G δ−−−−→ K(S ,G ∗h S)
F−−−−→ L(FS ,F (G ∗h S)).

exhibits F (G ∗h S) as the homotopy colimit G ∗h FS .

Let K be a fibrant V-category. Then K(A,−) : K → IntV
preserves weighted homotopy limits for each A in K.



Theorem 4. Let M be a model V-category. Then IntM has
weighted homotopy colimits and weighted homotopy limits.

In fact, if G is cofibrant then G ∗ S is cofibrant and G ∗h S is its
fibrant replacement. Dually, {G ,S} is fibrant and {G ,S}h is its
cofibrant replacement.

Proposition 1. Let K be a fibrant V-category. Then homotopy
orthogonality classes in K are closed under existing weighted
homotopy limits.

Theorem 5. Let M be a tractable left proper model V-category.
Then a full subcategory of IntM is a small homotopy
orthogonality class iff it is homotopy reflective and closed under
homotopy λ-filtered colimits for some regular cardinal λ.

For a trivial model category V, we get the usual characterization of
small orthogonality classes.



An object A of a fibrant V-category K is called homotopy
λ-presentable when K(A,−) : K → IntV preserves homotopy
λ-filtered colimits.

A small full subcategory A of a fibrant V-category K is called
homotopy dense if the induced functor

F : K E // [Aop,V]
Q // [Aop,V]

is locally a weak equivalence, i.e. K(K ,K ′)→ [Aop,V](FK ,FK ′)
are weak equivalences in V.

For a trivial model category V, we get the usual dense subcategory.

A fibrant V-category having a homotopy dense subcategory is
called homotopy bounded.

A fibrant V-category is called homotopy locally λ-presentable if it
has homotopy weighted colimits and a homotopy dense
subcategory consisting of homotopy λ-presentable objects.

For a trivial model category V, we get locally λ-presentable
categories.



A fibrant V-category is called strongly homotopy locally
λ-presentable if it has homotopy weighted colimits and a small full
subcategory A consisting of homotopy λ-presentable objects such
that every object of K is a homotopy λ-filtered colimit of objects
from A.

Proposition 2. Every strongly homotopy locally λ-presentable
V-category is homotopy locally λ-presentable.

We do not know whether the both concepts coincide, which is true
for a trivial model category V.

Theorem 6. IntM is strongly homotopy locally presentable for
every combinatorial model V-category M. If M is tractable then
each small homotopy orthogonality class in IntM is strongly
homotopy locally presentable.



A weak equivalence F : K → L is a local weak equivalence which
is homotopically surjective in the sense that each L ∈ L is
homotopy equivalent to some FK .

A local weak equivalence F : K → L is called a strong weak
equivalence if there is a local weak equivalence G : L → K such
that GFK is homotopy equivalent to K and FGL is homotopy
equivalent to L for each K ∈ K and L ∈ L.

A strong weak equivalence is a weak equivalence. For trivial model
structure, the both concepts coincide with equivalences of
categories.

Proposition 3. If L is homotopy locally λ-presentable and
F : K → L is a weak equivalence then K is homotopy locally
λ-presentable.

Proposition 4. If K is strongly homotopy locally λ-presentable and
K → L is a strong weak equivalence then L is strongly homotopy
locally λ-presentable.



Theorem 7. Assuming Vopěnka’s principle, the following
conditions are equivalent to any fibrant V-category:

(1) K is homotopy cocomplete and homotopy bounded.

(2) K is homotopy locally presentable.

(3) There is a weak equivalence K → IntM for some
combinatorial model V-category.

(4) There is a weak equivalence K → IntM where M is a left
Bousfield localization of a V-presheaf category w.r.t. a set of
morphisms.

For a trivial model category V, we do not need VP for the
equivalence of (2), (3) and (4) but it is needed for the equivalence
of (1) and (2).

Problem 1. Is VP needed for (2)⇒(3)?


