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V combinatorial monoidal model category

One can do homotopy theory for V-categories.

P : V −→ HoV
Ho(I,−)
−−−−−−→ Set

is a strong monoidal functor.

Hence, for each V-category K, we have its homotopy

category hoK given by

hoK(A, B) = PK(A, B)

f : A → B homotopy equivalence if P (f) is isomor-

phism

A ≃ B denotes homotopy equivalent objects

2



Example. V = SSet

hoK(A, B) = π0K(A, B)

is the set of connected components of a simplicial

category K

hoSSet 6= HoSSet

isomorphisms are homotopy equivalences in hoSSet

and weak equivalences in HoSSet

hoKan = HoKan

where Kan is the simplicial category of Kan com-

plexes, i.e., of fibrant simplicial sets
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Other important examples are

V = Sp

the category of spectra, or

V = ChR

the category of unbounded chain complexes over a

ring R.

In the first case we get homotopy theory of spectral

categories and, in the second case, of dg-categories.
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F : K → L V-functor

ho F : hoK → hoL the induced functor

Definition. F is called a weak equivalence if

(1) K(A, B) → L(FA, FB) is a weak equivalence

for each A, B,

(2) for each L there is K such that L ≃ FK.

In the simplicial case, these functors are called Dwyer-

Kan equivalences. They are weak equivalences in a

model category structure on small simplicial cate-

gories. We will not need this model category struc-

ture but we will need its fibrant objects.
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Definition. V-categoryK is called fibrant ifK(A, B)

is fibrant in V for each A, B.

Fibrant V categories are homotopy correct ones. For

example, Kan is fibrant.

Lemma. Let K be a fibrant V-category and f :

A → B a morphism. Then the following conditions

are equivalent

(i) f is a homotopy equivalence,

(ii) K(C, f) is a weak equivalence for all C in K,

(iii) K(f, C) is a weak equivalence for all C in K.

In fact, it suffices to take C equal to A or B.

M model V-category, IntM its full subcategory con-

sisting of objects which are both fibrant and cofi-

brant.

Then IntM is a fibrant V-category.

Kan = IntSSet
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C small V-category, [Cop,V ] V-category of V-functors

Cop → V is a model category w.r.t. the projective

model structure where weak equivalences and fibra-

tions are pointwise.

Recall that a colimit colimG D of D : D → K weighted

by G : Dop → V is given by the formula

K(colimG D,−) ∼= [Dop,V ](G,K(D,−)]

A weight G : Dop → V is called cofibrant if it is a

cofibrant object in [Dop,V ]. Cofibrant weights form

a saturated class in the sense that they are closed

under weighted colimits with a cofibrant weight.
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Definition. Let K be a fibrant V-category, G :

Dop → V a cofibrant weight and D : D → K a

diagram. Then hocolimG D is called a homotopy

weighted colimit if there is a natural transformation

δ : K(hocolimG D,−)→ [Dop,V ](G,K(D,−))

whose components are weak equivalences.

By Yoneda, to give δ is the same as to give a natural

transformation

η : G→ K(D, hocolimG D)

in [Dop,V ].
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Proposition 1. Homotopy weighted colimits are

defined uniquely up to homotopy equivalence.

Proof. Let K and K ′ be two such homotopy colim-

its. Let J : X → K be the inclusion of the small full

subcategory of K consisting of K, K ′ and the image

of D. The induced maps

K(K, J−)→ [Dop,V ](G,K(D, J−))← K(K ′, J−)

are pointwise weak equivalences in [X ,V ], so

X (K,−) = K(K, J−)

and

X (K ′,−) = K′(K ′, J−)

are weakly equivalent in [X ,V ]. Since they are both

cofibrant (as hom-functors) and fibrant (because K

is fibrant), they are homotopy equivalent. So, K and

K ′ are homotopy equivalent.

Similarly, any object homotopy equivalent to a

homotopy colimit can be itself used as a homotopy

colimit.
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Example. Let K be a simplicial category and D :

D → K a diagram. Then the simplicial homotopy

colimit of D is defined as the colimit of D weighted

by

B((− ↓ D)op) : Dop → SSet .

This weight is a cofibrant approximation of the con-

stant diagram Dop → SSet at 1. Kan in particular

and IntM in general are not closed under simplicial

homotopy colimits. In order to take homotopy col-

imits living in IntM one has to take fibrant replace-

ments of simplicial homotopy colimits. They are au-

tomatically cofibrant because cofibrant objects are

closed under simplicial homotopy colimits. In this

way, we arrive to our general definition above.

All what I said up to now is a joint work with Steve

Lack. The simplicial case was done in my paper

[OHV] On homotopy varieties.
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Proposition 2. Let M be a model V-category.

Then IntM has homotopy weighted colimits and ho-

motopy weighted limits.

Of course, homotopy weighted limits are defined du-

ally. Emphasize that weights remain to be cofibrant.

Proposition 3. Let C be a small fibrant V-category.

Then Int[Cop,V ] is a free completion of C under weighted

homotopy colimits.

Proof. It suffices to add to Proposition 2 that

F = colimF Y

for each F in Int[Cop,V ].
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I do not claim that there is a universal property
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assigning to a V-functor H a V-functor H∗ preserv-

ing homotopy weighted colimits. The reason is that

homotopy weighted colimits are not functorial in gen-

eral. For example, given a complete V-category K,

the V-category of small V-functors form a model cat-

egory with the projective model structure (Chorny,

Dwyer). But this model structure is not functorial

and, consequently, homotopy weighted colimits in its

Int are not functorial.
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Theorem 1. Let C be a small fibrant simplicial

category. Then Int[Cop,SSet] is a free completion of

C under homotopy colimits.

This is much deeper than Proposition 3 and I proved

it in [OHV]. In the special case of an ordinary cate-

gory C (which is a fibrant simplicial category), it was

proved by Dugger in his work on universal model

categories.
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simplicial nerve

SSet -Cat→ SSet

with a left adjoint (simplicial realization)

R : SSet→ SSet -Cat

fibrant simplicial categories go to quasicategories

our homotopy (co)limits correspond to (co)limits of

quasicategories
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Let D be a category, K a simplicial category and

D : D → K a functor such that the weight

B(D ↓ −)→ SSet

is finite (i.e., B(D ↓ d) is finitely presentable for each

d in D. The the homotopy limit holim D is called

finite.

Proposition 4. Filtered homotopy colimits com-

mute in Kan with finite homotopy limits.

Proof. Filtered homotopy colimits are homotopy

equivalent with filtered colimits. The latter commute

with finite weighted limits.

This is not true for any finite diagram, i.e., having

D finite (Daniel Davis, T. Torii, L. Vokř́ınek).
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An object A of a fibrant simplicial category K is

called homotopy finitely presentable if hom(A,−) :

K → SSet preserves filtered homotopy colimits.

Definition. A fibrant simplicial category K is called

homotopy locally finitely presentable if

(1) it is homotopy cocomplete and

(2) it has a set A of homotopy finitely presentable

objects such that each object is a homotopy

colimit of objects from A.

Homotopy locally finitely presentable categories are

precisely categories HInd(C) where C is a small fi-

brant simplicial category.

HInd(C) is a full subcategory of Int[Cop,SSet] con-

sisting of filtered homotopy colimits of hom-functors.
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Homotopy locally finitely presentable categories are

precisely categories HMod(C) where C is a small fi-

brant simplicial category having finite homotopy lim-

its.

HMod(C) is a full subcategory of Int[C,SSet] consist-

ing of simplicial functors preserving finite homotopy

limits

finite homotopy limit sketches, homotopy orthogo-

nality
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Definition. A small category D is called homotopy

sifted if homotopy colimits over D commute with fi-

nite products in Kan.

Theorem 2. D is homotopy sifted iff△ : D → D×D

is homotopy final.

filtered ⇒ homotopy sifted ⇒ sifted

reflexive pairs are not homotopy sifted, ∆op is homo-

topy sifted

homotopy sifted = totally coaspherical (in the sense

of Maltsiniotis)

An object A of a fibrant simplicial category K is

called homotopy projectively finitely presentable if

hom(A,−) : K → SSet

preserves homotopy sifted homotopy colimits.
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Definition. A fibrant simplicial category K is called

homotopy algebraic if

(1) it is homotopy cocomplete and

(2) it has a set A of homotopy projectively finitely

presentable objects such that each object is a

homotopy colimit of objects from A.

Homotopy algebraic categories are precisely categories

HSInd(C) where C is a small fibrant simplicial cate-

gory.

HSInd(C) is a full subcategory of Int[Cop,SSet] con-

sisting of homotopy sifted homotopy colimits of hom-

functors

Homotopy algebraic categories are precisely categories

HAlg(C) where C is a small fibrant simplicial cate-

gory having finite products.

HAlg(C) is a full subcategory of Int[C,SSet] consist-

ing of simplicial functors preserving finite products.
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Definition. A fibrant simplicial category K is called

homotopy finitely accessible if

(1) it has filtered homotopy colimits and

(2) it has a set A of homotopy finitely presentable

objects such that each object is a filtered ho-

motopy colimit of objects from A.

homotopy accessible categories

They should be given by (homotopy limit, homotopy

colimit) sketches.
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