
INVESTMENTS IN EDUCATION DEVELOPMENT

Deterministic models of natural selection and their

relation to ecology
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y′ = g(x)
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1
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||p||2 +
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||x||
The following holds:

∇xH(x, p) =
∂H
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= −
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||x||3
x = −p′

∇pH(x, p) =
∂H
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=
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m
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x′ = J(x)∇H(x) where J(x) = −J(x)T
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Plato, Timaios 28a: “First then, in my judgment, we must make a
distinction and ask,

What is that which always is and has no becoming;

and what is that which is always becoming and never is?”

Nejprve jest podle mého ḿıněńı stanoviti tuto rozluku: co jest to, co stále

jest, ale vzniku nemá, a co jest to, co stále vzniká, ale nikdy neńı jsoućı.
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■ Malthus: x′ = rx ⇒ exponential growth
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(
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x′ = x(r − by),
y′ = y(−s + cx).
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ξ′ = r − beη,
η′ =−s + ceξ.
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=
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


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


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The fitest species survives and propagates.
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■ xi = xi(t) . . . frequency of the i-th species (alleletype)
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A change of the relative abundance of species in a community
is proportional

to difference of its fitness and an overall fitness.

■ xi = xi(t) . . . frequency of the i-th species (alleletype)
n
∑

i=1

xi = 1



Derivation of the equation I

Introduction

Theoretical
background

Replicator equation I
Derivation of the
equation I
Derivation of the
equation II
Elementary
properties of the
replicator equation
Equation with linear
fitnesses
Properties of the
equation with linear
fitnesses
Equivalence of the
replicator equation
and of the
Lotka-Volterra ones

Example: n = 2

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II

Alternative
approaches

Natural selection and ecology – 11 / 36

A change of the relative abundance of species in a community
is proportional

to difference of its fitness and an overall fitness.

■ xi = xi(t) . . . frequency of the i-th species (alleletype)
n
∑

i=1

xi = 1

■ fi . . . fitness of the i-th type



Derivation of the equation I

Introduction

Theoretical
background

Replicator equation I
Derivation of the
equation I
Derivation of the
equation II
Elementary
properties of the
replicator equation
Equation with linear
fitnesses
Properties of the
equation with linear
fitnesses
Equivalence of the
replicator equation
and of the
Lotka-Volterra ones

Example: n = 2

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II

Alternative
approaches

Natural selection and ecology – 11 / 36

A change of the relative abundance of species in a community
is proportional

to difference of its fitness and an overall fitness.

■ xi = xi(t) . . . frequency of the i-th species (alleletype)
n
∑

i=1

xi = 1

■ fi . . . fitness of the i-th type

■ f̄ . . . overall fitness



Derivation of the equation I

Introduction

Theoretical
background

Replicator equation I
Derivation of the
equation I
Derivation of the
equation II
Elementary
properties of the
replicator equation
Equation with linear
fitnesses
Properties of the
equation with linear
fitnesses
Equivalence of the
replicator equation
and of the
Lotka-Volterra ones

Example: n = 2

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II

Alternative
approaches

Natural selection and ecology – 11 / 36

A change of the relative abundance of species in a community
is proportional

to difference of its fitness and an overall fitness.

■ xi = xi(t) . . . frequency of the i-th species (alleletype)
n
∑

i=1

xi = 1

■ fi . . . fitness of the i-th type

■ f̄ . . . overall fitness, f̄ =
n
∑

i=1

xifi



Derivation of the equation I

Introduction

Theoretical
background

Replicator equation I
Derivation of the
equation I
Derivation of the
equation II
Elementary
properties of the
replicator equation
Equation with linear
fitnesses
Properties of the
equation with linear
fitnesses
Equivalence of the
replicator equation
and of the
Lotka-Volterra ones

Example: n = 2

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II

Alternative
approaches

Natural selection and ecology – 11 / 36

A change of the relative abundance of species in a community
is proportional

to difference of its fitness and an overall fitness.

■ xi = xi(t) . . . frequency of the i-th species (alleletype)
n
∑

i=1

xi = 1

■ fi . . . fitness of the i-th type

■ f̄ . . . overall fitness, f̄ =
n
∑

i=1

xifi

■ fi = fi(x), f̄ = f̄(x).



Derivation of the equation I

Introduction

Theoretical
background

Replicator equation I
Derivation of the
equation I
Derivation of the
equation II
Elementary
properties of the
replicator equation
Equation with linear
fitnesses
Properties of the
equation with linear
fitnesses
Equivalence of the
replicator equation
and of the
Lotka-Volterra ones

Example: n = 2

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II

Alternative
approaches

Natural selection and ecology – 11 / 36

A change of the relative abundance of species in a community
is proportional

to difference of its fitness and an overall fitness.

■ xi = xi(t) . . . frequency of the i-th species (alleletype)
n
∑

i=1

xi = 1

■ fi . . . fitness of the i-th type
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Community consisting of k populations
ni = ni(t) . . . size of the i-th population
ri = ri(n) . . . growth rate of the i-th population

n′

i = ri(n)ni, i = 1, 2, . . . , k
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fi(x) = ri(Nx) = ri(n)



Derivation of the equation II

Introduction

Theoretical
background

Replicator equation I
Derivation of the
equation I
Derivation of the
equation II
Elementary
properties of the
replicator equation
Equation with linear
fitnesses
Properties of the
equation with linear
fitnesses
Equivalence of the
replicator equation
and of the
Lotka-Volterra ones

Example: n = 2

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II

Alternative
approaches

Natural selection and ecology – 12 / 36

Community consisting of k populations
ni = ni(t) . . . size of the i-th population
ri = ri(n) . . . growth rate of the i-th population

n′

i = ri(n)ni, i = 1, 2, . . . , k

N =
k
∑

j=1

nj . . . size of community

xi = ni/N . . . relative abundance of the i-th population
fi(x) = ri(Nx) = ri(n)

N ′ =
k
∑

j=1

n′

j =
k
∑

j=1

rj(n)nj = N
k
∑

j=1

xjfj(x)



Derivation of the equation II

Introduction

Theoretical
background

Replicator equation I
Derivation of the
equation I
Derivation of the
equation II
Elementary
properties of the
replicator equation
Equation with linear
fitnesses
Properties of the
equation with linear
fitnesses
Equivalence of the
replicator equation
and of the
Lotka-Volterra ones

Example: n = 2

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II

Alternative
approaches

Natural selection and ecology – 12 / 36

Community consisting of k populations
ni = ni(t) . . . size of the i-th population
ri = ri(n) . . . growth rate of the i-th population

n′

i = ri(n)ni, i = 1, 2, . . . , k

N =
k
∑

j=1

nj . . . size of community

xi = ni/N . . . relative abundance of the i-th population
fi(x) = ri(Nx) = ri(n)

N ′ =
k
∑

j=1

n′

j =
k
∑

j=1

rj(n)nj = N
k
∑

j=1

xjfj(x)

x′

i =
n′

iN − niN
′

N2
=

ri(n)ni − ni

k
∑

j=1

rj(n)nj

N
=

= xi

(

fi(x) −
k
∑

j=1

xjfj(x)

)



Derivation of the equation II

Introduction

Theoretical
background

Replicator equation I
Derivation of the
equation I
Derivation of the
equation II
Elementary
properties of the
replicator equation
Equation with linear
fitnesses
Properties of the
equation with linear
fitnesses
Equivalence of the
replicator equation
and of the
Lotka-Volterra ones

Example: n = 2

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II

Alternative
approaches

Natural selection and ecology – 12 / 36

Community consisting of k populations
ni = ni(t) . . . size of the i-th population
ri = ri(n) . . . growth rate of the i-th population

n′

i = ri(n)ni, i = 1, 2, . . . , k
selection system

N =
k
∑

j=1

nj . . . size of community

xi = ni/N . . . relative abundance of the i-th population
fi(x) = ri(Nx) = ri(n)

N ′ =
k
∑

j=1

n′

j =
k
∑

j=1

rj(n)nj = N
k
∑

j=1

xjfj(x)

x′

i =
n′

iN − niN
′

N2
=

ri(n)ni − ni

k
∑

j=1

rj(n)nj

N
=

= xi

(

fi(x) −
k
∑

j=1

xjfj(x)

)



Elementary properties of the replicator equation

Introduction

Theoretical
background

Replicator equation I
Derivation of the
equation I
Derivation of the
equation II
Elementary
properties of the
replicator equation
Equation with linear
fitnesses
Properties of the
equation with linear
fitnesses
Equivalence of the
replicator equation
and of the
Lotka-Volterra ones

Example: n = 2

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II

Alternative
approaches

Natural selection and ecology – 13 / 36

x′

i = xi



fi(x) −

n
∑

j=1

xjfj(x)



 , i = 1, 2, . . . , n (1)
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fi(x) −
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∑
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xjfj(x)


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Sn =
{

x ∈ R̄
n
+ : 1Tx = 1

}

S◦

n =
{

x ∈ R
n
+ : 1Tx = 1

}

∂Sn = Sn r S◦

n

n-dimensional simplex, its interior and its boundary, respectively.
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■ Let Ψ : Sn → R be a continuous function. Put gi = fi + Ψ
for all i ∈ {1, 2, . . . , n}. Then x solves the equation (1) if
and only if it solves the equation

x′

i = xi



gi(x) −
n
∑

j=1

xjgj(x)



 , i = 1, 2, . . . , n.
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Theorem: Let there is a point x̂ ∈ Sn and its naighbourhood U
such that

n
∑

i=1

x̂ifi(x) > f̄(x) for all x ∈ Sn ∩ (U r {x̂}) .

Then x̂ is asymptoticaly stable equilibrium of the equation.
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Then x̂ is asymptoticaly stable equilibrium of the equation.

x̂ . . . evolutionary stable state.
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x′

i = xi



fi(x) −
n
∑

j=1

xjfj(x)



 , i = 1, 2, . . . , n

fi(x1, x2, . . . , xn) =
n
∑

k=1

aikxk

x′

i = xi





n
∑

k=1

aikxk −
n
∑

j=1

n
∑

k=1

xjajkxk



 , i = 1, 2, . . . , n

x′

i = xi

(

(Ax)i − xTAx
)

, i = 1, 2, . . . , n
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Equation with linear fitnesses

Introduction

Theoretical
background

Replicator equation I
Derivation of the
equation I
Derivation of the
equation II
Elementary
properties of the
replicator equation
Equation with linear
fitnesses
Properties of the
equation with linear
fitnesses
Equivalence of the
replicator equation
and of the
Lotka-Volterra ones

Example: n = 2

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II

Alternative
approaches

Natural selection and ecology – 14 / 36

x′

i = xi



fi(x) −
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aikxk
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xjajkxk



 , i = 1, 2, . . . , n
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i = xi

(

(Ax)i − xTAx
)

, i = 1, 2, . . . , n

x′

i = xi(ei − x)TAx, i = 1, 2, . . . , n

x′ = x ◦
(

(E − x1
T)Ax
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x′

i = xi

(

(Ax)i − xTAx
)

, i = 1, 2, . . . , n (2)
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x′

i = xi

(

(Ax)i − xTAx
)

, i = 1, 2, . . . , n (2)

■ Sn, ∂Sn, S◦

n are positive invariant sets of the equation (2).
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x′

i = xi

(

(Ax)i − xTAx
)

, i = 1, 2, . . . , n (2)

■ Sn, ∂Sn, S◦

n are positive invariant sets of the equation (2).

■ Adding af a diagonal matrix to the matrix A or adding of a
constant vector to a row (a column) of the matrix A does
not change the solution of the equation (2).
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x′

i = xi

(

(Ax)i − xTAx
)

, i = 1, 2, . . . , n

Put bij = anj − aij , ri = ain − ann for i, j = 1, 2, . . . , n − 1.
Transformation both of the independent variable (time) and of
the functions xi given by the equalities

τ =
t
∫

0

xn(s)ds, yj =
xj

xn

, j = 1, 2, . . . , n − 1

maps the orbits of the replicator equation initialising in the
interior of the simplex S◦

n to the orbits of the Lotka-Volterra
system

dyj

dτ
= yj

(

rj −

n−1
∑

k=1

bjkyk

)

, j = 1, 2, . . . , n − 1

initialising in the interior of the positive orthant R
n−1
+ .
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A =

(

a11 a12

a21 a22

)
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A =

(

a11 a12

a21 a22

)

The corresponding Lotka-Volterra equation is

dy

dτ
= y

(

a12 − a22 − (a21 − a11)y
)
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A =

(

a11 a12

a21 a22

)

The corresponding Lotka-Volterra equation is

dy

dτ
= y

(

a12 − a22 − (a21 − a11)y
)

This is the (Verhulst) logistic equation.
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A =

(

a11 a12

a21 a22

)

The corresponding Lotka-Volterra equation is

dy

dτ
= y

(

a12 − a22 − (a21 − a11)y
)

This is the (Verhulst) logistic equation.

Solution with the initial condition y(0) = y0 > 0 is

y(τ ) =
(a12 − a22)y0

(a21 − a11)y0 +
(

a12 − a22 − (a21 − a11)y0

)

e(a22−a12)τ
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Normal form two player game:
quadruple G = (X, Y, u, v), where X, Y are finite sets and u, v
are functions X × Y → R.

Sets X and Y . . . sets of strategies of the first and of the second
player, respectively.

Functins u and v. . . payoff function of the first and of the second
player, respectively.
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Put
X = {1, 2, . . . , n} Y = {1, 2, . . . , m}

aij = u(i, j) bji = v(i, j)

A =











a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm











, B =











b11 b12 . . . b1n

b21 b22 . . . b2n

...
...

. . .
...

bm1 bm2 . . . bmn











.
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Put
X = {1, 2, . . . , n} Y = {1, 2, . . . , m}

aij = u(i, j) bji = v(i, j)

A =











a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm











, B =











b11 b12 . . . b1n

b21 b22 . . . b2n

...
...

. . .
...

bm1 bm2 . . . bmn











.

Using this notation, we have

u(i, j) = aij = eT
i Aej , v(i, j) = bji = eT

j Bei.

Matrix A, B . . . payoff matrix.
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G = (X, Y, u, v) = (A, B)

A game can be represented by the table

player 2

1 2 . . . m

1
b11

a11

b21

a12

. . .
bm1

a1m

p
la

ye
r

1 2
b12

a21

b22

a22

. . .
bm2

a2m

...
...

...
. . .

...

n
b1n

an1

b2n

an2

. . .
bmn

anm
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Probability extension of a bimatrix game G = (X, Y, u, v):

quadruple G∗ = (X∗, Y ∗, u∗, v∗);

X∗ = Sn, Y ∗ = Sm,
u∗, v∗ are functions X∗ × Y ∗ → R, defined by

u∗(x, y) = xTAy, v∗(x, y) = yTBx.

X, Y . . . pure strategies

X∗, Y ∗ . . . mixed strategies
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Probability extension of a bimatrix game G = (X, Y, u, v):

quadruple G∗ = (X∗, Y ∗, u∗, v∗);

X∗ = Sn, Y ∗ = Sm,
u∗, v∗ are functions X∗ × Y ∗ → R, defined by

u∗(x, y) = xTAy, v∗(x, y) = yTBx.

X, Y . . . pure strategies

X∗, Y ∗ . . . mixed strategies

G∗ = (X∗, Y ∗, u∗, v∗) = (A, B)
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x̄ ∈ X∗ . . . the best reply to the strategy y ∈ Y ∗:
(∀x ∈ X∗) u∗(x̄, y) = x̄TAy ≥ xTAy = u∗(x, y)

ȳ ∈ Y ∗ . . . the best reply to the strategy x ∈ X∗:
(∀y ∈ Y ∗) v∗(x, ȳ) = ȳTBx ≥ yTBx = v∗(x, y).



Strategies

Introduction

Theoretical
background

Replicator equation I

Matrix and bimatrix
games

Definition

Strategies

Partnership game

Symmetric game
Replicator equation
for a bimatrix game

Famous conflicts

Replicator equation
II

Alternative
approaches

Natural selection and ecology – 20 / 36

x̄ ∈ X∗ . . . the best reply to the strategy y ∈ Y ∗:
(∀x ∈ X∗) u∗(x̄, y) = x̄TAy ≥ xTAy = u∗(x, y)

ȳ ∈ Y ∗ . . . the best reply to the strategy x ∈ X∗:
(∀y ∈ Y ∗) v∗(x, ȳ) = ȳTBx ≥ yTBx = v∗(x, y).

(x̄, ȳ) ∈ X∗ × Y ∗ . . . (Nash) equilibrium:

∀(x ∈ X∗)∀(y ∈ Y ∗) x̄TAȳ ≥ xTAȳ, ȳTBx̄ ≥ yTBx̄

i.e. x̄ is the best reply to ȳ and at the same time ȳ is the best
reply to x̄
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G = (A, B), c ∈ R+
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G = (A, B), c ∈ R+

G is the c-partnership game:

(∃D, p, q) A = D + 1qT, B = cDT + 1pT

i.e. aij = dij + qj , bji = cdij + pi
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G = (A, B), c ∈ R+

G is the c-partnership game:

(∃D, p, q) A = D + 1qT, B = cDT + 1pT

i.e. aij = dij + qj , bji = cdij + pi

G is the identical interest game:

c = 1, p = o = q

i.e. A = BT
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G = (A, B)
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G = (A, B)

G is a symmetric game :
A = B

i.e. u(i, j) = v(j, i)
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G = (A, B)

G is a symmetric game (matrix game):
A = B

i.e. u(i, j) = v(j, i)
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G = (A, B)

G is a symmetric game (matrix game):
A = B

i.e. u(i, j) = v(j, i)

(x̄, ȳ) ∈ X∗2 forms an equilibrium:

(∀x, y ∈ X∗) x̄TAȳ ≥ xTAȳ, ȳTAx̄ ≥ yTAx̄
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G = (A, B)

G is a symmetric game (matrix game):
A = B

i.e. u(i, j) = v(j, i)

(x̄, ȳ) ∈ X∗2 forms an equilibrium:

(∀x, y ∈ X∗) x̄TAȳ ≥ xTAȳ, ȳTAx̄ ≥ yTAx̄

x̄ ∈ X∗ is the symmetric (Nash) equilibrium:
(x̄, x̄), i.e.

(∀x ∈ X∗) x̄TAx̄ ≥ xTAx̄
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x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n,
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m,
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x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n,
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m,

x′

i = xi(ei − x)TAy, i = 1, 2, . . . , n,
y′j = yj(ej − y)TBx, j = 1, 2, . . . , m.
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x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n,
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m,

x′

i = xi(ei − x)TAy, i = 1, 2, . . . , n,
y′j = yj(ej − y)TBx, j = 1, 2, . . . , m.

(

x

y

)

′

=

(

x

y

)

◦

(

O (E − x1
T)A

(E − y1
T)B O

)(

x

y

)

.
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x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n,
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m,

x′

i = xi(ei − x)TAy, i = 1, 2, . . . , n,
y′j = yj(ej − y)TBx, j = 1, 2, . . . , m.

(

x

y

)

′

=

(

x

y

)

◦

(

O (E − x1
T)A

(E − y1
T)B O

)(

x

y

)

.

(

x

y

)

′

=

(

x

y

)

◦

[

E −

(

1xT O
O 1yT

)](

O A
B O

)(

x

y

)
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Hawk Dove

Hawk 1

2
V − C V

Dove 0 1

2
V

V – value of the resource
C – cost of the contest
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The lizard Uta stansburniana

large teritory, several females 0 wins loses

teritory with single female loses 0 wins

no teritory wins loses 0
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The rock-scissors-paper game

0 wins loses

loses 0 wins

wins loses 0
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Rock Scissors Paper

Rock 0 1 −1

Scissors −1 0 1

Paper 1 −1 0
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Entrants Strategies

male faithful philanderer

female coy fast

V – value of the offspring
2C – parental investment
c – cost of engagement period
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Entrants Strategies

male faithful philanderer

female coy fast

V – value of the offspring
2C – parental investment
c – cost of engagement period

female

coy fast

m
al

e faithful
V − C − c

V − C − c
V − C

V − C

philanderer
0

0
V − 2C

V



Battle of sexes

Introduction

Theoretical
background

Replicator equation I

Matrix and bimatrix
games

Famous conflicts

Hawks and doves

Mating strategies

Battle of sexes

Replicator equation
II

Alternative
approaches

Natural selection and ecology – 27 / 36

Entrants Strategies

male faithful philanderer

female coy fast

V – value of the offspring
2C – parental investment
c – cost of engagement period

female

coy fast

m
al

e faithful
V − C − c

V − C − c
V − C

V − C

philanderer
0

0
V − 2C

V
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x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m
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x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n
y′j = yj

(

(Bx)j − yTBx
)
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m are positive invariant sets of
the equations



Simple properties of bimatrix replicator equations

Introduction

Theoretical
background

Replicator equation I

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II
Simple properties of
bimatrix replicator
equations
Example:
n = m = 2

Stationary solutions
of replicator
equations

Bipartite system

Hamiltonian system

Alternative
approaches

Natural selection and ecology – 29 / 36

x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m

■ Sn × Sm, ∂Sn × ∂Sm S◦

n × S◦

m are positive invariant sets of
the equations,

■ consequently, the n + m-dimensional system can be reduced
to the n + m − 2-dimensional one:

x′

i = xi(ei − x)T
(

Ãy − â
)

, i = 1, 2, . . . , n − 1,

y′j = yj(ej − y)T
(

B̃x − b̂
)

, j = 1, 2, . . . , m − 1.

where ãij = aij − aim − anj + anm, âi = anm − aim

b̃ij = bij − bin − bmj + bmn, b̂j = bmn − bjn.
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A =

(

a11 a12

a21 a22

)

, B =

(

b11 b12

b21 b22

)

.



Example: n = m = 2

Introduction

Theoretical
background

Replicator equation I

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II
Simple properties of
bimatrix replicator
equations
Example:
n = m = 2

Stationary solutions
of replicator
equations

Bipartite system

Hamiltonian system

Alternative
approaches

Natural selection and ecology – 30 / 36

A =

(

a11 a12

a21 a22

)

, B =

(

b11 b12

b21 b22

)

.

Reduced system:

x′ = x(1 − x)(α1y − α2)

y′ = y(1 − y)(β1x − β2)

where α1 = a11 − a12 − a21 + a22, α2 = a22 − a12,
β1 = b11 − b12 − b21 + b22, β2 = b22 − b12
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Reduced system:

x′ = x(1 − x)(α1y − α2)

y′ = y(1 − y)(β1x − β2)

where α1 = a11 − a12 − a21 + a22, α2 = a22 − a12,
β1 = b11 − b12 − b21 + b22, β2 = b22 − b12

Phase space: [0, 1] × [0, 1]
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Reduced system:

x′ = x(1 − x)(α1y − α2)

y′ = y(1 − y)(β1x − β2)

where α1 = a11 − a12 − a21 + a22, α2 = a22 − a12,
β1 = b11 − b12 − b21 + b22, β2 = b22 − b12

Phase space: [0, 1] × [0, 1]

Stationary solutions: (0, 0), (0, 1), (1, 0), (1, 1)
corresponds to the pure strategies.

If α1 6= 0, 0 <
α2

α1
< 1, β1 6= 0, 0 <

β2

β1
< 1,

the interior stationary solution:

(

β2

β1
,
α2

α1

)

corresponds to mixed strategies.
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Reduced system:

x′ = x(1 − x)(α1y − α2)

y′ = y(1 − y)(β1x − β2)

The variational matrix of the system:

J(0, 0) =

(

−α2 0
0 −β2

)

, J(0, 1) =

(

α1 − α2 0
0 β2

)

,

J(1, 0) =

(

α2 0
0 β1 − β2

)

, J(1, 1) =

(

α2 − α1 0
0 β2 − β1

)

,
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Reduced system:

x′ = x(1 − x)(α1y − α2)

y′ = y(1 − y)(β1x − β2)

The variational matrix of the system:

J(0, 0) =

(

−α2 0
0 −β2

)

, J(0, 1) =

(

α1 − α2 0
0 β2

)

,

J(1, 0) =

(

α2 0
0 β1 − β2

)

, J(1, 1) =

(

α2 − α1 0
0 β2 − β1

)

,

J

(

β2

β1
,
α2

α1

)

=









0
α1β2(β1 − β2)

β2
1

α2β1(α1 − α2)

α2
1

0









.
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Reduced system:

x′ = x(1 − x)(α1y − α2)

y′ = y(1 − y)(β1x − β2)

The stationary points corresponding to the pure strategies are
saddle points or nodes, the stationary point corresponding to
mixed strategies is saddle point or unstable focus.
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x′
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E . . . set of stationary solutions of the system
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x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m

N . . . set of Nash equilibria of bimatrix game G = (A, B)
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N ⊆ E
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x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m

N . . . set of Nash equilibria of bimatrix game G = (A, B)
E . . . set of stationary solutions of the system

N ⊆ E

(S◦

n × S◦

m) ∩ N = E ∩ (S◦

n × S◦

m)
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x′

i = xi

(

(Ax)i − xTAx
)

, i = 1, 2, . . . , n

N . . . set of symmetric Nash equilibria of matrix game G = A
E . . . set of stationary solutions of the equation
S . . . set of stable stationary solutions of the equation
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x′

i = xi

(

(Ax)i − xTAx
)

, i = 1, 2, . . . , n

N . . . set of symmetric Nash equilibria of matrix game G = A
E . . . set of stationary solutions of the equation
S . . . set of stable stationary solutions of the equation

S ⊆ N ⊆ E
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x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m
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x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m

Let us consider the system on S◦

n × S◦

m



Bipartite system

Introduction

Theoretical
background

Replicator equation I

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II
Simple properties of
bimatrix replicator
equations
Example:
n = m = 2

Stationary solutions
of replicator
equations

Bipartite system

Hamiltonian system

Alternative
approaches

Natural selection and ecology – 32 / 36

x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m

Let us consider the system on S◦

n × S◦

m

Substitution
ãij = aij − anj, âi = aim − anm,

b̃ji = bji − bmi, b̂j = bjn − bmn,
ξi =

xi

xn

, ηj =
yj

ym

,

ξ′i = ξi
(Ãη)i + âi

1 + 1
Tη

, i = 1, 2, . . . , n − 1,

η′j = ηj

(B̃ξ)j + b̂j

1 + 1
Tξ

, j = 1, 2, . . . , m − 1.
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x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m

Let us consider the system on S◦

n × S◦

m

Further substitution ui = ln ξi, vj = ln ηj

u′

i =

m−1
∑

k=1

ãike
vk + âi

1 +
m−1
∑

k=1

evk

, i = 1, 2, . . . , n − 1,

v′j =

n−1
∑

k=1

b̃jke
uk + b̂i

1 +
n−1
∑

k=1

euk

, j = 1, 2, . . . , m − 1.
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x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m

Let us consider the system on S◦

n × S◦

m

Let (A, B) be c-partnership game and (x̄, ȳ) ∈ S◦

n × S◦

m is the
Nash equilibrium.
Then the function

H(x, y) = c
n
∑

i=1

x̄i lnxi −
m
∑

j=1

ȳj ln yj

is the invariant of the system.
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x′

i = xi

(

(Ay)i − xTAy
)

, i = 1, 2, . . . , n
y′j = yj

(

(Bx)j − yTBx
)

, j = 1, 2, . . . , m

Let us consider the system on S◦

n × S◦

m

Let (A, B) be c-partnership game and (x̄, ȳ) ∈ S◦

n × S◦

m is the
Nash equilibrium.
Substitution rij = aij − anj − aim + anm,

ui = ln
xi

xn

, vj = ln
yj

ym

,

for i = 1, 2, . . . , n − 1, j = 1, 2, . . . , m − 1
transforms the replicator system to the Hamiltonian one:

(

u

v

)′

=

(

O R
−RT O

)(

∇uH
∇vH

)
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The types (behaviour patterns, strategies) do not replicate by
inheritence but by imitation.
Events: Sij . . . an individual of the type j

meets an individual of the type i
Cij . . . an individual of the type j addopts the type i

Probabilities of the events during a time interval of length ∆t:
P (Sij) ∼ xi, P (Cij|Sij) ∼ ∆t, P (Cij |¬Sij) = 0.
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The types (behaviour patterns, strategies) do not replicate by
inheritence but by imitation.
Events: Sij . . . an individual of the type j

meets an individual of the type i
Cij . . . an individual of the type j addopts the type i

Probabilities of the events during a time interval of length ∆t:
P (Sij) ∼ xi, P (Cij|Sij) ∼ ∆t, P (Cij |¬Sij) = 0.

Probability that an individual of the type i addopts the type j:
P (Cij) = P (Sij)P (Cij|Sij) ∼ xi∆t.
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The types (behaviour patterns, strategies) do not replicate by
inheritence but by imitation.
Events: Sij . . . an individual of the type j

meets an individual of the type i
Cij . . . an individual of the type j addopts the type i

Probabilities of the events during a time interval of length ∆t:
P (Sij) ∼ xi, P (Cij|Sij) ∼ ∆t, P (Cij |¬Sij) = 0.

Probability that an individual of the type i addopts the type j:
P (Cij) = P (Sij)P (Cij|Sij) ∼ xi∆t.

gij . . . rate of proportionality
N . . . size of population

Expected number of individuals of the type i after the time
interval ∆t:

Nxi(t + ∆t) = Nxi(t) +
n
∑

j=1

(

Nxi(t)
)

gijxj(t)∆t−

−
n
∑

k=1

(

Nxk(t)
)

gkixi(t)∆t



Imitation dynamics

Introduction

Theoretical
background

Replicator equation I

Matrix and bimatrix
games

Famous conflicts

Replicator equation
II

Alternative
approaches

Imitation dynamics
Discrete dynamics
for bimatrix game

Natural selection and ecology – 35 / 36

x′

i = xi

n
∑

k=1

(gik − gki)xk, i = 1, 2, . . . , n.
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x′

i = xi

n
∑

k=1

(gik − gki)xk, i = 1, 2, . . . , n.

Probability of transition from the j-th type to the i-th depends
on payoffs (Ax)i, (Ax)j :

gij = ϕ
(

(Ax)i, (Ax)j

)
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x′

i = xi

n
∑

k=1

(gik − gki)xk, i = 1, 2, . . . , n.

Probability of transition from the j-th type to the i-th depends
on payoffs (Ax)i, (Ax)j :

gij = ϕ
(

(Ax)i, (Ax)j

)

A rule “imitate the better”:

ϕ(u, v) =

{

1, u > v,

0, u ≤ v
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x′

i = xi

n
∑

k=1

(gik − gki)xk, i = 1, 2, . . . , n.

Probability of transition from the j-th type to the i-th depends
on payoffs (Ax)i, (Ax)j :

gij = ϕ
(

(Ax)i, (Ax)j

)

A rule “imitate the better with effort which increase with
expected gain”:

ϕ(u, v) =

{

(u − v)α, u > v,

0, u ≤ v
α > 0
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x′

i = xi

n
∑

k=1

(gik − gki)xk, i = 1, 2, . . . , n.

Probability of transition from the j-th type to the i-th depends
on payoffs (Ax)i, (Ax)j :

gij = ϕ
(

(Ax)i, (Ax)j

)

A rule “imitate the better with effort which increase with
expected gain”:

ϕ(u, v) =

{

(u − v)α, u > v,

0, u ≤ v
α > 0

Replicator equation can be viewed as a particular case of the
imitation dynamics equation for α = 1.
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Growth rate of each subpopulation (behaviour pattern, strategy)
is proportional to “the gain”:

xi(t + h) = c(t)
(

Ay(t)
)

i xi(t),
yj(t + h) = d(t)

(

Bx(t)
)

j yj(t)
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Growth rate of each subpopulation (behaviour pattern, strategy)
is proportional to “the gain”:

xi(t + h) = c(t)
(

Ay(t)
)

i xi(t),
yj(t + h) = d(t)

(

Bx(t)
)

j yj(t)
For

(

x(t), y(t)
)

∈ Sn × Sm ⇒
(

x(t), y(t)
)

∈ Sn × Sm,
the following has to hold

c(t) =
1

x(t)TAy(t)
, d(t) =

1

y(t)TBx(t)
, aij > 0, bij > 0.
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Growth rate of each subpopulation (behaviour pattern, strategy)
is proportional to “the gain”:

xi(t + h) = c(t)
(

Ay(t)
)

i xi(t),
yj(t + h) = d(t)

(

Bx(t)
)

j yj(t)
For

(

x(t), y(t)
)

∈ Sn × Sm ⇒
(

x(t), y(t)
)

∈ Sn × Sm,
the following has to hold

c(t) =
1

x(t)TAy(t)
, d(t) =

1

y(t)TBx(t)
, aij > 0, bij > 0.

Hence

xi(t + h) = xi(t)

(

Ay(t)
)

i

x(t)TAy(t)
, yj(t + h) = yj(t)

(

Bx(t)
)

j

y(t)TBx(t)
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∆xi(t) = xi(t)

(

Ay(t)
)

i − x(t)TAy(t)

x(t)TAy(t)
,

∆yj(t) = yj(t)

(

Bx(t)
)

j − y(t)TBx(t)

y(t)TBx(t)
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∆xi(t) = xi(t)

(

Ay(t)
)

i − x(t)TAy(t)

x(t)TAy(t)
,

∆yj(t) = yj(t)

(

Bx(t)
)

j − y(t)TBx(t)

y(t)TBx(t)

Continuous analogy

x′

i = xi
(Ay)i − xTAy

xTAy
, i = 1, 2, . . . , n,

y′j = yj
(Bx)j − yTBx

yTBx
, j = 1, 2, . . . , m.

Interpretation of matrices A and B in this case differs from the
one for the introduced continuous replicator equation.
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