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Leonhard Euler: Introductio in analysin infinitorum (1748)

Geometric growth of population
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Thomas Robert Malthus: An Essay on the Principle of
Population (1798)

• The increase of population is necessarily limited by the means
of subsistence,
• population does invariably increase when the means of
subsistence increase,
• the superior power of population is repressed, and the actual
population kept equal to the means of subsistence, by misery and
vice.
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Pierre-François Verhulst: Recherches mathématiques sur la loie
d’accroissement de la population (1845)

Self-limited (logistic) growth of population
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Alfred J. Lotka: Analytical note on certain rhythmic relations in
organic systems (1920)
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Alfred J. Lotka: Analytical note on certain rhythmic relations in
organic systems (1920)
Vito Volterra: Variazioni e fluttuazioni del numero d’individui in
specie animali conviventi. (1926)
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Alfred J. Lotka: Elements of physical biology (1925)
Vito Volterra: Leçons sur la théorie mathématique de la lutte pur
la vie (1931)
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Alfred J. Lotka: Elements of physical biology (1925)
Vito Volterra: Leçons sur la théorie mathématique de la lutte pur
la vie (1931)
Georgij F. Gause: The Struggle for existence (1934)
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Alfred J. Lotka: Elements of physical biology (1925)
Vito Volterra: Leçons sur la théorie mathématique de la lutte pur
la vie (1931)
Georgij F. Gause: The Struggle for existence (1934)
Andrej N. Kolmogorov: Sula teoria di Volterra della lota per
l’esistenza (1936)
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Charles S. Elton: Animal ecology (1927)

food chain, ecological niche, pyramid of numbers
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Charles S. Elton: Animal ecology (1927)
Alexander J. Nicholson: The balance of animal population (1933)

density (in)dependent growth
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Charles S. Elton: Animal ecology (1927)
Alexander J. Nicholson: The balance of animal population (1933)

Ch. S. Elton, A. J. Nicholson: The ten-year cycle in numbers of
lynx in Canada (1942)
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Charles S. Elton: Animal ecology (1927)
Alexander J. Nicholson: The balance of animal population (1933)

Ch. S. Elton, A. J. Nicholson: The ten-year cycle in numbers of
lynx in Canada (1942)

Ernest T. Seton: The arctic prairies (1912)



A bit of history

Introduction

A bit of history

Sources, textbooks

Software

General theory of
population dynamics

Models with discrete
time

Models with
continuous time

Population dynamics – 4 / 18

Charles S. Elton: Animal ecology (1927)
Alexander J. Nicholson: The balance of animal population (1933)

Ch. S. Elton, A. J. Nicholson: The ten-year cycle in numbers of
lynx in Canada (1942)

Crawford S. Holling: The functional response of predator to prey
density and its role in mimicry and population regulation (1965)
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Patrick H. Leslie: On the use of matrices in certain population
mathematics (1945)

structured population
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John G. Skellam: Random Dispersal in Theoretical Populations
(1951)

dispersal of population in space, random walk, biological invasion
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Svire�ev, �. M. { Logofet, D. O. Usto�iqivost~biologiqeskiq soobwestv. Moskva: Nauka, 1978.
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■ Pielou E. C.: An Introduction to Mathematical Ecology.
J.Willey&Sons, New York, NY, 1969

Svire�ev, �. M. { Logofet, D. O. Usto�iqivost~biologiqeskiq soobwestv. Moskva: Nauka, 1978.
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■ Svire�ev, �. M. { Logofet, D. O. Usto�iqivost~biologiqeskiq soobwestv. Moskva: Nauka, 1978.
■ Kot M.: Elements of Mathematical Ecology. Cambridge

University Press: Cambridge, New York, Melbourne,
Madrid, Cape Town, Singapore, São Paulo, 2001
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■ Svire�ev, �. M. { Logofet, D. O. Usto�iqivost~biologiqeskiq soobwestv. Moskva: Nauka, 1978.
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■ Thieme H. R.: Mathematics in Population Biology.
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■ Turchin P.: Complex Population Dynamics: a
theoretical/empirical synthesis. Princeton University Press:
Princeton, NJ, 2003

■ Tkadlec E.: Populačńı ekologie. Struktura, r̊ust a dynamika
populaćı. Univerzita Palackého v Olomouci, Olomouc 2008
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■ Edelstein-Keshet L.: Mathematical Models in Biology.
Random House: New York, NY, 1988
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■ Murray J. D.: Mathematical Biology I: An Introduction.
Springer-Verlag: Berlin, Heidelberg, 2001
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■ Edelstein-Keshet L.: Mathematical Models in Biology.
Random House: New York, NY, 1988

■ Murray J. D.: Mathematical Biology I: An Introduction.
Springer-Verlag: Berlin, Heidelberg, 2001

■ Britton N. F.: Essential Mathematical Biology.
Springer-Verlag: London, 2003

■ de Vries G., Hillen T., Lewis M., Müller J., Schönfisch B.:
A course in Mathematical Biology. Siam: Philadelphia,
2006



Software

Introduction

A bit of history

Sources, textbooks

Software

General theory of
population dynamics

Models with discrete
time

Models with
continuous time

Population dynamics – 6 / 18



Software

Introduction

A bit of history

Sources, textbooks

Software

General theory of
population dynamics

Models with discrete
time

Models with
continuous time

Population dynamics – 6 / 18



Software

Introduction

A bit of history

Sources, textbooks

Software

General theory of
population dynamics

Models with discrete
time

Models with
continuous time

Population dynamics – 6 / 18



Software

Introduction

A bit of history

Sources, textbooks

Software

General theory of
population dynamics

Models with discrete
time

Models with
continuous time

Population dynamics – 6 / 18

Kreith K., Chakerian, D.: Iterative Algebra and Dynamic
Modeling: a curriculum for the third millennium.
Springer-Verlag: New York, 1999
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Henry M., Stevens H.: A Primer of Ecology with R. Springer:
Dordrecht, Heidelberg, London, New York, 2009
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1. A size of population sustains in the exponential increase or
decrease until environmental conditions cause a change of
the status.
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1. A size of population sustains in the exponential increase or
decrease until environmental conditions cause a change of
the status.

2. The relative change of a population size equals to the
impact of environmental conditions.
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A size of population sustains in the exponential increase or
decrease until environmental conditions cause a change of the
status.

x(t) = x0q
t
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A size of population sustains in the exponential increase or
decrease until environmental conditions cause a change of the
status.

x(t) = x0q
t

x(t+ 1) = x0q
t+1,



1st principle

Introduction

General theory of
population dynamics
Principles of
population

1st principle

2nd principle
“Fundamental
equations”

Models with discrete
time

Models with
continuous time

Population dynamics – 9 / 18
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x(t) = x0q
t

x(t+ 1) = qx(t),
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A size of population sustains in the exponential increase or
decrease until environmental conditions cause a change of the
status.

x(t) = x0q
t

x(t+ 1) = qx(t),
x(t+ 1)− x(t)

x(t)
= q − 1
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x(t) = x0q
t

x(t+ 1) = qx(t),
x(t+ 1)− x(t)

x(t)
= q − 1

x′(t) = x0q
t ln q,
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The relative change of a population size equals to the impact of
environmental conditions.
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The relative change of a population size equals to the impact of
environmental conditions.

x′i(t)

xi(t)
= ̺i

(

x1(t), x2(t), . . . , xn(t)
)

, i = 1, 2, . . . , n
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Populations with overlapping generations

x′i = xi̺i(x1, x2, . . . , xn), i = 1, 2, . . . , n

Populations with non-overlapping generations

xi(t+ 1) = e̺i
(

x1(t),x2(t),...,xn(t)
)

xi(t), i = 1, 2, . . . , n
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Populations with overlapping generations

x′i = xi
(

ri − fi(x1, x2, . . . , xn)
)

, i = 1, 2, . . . , n

Populations with non-overlapping generations

xi(t+ 1) = eri−fi

(

x1(t),x2(t),...,xn(t)
)

xi(t), i = 1, 2, . . . , n

fi linear functions – Lotka-Volterra systems
fi general functions – Kolmogorov systems

f(0, 0, . . . , 0) = 0
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A = (aij) – community matrix
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x′ = xp(x)− Sϕ(x)y,

y′ = −dy

x – size of prey population
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p(x) – prey growth rate
d – predator death rate
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ϕ(x) = 1
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x′ = x

(

p(x)− S
ϕ(x)

x
y

)

,

y′ = y
(

− d+ κSϕ(x)
)

ϕ(x) =

{

x/(2a), x < 2a

1, x ≥ 2a
– Holling I

ϕ(x) =
xk

xk + ak
– Michaelis-Menten

ϕ(x) = 1− 2−(x/a)k – Ivlev

a – level of “half saturation”
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