

INVESTMENTS IN EDUCATION DEVELOPMENT

Population dynamics – a source of diversity

Zdeněk Pospíšil

Masaryk University, Faculty of science Department of Mathematics and Statistics

7th Summer School on Computational Biology September 15, 2011

Introduction

General theory of population dynamics

Models with discrete time

Models with continuous time

Introduction

A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Introduction

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Leonhard Euler: Introductio in analysin infinitorum (1748)

Geometric growth of population

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Thomas Robert Malthus: *An Essay on the Principle of Population* (1798)

- The increase of population is necessarily limited by the means of subsistence,
- population does invariably increase when the means of subsistence increase,

• the superior power of population is repressed, and the actual population kept equal to the means of subsistence, by misery and vice.

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Pierre-François Verhulst: *Recherches mathématiques sur la loie d'accroissement de la population* (1845)

Self-limited (logistic) growth of population

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Alfred J. Lotka: Analytical note on certain rhythmic relations in organic systems (1920)

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Alfred J. Lotka: Analytical note on certain rhythmic relations in organic systems (1920) Vito Volterra: Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. (1926)

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Alfred J. Lotka: *Elements of physical biology* (1925) Vito Volterra: *Leçons sur la théorie mathématique de la lutte pur la vie* (1931)

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Alfred J. Lotka: *Elements of physical biology* (1925) Vito Volterra: *Leçons sur la théorie mathématique de la lutte pur la vie* (1931) Georgij F. Gause: *The Struggle for existence* (1934)

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Alfred J. Lotka: *Elements of physical biology* (1925)
Vito Volterra: *Leçons sur la théorie mathématique de la lutte pur la vie* (1931)
Georgij F. Gause: *The Struggle for existence* (1934)
Andrej N. Kolmogorov: *Sula teoria di Volterra della lota per l'esistenza* (1936)

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Charles S. Elton: Animal ecology (1927)

food chain, ecological niche, pyramid of numbers

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Charles S. Elton: *Animal ecology* (1927) Alexander J. Nicholson: *The balance of animal population* (1933)

density (in)dependent growth

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Charles S. Elton: *Animal ecology* (1927) Alexander J. Nicholson: *The balance of animal population* (1933)

Ch. S. Elton, A. J. Nicholson: *The ten-year cycle in numbers of lynx in Canada* (1942)

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Charles S. Elton: *Animal ecology* (1927) Alexander J. Nicholson: *The balance of animal population* (1933)

Ch. S. Elton, A. J. Nicholson: *The ten-year cycle in numbers of lynx in Canada* (1942)

Ernest T. Seton: The arctic prairies (1912)

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Charles S. Elton: *Animal ecology* (1927) Alexander J. Nicholson: *The balance of animal population* (1933)

Ch. S. Elton, A. J. Nicholson: *The ten-year cycle in numbers of lynx in Canada* (1942)

Crawford S. Holling: The functional response of predator to prey density and its role in mimicry and population regulation (1965)

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Patrick H. Leslie: *On the use of matrices in certain population mathematics* (1945)

structured population

Introduction

A bit of history

Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

John G. Skellam: *Random Dispersal in Theoretical Populations* (1951)

dispersal of population in space, random walk, biological invasion

Introduction A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Introduction

A bit of history

Sources, textbooks

Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Pielou E. C.: An Introduction to Mathematical Ecology. J.Willey&Sons, New York, NY, 1969

Introduction A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Pielou E. C.: An Introduction to Mathematical Ecology. J.Willey&Sons, New York, NY, 1969

■ Свирежев, Ю. М. – Логофет, Д. О. *Устойчивость биологическич сообществ.* Москва: Наука, 1978.

Introduction A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Pielou E. C.: An Introduction to Mathematical Ecology. J.Willey&Sons, New York, NY, 1969

- Свирежев, Ю. М. Логофет, Д. О. *Устойчивость биологическич сообществ.* Москва: Наука, 1978.
- Kot M.: Elements of Mathematical Ecology. Cambridge University Press: Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, 2001

Introduction A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

- Pielou E. C.: An Introduction to Mathematical Ecology. J.Willey&Sons, New York, NY, 1969
- Свирежев, Ю. М. Логофет, Д. О. *Устойчивость биологическич сообществ.* Москва: Наука, 1978.
- Kot M.: Elements of Mathematical Ecology. Cambridge University Press: Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, 2001
- Thieme H. R.: Mathematics in Population Biology. Princeton University Press: Princeton and Oxford, 2003

Introduction A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

SYNTHESIS	
Peter Turchin	

Pielou E. C.: An Introduction to Mathematical Ecology. J.Willey&Sons, New York, NY, 1969

■ Свирежев, Ю. М. – Логофет, Д. О. *Устойчивость биологическич сообществ.* Москва: Наука, 1978.

Kot M.: Elements of Mathematical Ecology. Cambridge University Press: Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, 2001

- Thieme H. R.: Mathematics in Population Biology. Princeton University Press: Princeton and Oxford, 2003
- Turchin P.: Complex Population Dynamics: a theoretical/empirical synthesis. Princeton University Press: Princeton, NJ, 2003

Introduction A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Pielou E. C.: An Introduction to Mathematical Ecology.
 J.Willey&Sons, New York, NY, 1969

- Свирежев, Ю. М. Логофет, Д. О. *Устойчивость биологическич сообществ.* Москва: Наука, 1978.
- Kot M.: Elements of Mathematical Ecology. Cambridge University Press: Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, 2001
- Thieme H. R.: Mathematics in Population Biology. Princeton University Press: Princeton and Oxford, 2003
- Turchin P.: Complex Population Dynamics: a theoretical/empirical synthesis. Princeton University Press: Princeton, NJ, 2003
- Tkadlec E.: Populační ekologie. Struktura, růst a dynamika populací. Univerzita Palackého v Olomouci, Olomouc 2008

Introduction

A bit of history

Sources, textbooks

Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Edelstein-Keshet L.: Mathematical Models in Biology. Random House: New York, NY, 1988

Introduction A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Edelstein-Keshet L.: Mathematical Models in Biology. Random House: New York, NY, 1988

Murray J. D.: Mathematical Biology I: An Introduction. Springer-Verlag: Berlin, Heidelberg, 2001

Introduction A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Edelstein-Keshet L.: Mathematical Models in Biology. Random House: New York, NY, 1988

Murray J. D.: Mathematical Biology I: An Introduction. Springer-Verlag: Berlin, Heidelberg, 2001

Britton N. F.: Essential Mathematical Biology. Springer-Verlag: London, 2003

Introduction A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Edelstein-Keshet L.: Mathematical Models in Biology. Random House: New York, NY, 1988

Murray J. D.: Mathematical Biology I: An Introduction. Springer-Verlag: Berlin, Heidelberg, 2001

Britton N. F.: Essential Mathematical Biology. Springer-Verlag: London, 2003

 de Vries G., Hillen T., Lewis M., Müller J., Schönfisch B.: A course in Mathematical Biology. Siam: Philadelphia, 2006

Introduction A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Introduction

A bit of history Sources, textbooks

Software

General theory of population dynamics

Models with discrete time

Models with continuous time

OpenOffice.org™

Introduction

A bit of history Sources, textbooks

Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Introduction A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Kreith K., Chakerian, D.: *Iterative Algebra and Dynamic Modeling: a curriculum for the third millennium.* Springer-Verlag: New York, 1999

Introduction A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Introduction A bit of history Sources, textbooks Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Henry M., Stevens H.: *A Primer of Ecology with R.* Springer: Dordrecht, Heidelberg, London, New York, 2009

Introduction

General theory of population dynamics

Principles of population

1st principle

2nd principle

"Fundamental

equations"

Models with discrete time

Models with continuous time

General theory of population dynamics

Principles of population

Introduction
General theory of
population dynamics
Principles of
population
1 st principle
2 nd principle
"Fundamental
equations"
Models with discrete time
Models with

continuous time

Principles of population

Introduction General theory of population dynamics Principles of population 1st principle 2nd principle "Fundamental equations" Models with discrete time

continuous time

Principles of population

Introduction General theory of population dynamics Principles of population 1st principle 2nd principle "Fundamental equations" Models with discrete

time

Models with continuous time

- 1. A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.
- 2. The relative change of a population size equals to the impact of environmental conditions.

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle "Fundamental equations"

Models with discrete time

Models with continuous time

$$x(t) = x_0 q^t$$

 $x(t+1) = x_0 q^{t+1}$,

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle "Fundamental equations"

Models with discrete time

Models with continuous time

$$x(t) = x_0 q^t$$

x(t+1) = qx(t),

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle "Fundamental equations"

Models with discrete time

Models with continuous time

$$x(t) = x_0 q^t$$

x(t)

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle "Fundamental equations"

Models with discrete time

Models with continuous time

$$x(t) = x_0 q^t$$

$$+1) = qx(t), \quad \frac{x(t+1) - x(t)}{x(t)} = q - 1$$

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle "Fundamental equations"

Models with discrete time

Models with continuous time

A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

$$x(t) = x_0 q^t$$

$$x(t+1) = qx(t), \quad \frac{x(t+1) - x(t)}{x(t)} = q - 1$$

 $x'(t) = x_0 q^t \ln q,$

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle "Fundamental equations"

Models with discrete time

Models with continuous time

A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

$$x(t) = x_0 q^t$$

$$x(t+1) = qx(t), \quad \frac{x(t+1) - x(t)}{x(t)} = q - 1$$

 $x'(t) = (\ln q)x(t),$

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle "Fundamental equations"

Models with discrete time

Models with continuous time

A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

$$x(t) = x_0 q^t$$

$$x(t+1) = qx(t), \quad \frac{x(t+1) - x(t)}{x(t)} = q - 1$$

$$x'(t) = (\ln q)x(t), \quad \frac{x'(t)}{x(t)} = \ln q$$

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle "Fundamental equations"

Models with discrete time

Models with continuous time

$$x(t) = x_0 q^t$$

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle "Fundamental equations"

Models with discrete time

Models with continuous time

A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

$$x(t) = x_0 q^t$$

Population dynamics -9/18

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle

"Fundamental equations"

Models with discrete time

Models with continuous time

The relative change of a population size equals to the impact of environmental conditions.

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle

"Fundamental equations"

Models with discrete time

Models with continuous time

The relative change of a population size equals to the impact of environmental conditions.

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle

"Fundamental equations"

Models with discrete time

Models with continuous time

The relative change of a population size equals to the impact of environmental conditions.

$$\frac{x'_i(t)}{x_i(t)} = \varrho_i \big(x_1(t), x_2(t), \dots, x_n(t) \big), \quad i = 1, 2, \dots, n$$

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle

"Fundamental equations"

Models with discrete time

Models with continuous time

The relative change of a population size equals to the impact of environmental conditions.

$$\frac{x'_i(t)}{x_i(t)} = \varrho_i \big(x_1(t), x_2(t), \dots, x_n(t) \big), \quad i = 1, 2, \dots, n$$

$$\frac{x(t+1) - x(t)}{x(t)} = r$$

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle

"Fundamental equations"

Models with discrete time

Models with continuous time

The relative change of a population size equals to the impact of environmental conditions.

$$\frac{x'_i(t)}{x_i(t)} = \varrho_i \big(x_1(t), x_2(t), \dots, x_n(t) \big), \quad i = 1, 2, \dots, n$$

$$\frac{x_i(t+1) - x_i(t)}{x_i(t)} = \varrho_i \big(x_1(t), x_2(t), \dots, x_n(t) \big),$$

$$i = 1, 2, \dots, n$$

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle

"Fundamental equations"

Models with discrete time

Models with continuous time

The relative change of a population size equals to the impact of environmental conditions.

$$\frac{x'_i(t)}{x_i(t)} = \varrho_i \big(x_1(t), x_2(t), \dots, x_n(t) \big), \quad i = 1, 2, \dots, n$$

$$\frac{x_i(t+1) - x_i(t)}{x_i(t)} = \varrho_i (x_1(t), x_2(t), \dots, x_n(t)),$$

$$i = 1, 2, \dots, n$$

$$x(t+1) = qx(t)$$

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle

"Fundamental equations"

Models with discrete time

Models with continuous time

The relative change of a population size equals to the impact of environmental conditions.

$$\frac{x'_i(t)}{x_i(t)} = \varrho_i \big(x_1(t), x_2(t), \dots, x_n(t) \big), \quad i = 1, 2, \dots, n$$

$$\frac{x_i(t+1) - x_i(t)}{x_i(t)} = \varrho_i (x_1(t), x_2(t), \dots, x_n(t)),$$

$$i = 1, 2, \dots, n$$

$$x(t+1) = e^r x(t)$$

Introduction

General theory of population dynamics Principles of population 1st principle

2nd principle

"Fundamental equations"

Models with discrete time

Models with continuous time

The relative change of a population size equals to the impact of environmental conditions.

$$\frac{x'_i(t)}{x_i(t)} = \varrho_i \big(x_1(t), x_2(t), \dots, x_n(t) \big), \quad i = 1, 2, \dots, n$$

$$\frac{x_i(t+1) - x_i(t)}{x_i(t)} = \varrho_i \big(x_1(t), x_2(t), \dots, x_n(t) \big),$$

$$i = 1, 2, \dots, n$$

$$x_i(t+1) = e^{\varrho_i \left(x_1(t), x_2(t), \dots, x_n(t)\right)} x(t), \quad i = 1, 2, \dots, n$$

Introduction

General theory of population dynamics Principles of population 1st principle 2nd principle

"Fundamental equations"

Models with discrete time

Models with continuous time

Populations with overlapping generations

$$x'_{i} = x_{i} \varrho_{i}(x_{1}, x_{2}, \dots, x_{n}), \qquad i = 1, 2, \dots, n$$

Populations with non-overlapping generations

$$x_i(t+1) = e^{\varrho_i \left(x_1(t), x_2(t), \dots, x_n(t)\right)} x_i(t), \qquad i = 1, 2, \dots, n$$

Introduction

General theory of population dynamics Principles of population 1st principle 2nd principle "Fundamental

equations"

Models with discrete time

Models with continuous time

Populations with overlapping generations

$$x'_{i} = x_{i} \varrho_{i}(x_{1}, x_{2}, \dots, x_{n}), \qquad i = 1, 2, \dots, n$$

Populations with non-overlapping generations

$$x_i(t+1) = e^{\varrho_i \left(x_1(t), x_2(t), \dots, x_n(t)\right)} x_i(t), \qquad i = 1, 2, \dots, n$$

 ρ_i linear functions – Lotka-Volterra systems ρ_i general functions – Kolmogorov systems

Introduction

General theory of population dynamics Principles of population 1st principle 2nd principle "Fundamental

equations"

Models with discrete time

Models with continuous time

Populations with overlapping generations

$$x'_{i} = x_{i} (r_{i} - f_{i}(x_{1}, x_{2}, \dots, x_{n})), \qquad i = 1, 2, \dots, n$$

Populations with non-overlapping generations

$$x_i(t+1) = e^{r_i - f_i(x_1(t), x_2(t), \dots, x_n(t))} x_i(t), \qquad i = 1, 2, \dots, n$$

 f_i linear functions – Lotka-Volterra systems f_i general functions – Kolmogorov systems

 $f(0,0,\ldots,0)=0$

Introduction

General theory of population dynamics Principles of population 1st principle 2nd principle

"Fundamental equations"

Models with discrete time

Models with continuous time

Populations with overlapping generations

$$x'_{i} = x_{i} (r_{i} - f_{i}(x_{1}, x_{2}, \dots, x_{n})), \qquad i = 1, 2, \dots, n$$

Populations with non-overlapping generations

$$x_i(t+1) = e^{r_i - f_i(x_1(t), x_2(t), \dots, x_n(t))} x_i(t), \qquad i = 1, 2, \dots, n$$

Lotka-Volterra systems

$$f_i(x_1, x_2, \dots, x_n) = \sum_{j=1}^n a_{ij} x_j = \mathbf{A} \boldsymbol{x}$$

european social fundition european union european union

Introduction

General theory of population dynamics Principles of population 1st principle 2nd principle

"Fundamental equations"

Models with discrete time

Models with continuous time

Populations with overlapping generations

$$x'_{i} = x_{i} (r_{i} - f_{i}(x_{1}, x_{2}, \dots, x_{n})), \qquad i = 1, 2, \dots, n$$

Populations with non-overlapping generations

$$x_i(t+1) = e^{r_i - f_i(x_1(t), x_2(t), \dots, x_n(t))} x_i(t), \qquad i = 1, 2, \dots, n$$

Lotka-Volterra systems

$$f_i(x_1, x_2, \dots, x_n) = \sum_{j=1}^n a_{ij} x_j = \mathbf{A} \boldsymbol{x}$$

 $A = (a_{ij})$ – community matrix

Introduction

General theory of population dynamics

Models with discrete time

One population Two populations – Lotka-Volterra system

Models with continuous time

Models with discrete time

Introduction

General theory of population dynamics

Models with discrete time

One population

Two populations – Lotka-Volterra system

Models with continuous time

$$x(t+1) = e^r x(t), \ x(0) = x_0 \quad \Rightarrow \quad x(t) = x_0 e^{rt}$$

Introduction

General theory of population dynamics

Models with discrete time

One population

Two populations – Lotka-Volterra system

Models with continuous time

$$x(t+1) = e^r x(t), \ x(0) = x_0 \quad \Rightarrow \quad x(t) = x_0 e^{rt}$$

$$x(t+1) = e^{p(x(t))} x(t), \ x(0) = x_0$$

p decreasing – intra-specific competition p increasing – Allee effect

Introduction

General theory of population dynamics

Models with discrete time

One population

Two populations – Lotka-Volterra system

Models with continuous time

$$x(t+1) = e^r x(t), \ x(0) = x_0 \quad \Rightarrow \quad x(t) = x_0 e^{rt}$$

$$x(t+1) = e^{p(x(t))} x(t), \ x(0) = x_0$$

p decreasing – intra-specific competition p increasing – Allee effect

$$p(x) = r\left(1 - \frac{x}{K}\right) - \text{logistic equation}$$
$$x > K \implies e^{p(x)} > 1, \qquad x < K \implies e^{p(x)} < 1$$

 \boldsymbol{K} – carrying cappacity

Introduction

General theory of population dynamics

Models with discrete time

One population

Two populations – Lotka-Volterra system

Models with continuous time

$$x(t+1) = e^r x(t), \ x(0) = x_0 \quad \Rightarrow \quad x(t) = x_0 e^{rt}$$

$$x(t+1) = e^{p(x(t))} x(t), \ x(0) = x_0$$

p decreasing – intra-specific competition p increasing – Allee effect

$$p(x) = r\left(1 - \frac{x}{K}\right) - \text{logistic equation}$$
$$x > K \implies e^{p(x)} > 1, \qquad x < K \implies e^{p(x)} < 1$$

 \boldsymbol{K} – carrying cappacity

$$e^{p(x)} = rac{q}{\left(1 + (q-1)x/K
ight)^b}$$
 – basic equation

Two populations – Lotka-Volterra system

Introduction

General theory of population dynamics

Models with discrete time

One population

Two populations – Lotka-Volterra system

Models with continuous time

$$\begin{aligned} x(t+1) &= x(t)e^{r_1 - a_{11}x(t) - a_{12}y(t)} \\ y(t+1) &= y(t)e^{r_2 - a_{21}x(t) - a_{22}y(t)} \end{aligned}$$

Two populations – Lotka-Volterra system

Introduction

General theory of population dynamics

Models with discrete time

One population

Two populations – Lotka-Volterra system

Models with continuous time

$$\begin{aligned} x(t+1) &= x(t) e^{r_1 - a_{11}x(t) - a_{12}y(t)} \\ y(t+1) &= y(t) e^{r_2 - a_{21}x(t) - a_{22}y(t)} \end{aligned}$$

 $\begin{array}{l} a_{ii} > 0 - \text{ intra-specific competition} \\ a_{ii} < 0 - \text{Allee effect} \\ a_{ij} > 0 - \text{ inter-specific competition} \\ a_{ij} < 0 - \text{ mutualism} \\ a_{ij}a_{ji} < 0 - \text{ predation} \end{array}$

Introduction

General theory of population dynamics

Models with discrete time

Models with continuous time

One population Two populations – Lotka-Volterra system Gause-type predator-prey system

Models with continuous time

Introduction

General theory of population dynamics

Models with discrete time

Models with continuous time

One population

Two populations – Lotka-Volterra system Gause-type predator-prey system

Introduction

General theory of population dynamics

Models with discrete time

Models with continuous time

One population

Two populations – Lotka-Volterra system Gause-type predator-prey system

$$x' = rx, \ x(0) = x_0 \quad \Rightarrow x(t) = x_0 e^{rt}$$

$$x' = xp(x), \ x(0) = x_0$$

p decreasing – intra-specific competition p increasing – Allee effect

Introduction

General theory of population dynamics

Models with discrete time

Models with continuous time

One population

Two populations – Lotka-Volterra system Gause-type predator-prey system $x' = rx, \ x(0) = x_0 \quad \Rightarrow x(t) = x_0 e^{rt}$

$$x' = xp(x), \ x(0) = x_0$$

p decreasing – intra-specific competition p increasing – Allee effect

$$p(x) = r\left(1 - \frac{x}{K}\right) - \text{logistic equation}$$

One population

Introduction

General theory of population dynamics

Models with discrete time

Models with continuous time

One population

Two populations – Lotka-Volterra system Gause-type predator-prey system $x' = rx, \ x(0) = x_0 \quad \Rightarrow x(t) = x_0 e^{rt}$

$$x' = xp(x), \ x(0) = x_0$$

p decreasing – intra-specific competition p increasing – Allee effect

 $p(x) = r\left(1 - \frac{x}{K}\right) - \text{logistic equation}$

$$p(x) = rx^{a-1}\left(1 - \left(\frac{x}{K}\right)^b\right)$$
 – generalized logistic equation

Two populations – Lotka-Volterra system

Introduction

General theory of population dynamics

Models with discrete time

Models with continuous time

One population

Two populations – Lotka-Volterra system

$$\begin{array}{rcl}
x' &=& x(r_1 - a_{11}x - a_{12}y) \\
y' &=& y(r_2 - a_{21}x - a_{22}y)
\end{array}$$

Two populations – Lotka-Volterra system

Introduction

General theory of population dynamics

Models with discrete time

Models with continuous time

One population

Two populations – Lotka-Volterra system

Gause-type predator-prey system

$$x' = x(r_1 - a_{11}x - a_{12}y)$$

$$y' = y(r_2 - a_{21}x - a_{22}y)$$

 $\begin{array}{l} a_{ii} > 0 - \text{intra-specific competition} \\ a_{ii} < 0 - \text{Allee effect} \\ a_{ij} > 0 - \text{inter-specific competition} \\ a_{ij} < 0 - \text{mutualism} \\ a_{ij}a_{ji} < 0 - \text{predation} \end{array}$

Introduction

General theory of population dynamics	
Models with discrete time	
Models with continuous time	
One population Two populations – Lotka-Volterra	
system Gause-type	
predator-prey system	

Introduction

General theory of population dynamics

Models with discrete time

Models with continuous time

One population

Two populations –

Lotka-Volterra

system

x' = xp(x),

y' = -dy

- x size of prey population
- y size of predator population
- p(x) prey growth rate
 - d predator death rate

Introduction

General theory of population dynamics

Models with discrete time

Models with continuous time

One population Two populations – Lotka-Volterra system

Gause-type predator-prey system

Xħ

 $x' = xp(x) - S\varphi(x)y,$ y' = -dy

 $\begin{array}{l} x - \text{size of prey population} \\ y - \text{size of predator population} \\ p(x) - \text{prey growth rate} \\ d - \text{predator death rate} \\ \varphi(x) - \text{trophic function; increasing, } \varphi(0) = 0, \ \lim_{x \to \infty} \varphi(x) = 1 \\ S - \text{predator level of satiety} \\ & \uparrow^{\varphi} & \text{Holling I} & \uparrow^{\varphi} \end{array}$

Introduction

General theory of population dynamics

Models with discrete time

Models with continuous time One population Two populations – Lotka-Volterra system Gause-type predator-prey system

 $x' = xp(x) - S\varphi(x)y,$ $y' = -dy + \kappa S\varphi(x)y$

- x size of prey population
- y size of predator population
- p(x) prey growth rate
 - d predator death rate

 $\varphi(x)$ – trophic function; increasing, $\varphi(0)=0,\ \lim_{x\to\infty}\varphi(x)=1$

- ${\cal S}$ predator level of satiety
- κ efficiency of conversion: prey into predator growth rate

Introduction

General theory of population dynamics

Models with discrete time

Models with continuous time

One population

Two populations –

Lotka-Volterra

system

 $x' = x \left(p(x) - S \frac{\varphi(x)}{x} y \right),$ $y' = y \left(-d + \kappa S \varphi(x) \right)$

Introduction

General theory of population dynamics

Models with discrete time

Models with

continuous time

One population

Two populations –

Lotka-Volterra

system

 $x' = x \left(p(x) - S \frac{\varphi(x)}{x} y \right),$ $y' = y \left(-d + \kappa S \varphi(x) \right)$

$$\varphi(x) = \begin{cases} x/(2a), & x < 2a \\ 1, & x \ge 2a \end{cases}$$

Introduction

General theory of population dynamics

Models with discrete time

Models with

continuous time

One population Two populations –

Lotka-Volterra

system

$$x' = x \left(p(x) - S \frac{\varphi(x)}{x} y \right),$$

$$y' = y \left(-d + \kappa S \varphi(x) \right)$$

$$\varphi(x) = \begin{cases} x/(2a), & x < 2a \\ 1, & x \ge 2a \end{cases}$$

$$\varphi(x) = \frac{x^k}{x^k + a^k}$$

$$\varphi(x) = 1 - 2^{-(x/a)^k}$$

Introduction

General theory of population dynamics

Models with discrete time

Models with

continuous time

One population Two populations – Lotka-Volterra

system

Gause-type predator-prey system

$$x' = x \left(p(x) - S \frac{\varphi(x)}{x} y \right),$$

$$y' = y \left(-d + \kappa S \varphi(x) \right)$$

$$\varphi(x) = \begin{cases} x/(2a), & x < 2a \\ 1, & x \ge 2a \end{cases} - \text{Holling I}$$

$$\varphi(x) = \frac{x^k}{x^k + a^k}$$
 – Michaelis-Menten

$$\varphi(x) = 1 - 2^{-(x/a)^k} \qquad - \mathsf{Ivlev}$$

a – level of "half saturation"

