Population dynamics – a source of diversity

Zdeněk Pospíšil
Masaryk University, Faculty of science
Department of Mathematics and Statistics

7th Summer School on Computational Biology
September 15, 2011
Introduction

General theory of population dynamics

Models with discrete time

Models with continuous time
Introduction

A bit of history
Sources, textbooks
Software

General theory of population dynamics

Models with discrete time

Models with continuous time
A bit of history

Leonhard Euler: *Introductio in analysin infinitorum* (1748)

Geometric growth of population

- The increase of population is necessarily limited by the means of subsistence,
- population does invariably increase when the means of subsistence increase,
- the superior power of population is repressed, and the actual population kept equal to the means of subsistence, by misery and vice.
Pierre-François Verhulst: *Recherches mathématiques sur la loie d’accroissement de la population* (1845)

Self-limited (logistic) growth of population
Alfred J. Lotka: *Analytical note on certain rhythmic relations in organic systems* (1920)
A bit of history

Alfred J. Lotka: *Analytical note on certain rhythmic relations in organic systems* (1920)

Vito Volterra: *Variazioni e fluttuazioni del numero d'individui in specie animali conviventi.* (1926)
A bit of history

Introduction

A bit of history

Sources, textbooks

Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Alfred J. Lotka: *Elements of physical biology* (1925)

Vito Volterra: *Leçons sur la théorie mathématique de la lutte pur la vie* (1931)
A bit of history

Introduction

A bit of history

Sources, textbooks

Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Alfred J. Lotka: *Elements of physical biology* (1925)
Vito Volterra: *Leçons sur la théorie mathématique de la lutte pur la vie* (1931)
Georgij F. Gause: *The Struggle for existence* (1934)
A bit of history

Introduction

Sources, textbooks
Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Alfred J. Lotka: *Elements of physical biology* (1925)
Vito Volterra: *Leçons sur la théorie mathématique de la lutte pur la vie* (1931)
Georgij F. Gause: *The Struggle for existence* (1934)
Andrej N. Kolmogorov: *Sula teoria di Volterra della lota per l’esistenza* (1936)
A bit of history

Introduction

A bit of history
Sources, textbooks
Software

General theory of population dynamics
Models with discrete time
Models with continuous time

Charles S. Elton: *Animal ecology* (1927)

food chain, ecological niche, pyramid of numbers
Charles S. Elton: *Animal ecology* (1927)
density (in)dependent growth
Charles S. Elton: *Animal ecology* (1927)

Charles S. Elton: *Animal ecology* (1927)

Ernest T. Seton: *The arctic prairies* (1912)
A bit of history

Charles S. Elton: *Animal ecology* (1927)

Crawford S. Holling: *The functional response of predator to prey density and its role in mimicry and population regulation* (1965)
Patrick H. Leslie: *On the use of matrices in certain population mathematics* (1945)

structured population
A bit of history

John G. Skellam: *Random Dispersal in Theoretical Populations* (1951)

dispersal of population in space, random walk, biological invasion
Introduction

A bit of history

Sources, textbooks

Software

General theory of population dynamics

Models with discrete time

Models with continuous time
Introduction

A bit of history

Sources, textbooks

Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Sources, textbooks

Sources, textbooks

Sources, textbooks

Sources, textbooks

Sources, textbooks

Sources, textbooks

Sources, textbooks

Sources, textbooks

Sources, textbooks

Introduction
A bit of history
Sources, textbooks
Software
General theory of population dynamics
Models with discrete time
Models with continuous time
Software

Introduction
A bit of history
Sources, textbooks

Software

General theory of population dynamics
Models with discrete time
Models with continuous time
Software

Introduction
A bit of history
Sources, textbooks

Software

General theory of population dynamics
Models with discrete time
Models with continuous time
Software

Introduction
A bit of history
Sources, textbooks

Software

General theory of population dynamics
Modes with discrete time
Modes with continuous time

Software

Introduction
A bit of history
Sources, textbooks

Software

General theory of population dynamics
Models with discrete time
Models with continuous time
Introduction
A bit of history
Sources, textbooks

Software

General theory of population dynamics

Models with discrete time

Models with continuous time

Introduction

General theory of population dynamics

Principles of population

1st principle

2nd principle

“Fundamental equations”

Models with discrete time

Models with continuous time

General theory of population dynamics
Principles of population

Introduction

General theory of population dynamics

Principles of population

1st principle

2nd principle

“Fundamental equations”

Models with discrete time

Models with continuous time
Principles of population

1. A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.
1. A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

2. The relative change of a population size equals to the impact of environmental conditions.
1st principle

A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

\[x(t) = x_0q^t \]
1st principle

A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

\[x(t) = x_0 q^t \]

\[x(t + 1) = x_0 q^{t+1}. \]
A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

\[x(t) = x_0 q^t \]

\[x(t + 1) = qx(t) \]
1st principle

A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

\[x(t) = x_0 q^t \]

\[x(t + 1) = q x(t), \quad \frac{x(t + 1) - x(t)}{x(t)} = q - 1 \]
1st principle

A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

\[x(t) = x_0 q^t \]

\[x(t + 1) = qx(t), \quad \frac{x(t + 1) - x(t)}{x(t)} = q - 1 \]

\[x'(t) = x_0 q^t \ln q, \]
1st principle

A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

\[x(t) = x_0 q^t \]

\[x(t + 1) = qx(t), \quad \frac{x(t + 1) - x(t)}{x(t)} = q - 1 \]

\[x'(t) = (\ln q)x(t), \]
A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

\[x(t) = x_0 q^t \]

\[x(t + 1) = qx(t), \quad \frac{x(t + 1) - x(t)}{x(t)} = q - 1 \]

\[x'(t) = (\ln q)x(t), \quad \frac{x'(t)}{x(t)} = \ln q \]
A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

\[x(t) = x_0 q^t \]

\[x(t + 1) = qx(t), \quad \frac{x(t + 1) - x(t)}{x(t)} = q - 1 \]

\[x'(t) = (\ln q)x(t), \quad \frac{x'(t)}{x(t)} = \ln q \]
A size of population sustains in the exponential increase or decrease until environmental conditions cause a change of the status.

$$x(t) = x_0 q^t$$

$$x(t + 1) = qx(t), \quad \frac{x(t + 1) - x(t)}{x(t)} = r$$

$$x'(t) = (\ln q)x(t), \quad \frac{x'(t)}{x(t)} = r$$
2nd principle

The relative change of a population size equals to the impact of environmental conditions.
The relative change of a population size equals to the impact of environmental conditions.

\[\frac{x'(t)}{x(t)} = r \]
The relative change of a population size equals to the impact of environmental conditions.

\[
\frac{d x_i(t)}{x_i(t)} = q_i(x_1(t), x_2(t), \ldots, x_n(t)), \quad i = 1, 2, \ldots, n
\]
2nd principle

The relative change of a population size equals to the impact of environmental conditions.

\[
\frac{x_i'(t)}{x_i(t)} = \varrho_i(x_1(t), x_2(t), \ldots, x_n(t)), \quad i = 1, 2, \ldots, n
\]

\[
\frac{x(t+1) - x(t)}{x(t)} = r
\]
2nd principle

The relative change of a population size equals to the impact of environmental conditions.

\[
\frac{x_i'(t)}{x_i(t)} = q_i(x_1(t), x_2(t), \ldots, x_n(t)), \quad i = 1, 2, \ldots, n
\]

\[
\frac{x_i(t + 1) - x_i(t)}{x_i(t)} = q_i(x_1(t), x_2(t), \ldots, x_n(t)), \quad i = 1, 2, \ldots, n
\]
The relative change of a population size equals to the impact of environmental conditions.

\[\frac{x'_i(t)}{x_i(t)} = \varphi_i(x_1(t), x_2(t), \ldots, x_n(t)), \quad i = 1, 2, \ldots, n \]

\[\frac{x_i(t + 1) - x_i(t)}{x_i(t)} = \varphi_i(x_1(t), x_2(t), \ldots, x_n(t)), \quad i = 1, 2, \ldots, n \]

\[x(t + 1) = qx(t) \]
2nd principle

The relative change of a population size equals to the impact of environmental conditions.

\[
\frac{x_i'(t)}{x_i(t)} = \varphi_i(x_1(t), x_2(t), \ldots, x_n(t)), \quad i = 1, 2, \ldots, n
\]

\[
\frac{x_i(t + 1) - x_i(t)}{x_i(t)} = \varphi_i(x_1(t), x_2(t), \ldots, x_n(t)), \quad i = 1, 2, \ldots, n
\]

\[x(t + 1) = e^r x(t)\]
The relative change of a population size equals to the impact of environmental conditions.

\[
\frac{x'_i(t)}{x_i(t)} = \phi_i(x_1(t), x_2(t), \ldots, x_n(t)), \quad i = 1, 2, \ldots, n
\]

\[
\frac{x_i(t+1) - x_i(t)}{x_i(t)} = \phi_i(x_1(t), x_2(t), \ldots, x_n(t)), \quad i = 1, 2, \ldots, n
\]

\[
x_i(t+1) = e^{\phi_i(x_1(t), x_2(t), \ldots, x_n(t))} x(t), \quad i = 1, 2, \ldots, n
\]
“Fundamental equations”

Populations with overlapping generations

\[x'_i = x_i \varrho_i(x_1, x_2, \ldots, x_n), \quad i = 1, 2, \ldots, n \]

Populations with non-overlapping generations

\[x_i(t + 1) = e^{\varrho_i(x_1(t), x_2(t), \ldots, x_n(t))} x_i(t), \quad i = 1, 2, \ldots, n \]
“Fundamental equations”

Populations with overlapping generations

\[x'_i = x_i \rho_i(x_1, x_2, \ldots, x_n), \quad i = 1, 2, \ldots, n \]

Populations with non-overlapping generations

\[x_i(t + 1) = e^{\rho_i(x_1(t), x_2(t), \ldots, x_n(t))} x_i(t), \quad i = 1, 2, \ldots, n \]

\[\rho_i \] linear functions – Lotka-Volterra systems
\[\rho_i \] general functions – Kolmogorov systems
"Fundamental equations"

Populations with overlapping generations

\[x'_i = x_i \left(r_i - f_i(x_1, x_2, \ldots, x_n) \right), \quad i = 1, 2, \ldots, n \]

Populations with non-overlapping generations

\[x_i(t + 1) = e^{r_i - f_i(x_1(t), x_2(t), \ldots, x_n(t))} x_i(t), \quad i = 1, 2, \ldots, n \]

- \(f_i \) linear functions – Lotka-Volterra systems
- \(f_i \) general functions – Kolmogorov systems

\[f(0, 0, \ldots, 0) = 0 \]
“Fundamental equations”

Populations with overlapping generations

\[x'_i = x_i \left(r_i - f_i(x_1, x_2, \ldots, x_n) \right), \quad i = 1, 2, \ldots, n \]

Populations with non-overlapping generations

\[x_i(t + 1) = e^{r_i - f_i(x_1(t), x_2(t), \ldots, x_n(t))} x_i(t), \quad i = 1, 2, \ldots, n \]

Lotka-Volterra systems

\[f_i(x_1, x_2, \ldots, x_n) = \sum_{j=1}^{n} a_{ij}x_j = Ax \]
“Fundamental equations”

Populations with overlapping generations

\[x'_i = x_i (r_i - f_i(x_1, x_2, \ldots, x_n)), \quad i = 1, 2, \ldots, n \]

Populations with non-overlapping generations

\[x_i(t + 1) = e^{r_i - f_i(x_1(t), x_2(t), \ldots, x_n(t))} x_i(t), \quad i = 1, 2, \ldots, n \]

Lotka-Volterra systems

\[f_i(x_1, x_2, \ldots, x_n) = \sum_{j=1}^{n} a_{ij} x_j = A \mathbf{x} \]

\[A = (a_{ij}) \ - \ community \ matrix \]
Models with discrete time

- One population
- Two populations – Lotka-Volterra system

Models with continuous time

Introduction

General theory of population dynamics
One population

\[x(t + 1) = e^{rt} x(t), \quad x(0) = x_0 \quad \Rightarrow \quad x(t) = x_0 e^{rt} \]
One population

\[x(t + 1) = e^r x(t), \quad x(0) = x_0 \quad \Rightarrow \quad x(t) = x_0 e^{rt} \]

\[x(t + 1) = e^{p(x(t))} x(t), \quad x(0) = x_0 \]

\(p \) decreasing – intra-specific competition
\(p \) increasing – Allee effect
One population

\[x(t + 1) = e^{rt}x(t), \quad x(0) = x_0 \quad \Rightarrow \quad x(t) = x_0 e^{rt} \]

\[x(t + 1) = e^{p(x(t))}x(t), \quad x(0) = x_0 \]

\(p \) decreasing – intra-specific competition

\(p \) increasing – Allee effect

\[p(x) = r \left(1 - \frac{x}{K}\right) \quad \text{– logistic equation} \]

\[x > K \quad \Rightarrow \quad e^{p(x)} > 1, \quad x < K \quad \Rightarrow \quad e^{p(x)} < 1 \]

\(K \) – carrying capacity
One population

\[x(t + 1) = e^{rx(t)}, \quad x(0) = x_0 \quad \Rightarrow \quad x(t) = x_0 e^{rt} \]

\[x(t + 1) = e^{p(x(t))} x(t), \quad x(0) = x_0 \]

\(p \) decreasing – intra-specific competition

\(p \) increasing – Allee effect

\[p(x) = r \left(1 - \frac{x}{K} \right) \] – logistic equation

\[x > K \Rightarrow e^{p(x)} > 1, \quad x < K \Rightarrow e^{p(x)} < 1 \]

\(K \) – carrying capacity

\[e^{p(x)} = \frac{q}{(1 + (q - 1)x/K)^b} \] – basic equation
Two populations – Lotka-Volterra system

\[
\begin{align*}
x(t + 1) &= x(t)e^{r_1 - a_{11}x(t) - a_{12}y(t)} \\
y(t + 1) &= y(t)e^{r_2 - a_{21}x(t) - a_{22}y(t)}
\end{align*}
\]
Two populations – Lotka-Volterra system

\[
\begin{align*}
 x(t + 1) &= x(t) e^{r_1 - a_{11} x(t) - a_{12} y(t)} \\
 y(t + 1) &= y(t) e^{r_2 - a_{21} x(t) - a_{22} y(t)}
\end{align*}
\]

- \(a_{ii} > 0 \) – intra-specific competition
- \(a_{ii} < 0 \) – Allee effect
- \(a_{ij} > 0 \) – inter-specific competition
- \(a_{ij} < 0 \) – mutualism
- \(a_{ij} a_{ji} < 0 \) – predation
Models with continuous time

Models with continuous time

One population
Two populations – Lotka-Volterra system
Gause-type predator-prey system
One population

\[x' = rx, \quad x(0) = x_0 \quad \Rightarrow \quad x(t) = x_0 e^{rt} \]
One population

$x' = rx, \ x(0) = x_0 \Rightarrow x(t) = x_0 e^{rt}$

$x' = xp(x), \ x(0) = x_0$

p decreasing – intra-specific competition
p increasing – Allee effect
One population

\[x' = rx, \quad x(0) = x_0 \quad \Rightarrow x(t) = x_0 e^{rt} \]

\[x' = xp(x), \quad x(0) = x_0 \]

- \(p \) decreasing – intra-specific competition
- \(p \) increasing – Allee effect

\[p(x) = r \left(1 - \frac{x}{K} \right) \] – logistic equation
One population

$x' = rx, \ x(0) = x_0 \ \Rightarrow \ x(t) = x_0e^{rt}$

$x' = xp(x), \ x(0) = x_0$

p decreasing – intra-specific competition
p increasing – Allee effect

$p(x) = r \left(1 - \frac{x}{K}\right)$ – logistic equation

$p(x) = rx^{a-1} \left(1 - \left(\frac{x}{K}\right)^b\right)$ – generalized logistic equation
Two populations – Lotka-Volterra system

\[x' = x(r_1 - a_{11}x - a_{12}y) \]
\[y' = y(r_2 - a_{21}x - a_{22}y) \]
Two populations – Lotka-Volterra system

\[x' = x(r_1 - a_{11}x - a_{12}y) \]
\[y' = y(r_2 - a_{21}x - a_{22}y) \]

- \(a_{ii} > 0 \) – intra-specific competition
- \(a_{ii} < 0 \) – Allee effect
- \(a_{ij} > 0 \) – inter-specific competition
- \(a_{ij} < 0 \) – mutualism
- \(a_{ij}a_{ji} < 0 \) – predation
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Gause-type predator-prey system</th>
</tr>
</thead>
<tbody>
<tr>
<td>General theory of population dynamics</td>
<td></td>
</tr>
<tr>
<td>Models with discrete time</td>
<td></td>
</tr>
<tr>
<td>Models with continuous time</td>
<td></td>
</tr>
<tr>
<td>One population</td>
<td></td>
</tr>
<tr>
<td>Two populations – Lotka-Volterra system</td>
<td></td>
</tr>
</tbody>
</table>

Gause-type predator-prey system
Gause-type predator-prey system

\[
x' = xp(x), \\
y' = -dy
\]

- \(x\) – size of prey population
- \(y\) – size of predator population
- \(p(x)\) – prey growth rate
- \(d\) – predator death rate
Gause-type predator-prey system

\[x' = xp(x) - S\varphi(x)y, \]
\[y' = -dy \]

- \(x \) – size of prey population
- \(y \) – size of predator population
- \(p(x) \) – prey growth rate
- \(d \) – predator death rate
- \(\varphi(x) \) – trophic function; increasing, \(\varphi(0) = 0, \lim_{x \to \infty} \varphi(x) = 1 \)
- \(S \) – predator level of satiety

Holling I
\[
\varphi(x) = \begin{cases}
0 & \text{if } x < a \\
1 & \text{if } x \geq 2a
\end{cases}
\]

Holling II
\[
\varphi(x) = \frac{x}{b} \quad \text{for } 0 \leq x \leq b
\]

Holling III
\[
\varphi(x) = \frac{x}{b + 2a} \quad \text{for } 0 \leq x \leq b + 2a
\]
Gause-type predator-prey system

\[
\begin{align*}
 x' &= xp(x) - S\varphi(x)y, \\
 y' &= -dy + \kappa S\varphi(x)y \\
\end{align*}
\]

- x – size of prey population
- y – size of predator population
- $p(x)$ – prey growth rate
- d – predator death rate
- $\varphi(x)$ – trophic function; increasing, $\varphi(0) = 0$, $\lim_{x \to \infty} \varphi(x) = 1$
- S – predator level of satiety
- κ – efficiency of conversion: prey into predator growth rate
Gause-type predator-prey system

\[\begin{align*}
x' &= x \left(p(x) - \frac{S \varphi(x)}{x} y \right), \\
y' &= y \left(-d + \kappa S \varphi(x) \right)
\end{align*} \]
Gause-type predator-prey system

\[x' = x \left(p(x) - S \frac{\varphi(x)}{x} y \right), \]
\[y' = y \left(-d + \kappa S \varphi(x) \right) \]

\[\varphi(x) = \begin{cases}
\frac{x}{2a}, & x < 2a \\
1, & x \geq 2a
\end{cases} \]
Gause-type predator-prey system

\[
x' = x \left(p(x) - S \frac{\varphi(x)}{x} y \right),
\]
\[
y' = y \left(-d + \kappa S \varphi(x) \right)
\]

\[
\varphi(x) = \begin{cases}
\frac{x}{2a}, & x < 2a \\
1, & x \geq 2a
\end{cases}
\]

\[
\varphi(x) = \frac{x^k}{x^k + a^k}
\]

\[
\varphi(x) = 1 - 2^{-\left(\frac{x}{a}\right)^k}
\]
Gause-type predator-prey system

\[
x' = x \left(p(x) - S \frac{\varphi(x)}{x} y \right),
\]
\[
y' = y \left(-d + \kappa S \varphi(x) \right)
\]

\[
\varphi(x) = \begin{cases}
 x/(2a), & x < 2a \\
 1, & x \geq 2a
\end{cases} \quad \text{– Holling I}
\]

\[
\varphi(x) = \frac{x^k}{x^k + a^k} \quad \text{– Michaelis-Menten}
\]

\[
\varphi(x) = 1 - 2^{-(x/a)^k} \quad \text{– Ivlev}
\]

\(a\) – level of “half saturation”