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MULTIPLIER ALGEBRAS OF INVOLUTIVE QUANTALES
JAN PASEKA

ABSTRACT. The aim of this note is to establish a description of the (semi-)
multiplier algebra of an involutive quantale.

Investigations in the theory of C*-algebras make often use of Hilbert C*-
modules as a tool for proving. Research fields benefiting from it include op-
erator K-theory, index theory for operator-valued conditional expectations,
group representation theory and others. Beside this, the theory of Hilbert
C*-modules is very interesting on its own right. Our main purpose here is
to expose some more connections between the theory of Hilbert C*-modules
and their lattice analogs, Hilbert QQ-modules. Of course the main motivation
for the machinery developed here, is that certain problems concerning (invo-
lutive) quantales should be solvable by transferring the methods of Hilbert
C*-modules (see [6]) into the Hilbert @-modules framework. Similarly, as
for C*-algebras (see [7]) we shall introduce the notion of a multiplier of an
involutive quantale and we show that any involutive quantale with a maxi-
mal essential extension over sup-lattices with a duality has a unique maximal
essential extension to its multiplier.

The results and definitions follow a natural logical sequence, so we begin
without further delay. We refer to [4] for additional information and comple-
mentary results, and to [1], [5] and [8] for background information on Hilbert
C*-modules and quantales.

In what follows, a complete lattice will be called sup-lattice. Sup-lattice
homomorphisms are maps between sup-lattices preserving arbitrary joins. We
shall denote, for sup-lattices S and T, by SUP(S,T) the sup-lattice of all
sup-lattice homomorphisms from S to 7', with the supremum given by the
pointwise ordering of mappings. Recall that a quantale is a sup-lattice Q) with
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an associative binary multiplication satisfying

x\/x, = \/wacZ and (\/:vz) cT = \/xzx

i€l i€l el i€l
for all z, z; € Q,1 € I (I is a set). 1 denotes the greatest element of @, 0
is the smallest element of (). A quantale @) is said to be unital if there is an
element e € Q such that e-a=a =a-e foralla € Q. A subquantale Q' of a
quantale @ is a subset of ) closed under \/ and -. Since the operators a - —
and —-b:Q — @, a,b € Q preserve arbitrary joins, they have right adjoints.
Explicitly, they are given by

a—>rc:\/{seQ|a-s§c} and b—>ld:V{tEQ|t-b§d}

respectively.
An involution on a sup-lattice S is a unary operation such that

a** —

a’
(Vai)" = Va;
for all a,a; € S. An involution on a quantale () is an involution on the sup-
lattice ) such that
(a-b)" = b*-a*
for all a,b € Q. A sup-lattice (quantale) with an involution is said to be
inwvolutive.

By a morphism of (involutive) quantales will be meant a \/- (*-) and --
preserving mapping f : @ — @Q'. If a morphism preserves the unital element
we say that it is unital.

Let A be a subset of a quantale ). We shall denote by comm(A) the
commutant of A in Q) (see [3]) defined as

comm(A) ={beQ:(Vac A)fa-b=10b-a)}.
Similarly, we write bicomm(A) for the bicommutant of A in @ defined as
bicomm(A) = comm(comm(A)).

By the quantale 2(M) = SUP(M, M) of endomorphisms of the sup-lattice
M (see [2]) will be meant the unital quantale of sup-preserving mappings from
M to itself, with the multiplication given by the composition of mappings, and
with the unit given by the identity mapping. Note that 2(M) = (M ® M°P)°?;
here ® is a tensor product of sup-lattices.

In [3], there was introduced the idea of the Cayley representation € (Q) =
2(Qle] x Q[e]°P) of an arbitrary involutive quantale @Q; here the involutive
quantale embedding ag : Q@ — F(Q) is defined by ag(a) = (a- —,a* =, —),
for all @ € @, and QJe] is the unital involutive quantale obtained by adding
the unit e to @, putting e = 0 V e and freely generating it by the set Q U {e}
if Q is non-unital (see [3]), otherwise we define Q[e] = Q.
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Let @ be a quantale. A left module over @ (shortly a left @Q-module) is a
sup-lattice M, together with a module action _e _: () x M — M satisfying

(a-b)em = ae(bem)
(VS)em = \/{sem:s€e S}
ae\/ X = \{aez:ze€ X}

foralla,be Q,me M,S CQ, X C M. Let M and N be modules over () and
let f : M — N be a sup-lattice homomorphism. f is a module homomorphism
if flaem) =ae f(m) for alla € Q,m € M.

Note first that if M is a sup-lattice then M is a left 2(M)-module such
that fem = f(m) for all f € 2(M) and all m € M. Secondly, we may dually
define the notion of a right -module. Moreover, all propositions stated for
left Q-modules are valid in a dualized form for right QQ-modules.

The theory of Hilbert @-modules (we refer the reader to [4] for details
and examples) is a generalization of the theory of complete semilattices with
a duality and it is the natural framework for the study of modules over an
involutive quantale @ endowed with @-valued inner products.

Let @ be an involutive quantale, M a right (left) @-module with a right
(left) module action o (). We say that M is a right (left) Hilbert Q-module
(right (left) strict Hilbert Q-module) if M is equipped with a map (—,—) :
M x M — @, called the inner product, such that for all a € @, m,n € M and
m; € M, where i € I, the conditions (1)-(5) ((1)-(6)) are satisfied:

(1) (m,n)-a=(m,noa) (a-{(m,n)= (aem,n));
(2) \V(mi,n) = (\/ mi,n);

el el
(3) \/<maml> = <ma \/ mi)?

i€l iel
(4) (m,n)" = (n,m);
(5) <_am> = <_’n> (<m’ _> = <na _>) implies m = n;
(6) (m,m) = 0 implies m = 0.

Let f : N — M be a map between right (left) Hilbert @Q-modules. We say
that a map f*: M — N is a *-adjoint to f and f is adjointable if

(f(n),m) = (n, f*(m))

for all m € M, n € N. Automatically, f is then a )-module homomorphism.

The \/-semilattice of all adjointable maps from N to M is denoted by
(N, M). For m € M and n € N, define a fr-operator ©,,, : N - M by
Omn(p) = mo(n,p) = (p,n)em for all p € N. We shall denote by %5 (N, M)
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the sub-\/-semilattice of @/ (INV, M) generated by the set {Op,n, : m € M,n €
N} and the elements of (N, M) we will call compact operators.

Note that «/o(M), the \/-semilattice of all adjointable maps from M to
itself, is an involutive quantale. Moreover, if () = 2, the 2-element Boolean
algebra, then we have 2(M) = o/2(M). Namely, \/-semilattices with a duality
(complete ortholattices) are exactly the Hilbert (strict) 2-modules.

MULTIPLIER ALGEBRAS

Definition 1. Let Q) be an involutive quantale, M an involutive \/-semilattice
with an involution #, and let M be both a left Q-module with action e and a
right QQ-module with action ¢ such that

(aem)ob = ae(mob),

(aem)® = m#*oa*

for all a,b € Q, m € M. Then we shall say that M is an involutive bimodule
over Q. An involutive bimodule homomorphism is both a left- and right-
module homomorphism preserving involution. Moreover, if Q is an involutive

\/-subsemilattice of M we shall say that @Q is a semiideal of M and M is a
semiextension of Q, if

aeb=a-b=aobandaem,mobe Q

forall a,b € Q and all m € M. If moreover M is an involutive quantale, Q) an
involutive subquantale and a semiideal of M we call @ an ideal of M and M
an extension of Q. We call a semiideal (ideal) Q essential if for all m,n € M,

aem=agen and mob=nob foralla,be QQ = m=n.

We shall say that a semiextension (extension) M of () is maximal if any other
such semiextension (extension) M' of Q can be embedded in it.

Recall that @ is essential in M iff

forallm,n € M,aem =qgenforallac Q — m=n

iff

forall m,n € M, mob=nobforallbe Q = m=n.

Moreover, () is essential in @) iff () is a Hilbert )-module.

Let @ be an involutive quantale, M a (left) Hilbert Q-module and M®
the \/-semilattice of all @-module homomorphisms from M to Q. Then we
know that M® is a left @-module with the module multiplication (ce f)(m) =
fm)-c*, forallc € Q, m € M, f € M®. We have a canonical embedding
iy 2 M — M® defined by m +— (—,m), m € M. Namely, let a € Q, m,n € M.
Then

tp(aem)(n) = (n,aem) = (aem,n)" = (a-(m,n))* =

= (n,m)-a" = (ae (=,m))(n) = (aewr(m))(n).
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Note that for T € Homg(M, M) we have a @-module homomorphism T :
M® — M® defined by the prescription (T®(f))(m) = f(T'(m)), f € M®,
m € M. Namely, we have

(aeT®(f))(m) = T®(f)(m) - a” = f(T'(m)) - a” =
= (ae f)(T(m)) = (T®(as f))(m).
Evidently, (T} 0T%)® = Ty oTy?. Similarly, for any T' € Homg (M, M®) we have
a \/-preserving map T# : M — M® defined by (T#(m))(n) = (T'(n)(m))* for
all m,n € M. Evidently, the map # is an involution on the \/-semilattice
Homg (M, M®) since # preserves arbitrary joins and any T# is a module
homomorphism by
(aeT#(m))(n) = T#(m)(n) - a* = (T(n)(m))" - a* =
(a-T(n)(m))" = (T(n)(aem))" = T#(aem)(n).
Lemma 2. Let Q and Q' be involutive quantales, M a Hilbert Q-module.

Then an involutive quantale homomorphism p : Q' — (M) determines a
structure of a p(Q') bimodule on Homg(M, M®) by the following prescription:

p(a)sT = p(a*)® 0T, Top(a)=To pla)
foralla € Q', T € Homg(M, M®).

Proof. Let us check the left module axioms. Let a,b € Q',T €Homg (M, M®).
Then

(p(a) o p(b)) o1 = p(a-{z

Il
—
B

<

Similarly, we have

(VieI pla;))eT = p( Vie[ a;)eT = p( Vie[ a;f‘)‘@ ol
Vier (p(a})® o T) = Vg (p(ai) o T)

and

pla)e (VieI T;) = p(a*)® © (Vie[ T;) = ViEI p(a*)® ol = Vie[ pla) o T;.
By the same arguments we can prove that Homg(M, M®) is a right module.
Let us check that it is an involutive bimodule. We have, for all a,b € Q" and
all T € Homg (M, M®),

(p(a)eT)op(b) = (p(a*)®oT)op(b)

and
(p(a) e T)¥ (m)(n) = (p(a*)®°T)#(m1(n) =

Il
|
S
~—
=)
—
IS
*
~—
B
=
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Note that we have a \/- and involution-preserving embedding defined by
im : @o(M) — Homg (M, M®), T + iy o T, ie. jp(T)(m) = (—,T(m)) for
all m € M. Namely, we have jM(T)# = im(T*), im(Vier Ti) = Vier im(Ti)
and T® o ’iM =T

Definition 3. Let Q and Q' be involutive quantales, M a Hilbert Q-module.
We say that an involutive quantale homomorphism o : Q' — g(M) is non-
degenerate if M = {\/,.; a(a;)(m;) : a; € Q',m; € M}. We shall say that
Q' is non-degenerate if it is a Hilbert Q'-module and the involutive quantale
homomorphism ag : Q' — 2(Q' x Q'?) defined by ag (a) = (a-—,a* =, —),
for all a € @', is non-degenerate.

It may be remarked that Q' is non-degenerate iff it is essential in itself,
Q- Q' =Q" and Q' —, Q' = Q'. Evidently, any unital involutive quantale is
non-degenerate.

Lemma 4. Let Q and Q' be involutive quantales, M a Hilbert Q-module, Q' a
semiideal of an involutive Q' bimodule N, a : Q' — (M) a non-degenerate
involutive quantale homomorphism. Then a extends uniquely to an involutive
bimodule homomorphism @ : N — Homg(M, M®), i.e.

a(a) = ty(afa)), a(aen) = ala) sa@(n), a(nob) = a(n)oa(b),
forall a,be @', n € N. If a is injective and Q' essential in N then & is also
injective.

Proof. Let us define @(n)(V;c; @(ai)(mi)) = V;er (tar 0 a(n o a;))(m;) for all
a; € Q',m; € M. First, let us show the correctness of our definition. Let
Vier aa)(ms) = Ve, alby)(rj) and let y = Ve afcx)(as) € M. Then

a(n)(Vier(ai)(mi))(y) = Vier (emr 0 a(noa;))(ms)(y)
= Vier (Viex @(ck)(ar), a(noa;)(m;
icelLkeK {((a(noa;)™ o aler))(gr), mi)
VzelkeK<( afa; en* ock)(qr), m;
VzeI keK <(( a(n*ock)(q

k), e(as
Viex (((n* o cr)(ar), Vies ()
k), V
)-

~~—

er (i) (mi))
Vier ((@(n" 0 a)(ar), Ve a(b:)(r))
a(n)(Vjes alb)(r;))

Now, let us check that @ preserves arbitrary joins and involution. Assume
ng € N,k € K. Then we have

a(Vier ) (Vieralai)(mi)) = Vier (emr 0 a(( Ve ) © a:))(mi)

Vierker (tar 0 a(ng0ai))(mi) = Viyeg @(ne)(Vier a(ai)(mi))
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and, for y = V¢, a(b;)(r;),
() * (Vi aa)(mi))(y) = @) m)(Vier alai) (my)” =
(Vier @) (mi), V jes a(nob;)(r;) (Vjer alnoby)(rj), Vier olas)(mi))

:VieI,jeJ (a(nobj)(rj), ala;)(m;)) = Viel,jeJ<0‘(“f°”°bj)(7"j)amz’)
= Vierjes ((bj)(rj), a(n* oa;)(m;)) = @(n*)(V,er alai)(mi))(y).
(a)e

Let us show that @(aen) = a(a) e@(n). We have

alaen)(Vierala)(mi))(y) = Vier (b 0 alaenoa;))(mi)(y) =

Vier (v, alaencai)(mi) = Ve (a(a)'(y), a(noai)(mi)) =
(2(@*)(¥), Vigs e(noai)(mi)) = wm(Vies e(noas)(mi))(a(a®)(y)) =
a(n)(Vies elai)(ma))(e(a”) (v)) = ala*)®(@n)( Ve, aas)(mi)(y) =

(e(a)® o @(n))(Vies dai)(ma))(y) = (a(a) e@(n))( Ve, alai)(mi))(y)

Similarly, we have

a(nob)(Vier alai)(mi))
a(n)(Vier alboa)(mi))

Viera(noboa;)(m;) =
a(n)(a(b)( Vs alai)(mi)))
(@(n) o (b)) (Ve alai)(mi))-

Now, let 8 : N — Homg(M, M®) be an involutive bimodule homomorphism

Eru}fh that 5(a) = tu(a(a)), Blaen) = a(a)ef(n), B(nod) = B(n)oalb).
A(n)(Vigr alai)(mi)) Vier (B(n) 0 a(ai))(m)

Vier B(noa;)(m;)
Vier (ta 0 a(n o aq))(mi)
a(n)(Vier a(ai)(mi)).
Finally, if « is injective, we have, for all ny,ns € N and all a € Q' such
that @(n1) = @(ng), the following:

it oa(nioa) =a(nioa) = (a(ng) o a)(a) = (@(n2) o a)(a) = tar o a(ngoa).

This gives us that a(ni¢a) = a(ngoa) for all a € Q', i.e. nyoa = nyoa, ie.
ny = no.

Corollary 5. Let Q and Q' be involutive quantales, M a Hilbert Q-module,
Q' an involutive subquantale and an ideal of an involutive quantale Q", « :
Q' — do(M) a non-degenerate involutive quantale homomorphism. Then o

extends uniquely to an involutive quantale homomorphism @ : Q" — Ag(M).
If « is injective and Q' essential in Q", then @ is also injective.

Proof. Let us define

a(m)(\ aai)(mi) = \/ a(n - a)(m)

i€l el
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for all n € Q'. Then @ = t)s o @, i.e. @ is correctly defined, by the injectivity
of tps. It is easy to verify that @(ny -ne) = tpr0a(ny) o@(nsg), i.e. @(ny-ng) =
@(n1) o @(ngy). Evidently, @ preserves arbitrary joins. Note that
(g, @(n*)(Vier a(ai)(mz‘))i = gg, Vier a(n* - a;)(m;)) =
(a(n)(y), Vier (ai) (m;) a(n)(y), Vier a(ai) (mi))
i.e. @ preserves involution. If « is injective we have (by the injectivity of @)
that @ is injective. []

Definition 6. Let Q, Q' be involutive quantales and let M be a Hilbert Q-
module. Suppose that o : Q' — (M) is a non-degenerate injective involutive
quantale homomorphism. We say that the set

S My (Q') = {T€Homg(M,M®) : Toa(Q') Ca(Q') and a(Q') e T C @(Q')}

is an (M, a)-semimultiplier of the involutive quantale Q'. Similarly, we say
that the set

My (Q) ={T € #o(M) : Toa(Q) C a(Q') and &(Q) o T C (Q")}

is an (M, )-multiplier of the involutive quantale Q.

Evidently, from the proof of Lemma 4 (Corollary 5) we easily see that
LMy (Q') is a semiextension of a(Q') (A#(Q') is an extension of a(Q')).
Applying the non-degeneracy we have that, for all 71, T, T1 o a(a) = Th o a(a)
for all @ € Q' implies T} = Tb, i.e. our semiextension (extension) is essential.
Moreover, for any non-degenerate involutive quantale @', we have a (Q' x
Q'”, agr)-semimultiplier (multiplier) over 2. We then have the following:

Lemma 7. Let Q, Q' be involutive quantales and let M be a Hilbert Q-module.
Suppose that a : Q' — (M) is a non-degenerate injective involutive quantale
homomorphism. Then & My (Q') (A (Q')) is a mazimal essential semiez-
tension (extension) of a(Q").

Proof. Let X be any essential semiextension of a(Q'). Then we have an
injective embedding & : X — Homg(M, M®) such that a(a) = tp(a(a)),
alaen) = ala)ea(n) € @(Q'), alnob) = a(n)oa(b) € @(Q’) for all a,b € Q'
and all n € X, ie. a(n) € LMy (Q'). The extension part of the proof uses
the same ideas. [

Proposition 8. Let Q' be an involutive quantale with a mazimal essential
semieztension (extension) over 2. Then Q' has a unique (up to isomorphism)
mazimal essential semiextension (extension), identical on Q'. In particular,
all (M, )-semimultipliers ((M, «)-multipliers) are isomorphic.

Proof. Let ap : Q' — 2(M) be a maximal semiextension (extension) over 2
and let X be a maximal essential extension of @', @ : Q' — X. We shall show
that X is isomorphic to the (M, ag)-semiextension .. #57(Q'). By the maxi-
mality of our semiextension there are involutive bimodule monomorphisms £ :
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X = y%ﬁ(@') and 7y : j’,ﬁﬁ(Q') — X such that /B/a(Q’)o'Y/ag(Q’) = idao(Q’)
and ¥/a0(Q) © Bra(qry = idag)- Then Bovy @ LMy(Q) — FM77(Q) C
Homg (M, M®) ~ oy(M, M) ~ 2(M) and B o Y/ao(@) = idag(@ny- By
Lemma 4, idy,(q/) extends both to 8oy and to idy.w (@), 1e from the
uniqueness we have S o~y =id S Mr(Q) The multiplier part is evident. [

Theorem 9. Let Q' be an involutive quantale with a maximal essential semi-
extension (eztension) ag : Q' — 2(M) over 2. Then M+7(Q') ~ & M+7(Q")
~ {T' € bicomm(a(Q")) : T o ap(Q') C a(Q') and ap(Q') o T C ao(Q")}, i.e.
any mazximal essential semimultiplier is isomorphic to any mazimal essential
multiplier and both are isomorphic to the involutive quantale A (Q') =

{T € bicomm(a(Q")) : T o ap(Q") C p(Q') and ap(Q") o T C ag(Q")}-

Proof. Note that we have a one-to-one correspondence between ag(a)® and
ag(a*), for all a € @', since ap(a)® = ag(b)® implies ag(a) = ag(b), i.e. a = b.
Any element S € Homg (M, M®) is of the form S = 770, T € 2(M), and the
same holds for the module actions. So we have .. #3;(Q’) ~ #7;(Q’). Evi-
dently, .#7(@) 2 {T € bicomm(ag(Q')) : T 0 00(Q') C 0o(Q') and ao(Q') o
T C ap(Q")}. Let us show that .#5;(Q") C bicomm(ay(Q')). Assume T €
M37(Q"), R € comm(ap(Q')), a,b € Q. Then

ToRoaygb) = Toag(b)oR = RoToawyb),
ap(a)oToR = Roap(a)oT = ag(a)oRoT

ie. ToR=RoT,ie T € bicomm(ay(Q')). O

Theorem 10. Let QQ be an involutive quantale, M a Hilbert QQ-module such
that M = {\/;c; (ms,p;) ®r; : my,ps,ms € M}. Then (M) ~ M (Hy(M))
and Homg (M, M®) ~ % M (Ho(M)).

Proof. We have an embedding (inclusion) ppr : J#o(M) — (M) and
evidently this embedding is non-degenerate. So we have
M(Ho(M)) ~{T € Homg(M, M®) : T ovpr 0o Ho(M) C vpr o Ho(M) and
(Ho(M)® oT C u1pr 0 Ho(M)} = Homg (M, M®)

and

M (Hg(M)) = {T € dg(M) : T o Hp(M) C Hp(M) and
Ho(M)oT C Hp(M)} = p(M). [

Corollary 11. Let Q be a non-degenerate involutive quantale. Then </5(Q)
~ M (HQ(Q)).

Proof. We have that () is a Hilbert ()-module with the standard multiplica-
tion satisfying the assumptions of Theorem 10. The rest is evident. [
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