CONTRIBUTIONS TO GENERAL ALGEBRA 14 Proceedings of the Olomouc Conference 2002 (AAA 64) and the Potsdam Conference 2003 (AAA 65) Verlag Johannes Heyn, Klagenfurt 2004

MULTIPLIER ALGEBRAS OF INVOLUTIVE QUANTALES

JAN PASEKA

ABSTRACT. The aim of this note is to establish a description of the (semi-) multiplier algebra of an involutive quantale.

Investigations in the theory of C*-algebras make often use of Hilbert C*-modules as a tool for proving. Research fields benefiting from it include operator K-theory, index theory for operator-valued conditional expectations, group representation theory and others. Beside this, the theory of Hilbert C*-modules is very interesting on its own right. Our main purpose here is to expose some more connections between the theory of Hilbert C*-modules and their lattice analogs, Hilbert Q-modules. Of course the main motivation for the machinery developed here, is that certain problems concerning (involutive) quantales should be solvable by transferring the methods of Hilbert C*-modules (see [6]) into the Hilbert Q-modules framework. Similarly, as for C*-algebras (see [7]) we shall introduce the notion of a multiplier of an involutive quantale and we show that any involutive quantale with a maximal essential extension over sup-lattices with a duality has a unique maximal essential extension to its multiplier.

The results and definitions follow a natural logical sequence, so we begin without further delay. We refer to [4] for additional information and complementary results, and to [1], [5] and [8] for background information on Hilbert C*-modules and quantales.

In what follows, a complete lattice will be called sup-lattice. Sup-lattice homomorphisms are maps between sup-lattices preserving arbitrary joins. We shall denote, for sup-lattices S and T, by SUP(S,T) the sup-lattice of all sup-lattice homomorphisms from S to T, with the supremum given by the pointwise ordering of mappings. Recall that a quantale is a sup-lattice Q with

²⁰⁰⁰ Mathematics Subject Classification. 06B10, 06B99, 06F05, 06-99, 54A05, 54-99.

Key words and phrases. involutive quantale, (Hilbert) Q-module, Q-bimodule, non-degenerate morphism, (semi)multiplier algebra.

Financial Support of the Grant Agency of the Czech Republic under the grant No. 201/96/0310 is gratefully acknowledged.

an associative binary multiplication satisfying

$$x \cdot \bigvee_{i \in I} x_i = \bigvee_{i \in I} x \cdot x_i$$
 and $(\bigvee_{i \in I} x_i) \cdot x = \bigvee_{i \in I} x_i \cdot x$

for all $x, x_i \in Q$, $i \in I$ (I is a set). 1 denotes the greatest element of Q, 0 is the smallest element of Q. A quantale Q is said to be unital if there is an element $e \in Q$ such that $e \cdot a = a = a \cdot e$ for all $a \in Q$. A subquantale Q' of a quantale Q is a subset of Q closed under \bigvee and \bigvee . Since the operators $a \cdot A$ and $A \cdot A \cdot B$ are given by

$$a \to_r c = \bigvee \{s \in Q | a \cdot s \le c\}$$
 and $b \to_l d = \bigvee \{t \in Q | t \cdot b \le d\}$

respectively.

An *involution* on a sup-lattice S is a unary operation such that

$$a^{**} = a,$$

$$(\bigvee a_i)^* = \bigvee a_i^*$$

for all $a, a_i \in S$. An *involution* on a quantale Q is an involution on the suplattice Q such that

$$(a \cdot b)^* = b^* \cdot a^*,$$

for all $a,b \in Q$. A sup-lattice (quantale) with an involution is said to be involutive.

By a morphism of (involutive) quantales will be meant a \bigvee - (*-) and -preserving mapping $f: Q \to Q'$. If a morphism preserves the unital element we say that it is unital.

Let A be a subset of a quantale Q. We shall denote by comm(A) the commutant of A in Q (see [3]) defined as

$$comm(A) = \{b \in Q : (\forall a \in A)(a \cdot b = b \cdot a)\}.$$

Similarly, we write bicomm(A) for the *bicommutant* of A in Q defined as

$$bicomm(A) = comm(comm(A)).$$

By the quantale $\mathcal{Q}(M) = SUP(M,M)$ of endomorphisms of the sup-lattice M (see [2]) will be meant the unital quantale of sup-preserving mappings from M to itself, with the multiplication given by the composition of mappings, and with the unit given by the identity mapping. Note that $\mathcal{Q}(M) \cong (M \otimes M^{op})^{op}$; here \otimes is a tensor product of sup-lattices.

In [3], there was introduced the idea of the Cayley representation $\mathscr{C}(Q) = \mathscr{Q}(Q[e] \times Q[e]^{op})$ of an arbitrary involutive quantale Q; here the involutive quantale embedding $\alpha_Q : Q \to \mathscr{C}(Q)$ is defined by $\alpha_Q(a) = (a \cdot -, a^* \to_r -)$, for all $a \in Q$, and Q[e] is the unital involutive quantale obtained by adding the unit e to Q, putting $e = 0 \lor e$ and freely generating it by the set $Q \cup \{e\}$ if Q is non-unital (see [3]), otherwise we define Q[e] = Q.

Let Q be a quantale. A left module over Q (shortly a left Q-module) is a sup-lattice M, together with a module action $_ \bullet _ : Q \times M \to M$ satisfying

$$\begin{array}{rcl} (a \cdot b) \bullet m & = & a \bullet (b \bullet m) \\ (\bigvee S) \bullet m & = & \bigvee \{s \bullet m : s \in S\} \\ a \bullet \bigvee X & = & \bigvee \{a \bullet x : x \in X\} \end{array}$$

for all $a, b \in Q, m \in M, S \subseteq Q, X \subseteq M$. Let M and N be modules over Q and let $f: M \to N$ be a sup-lattice homomorphism. f is a module homomorphism if $f(a \bullet m) = a \bullet f(m)$ for all $a \in Q, m \in M$.

Note first that if M is a sup-lattice then M is a left $\mathcal{Q}(M)$ -module such that $f \bullet m = f(m)$ for all $f \in \mathcal{Q}(M)$ and all $m \in M$. Secondly, we may dually define the notion of a right Q-module. Moreover, all propositions stated for left Q-modules are valid in a dualized form for right Q-modules.

The theory of Hilbert Q-modules (we refer the reader to [4] for details and examples) is a generalization of the theory of complete semilattices with a duality and it is the natural framework for the study of modules over an involutive quantale Q endowed with Q-valued inner products.

Let Q be an involutive quantale, M a right (left) Q-module with a right (left) module action \diamond (\bullet). We say that M is a right (left) Hilbert Q-module (right (left) strict Hilbert Q-module) if M is equipped with a map $\langle -, - \rangle$: $M \times M \to Q$, called the inner product, such that for all $a \in Q$, $m, n \in M$ and $m_i \in M$, where $i \in I$, the conditions (1)–(5) ((1)–(6)) are satisfied:

$$\langle m, n \rangle \cdot a = \langle m, n \diamond a \rangle \quad (a \cdot \langle m, n \rangle = \langle a \bullet m, n \rangle);$$

(2)
$$\bigvee_{i \in I} \langle m_i, n \rangle = \langle \bigvee_{i \in I} m_i, n \rangle;$$

(3)
$$\bigvee_{i \in I} \langle m, m_i \rangle = \langle m, \bigvee_{i \in I} m_i \rangle;$$

$$(4) \langle m, n \rangle^* = \langle n, m \rangle;$$

(5)
$$\langle -, m \rangle = \langle -, n \rangle \ (\langle m, - \rangle = \langle n, - \rangle) \text{ implies } m = n;$$

(6)
$$\langle m, m \rangle = 0 \text{ implies } m = 0.$$

Let $f: N \to M$ be a map between right (left) Hilbert Q-modules. We say that a map $f^*: M \to N$ is a *-adjoint to f and f is adjointable if

$$\langle f(n), m \rangle = \langle n, f^*(m) \rangle$$

for all $m \in M$, $n \in N$. Automatically, f is then a Q-module homomorphism. The \bigvee -semilattice of all adjointable maps from N to M is denoted by $\mathscr{A}_Q(N,M)$. For $m \in M$ and $n \in N$, define a fr-operator $\Theta_{m,n}: N \to M$ by $\Theta_{m,n}(p) = m \diamond \langle n,p \rangle = \langle p,n \rangle \bullet m$ for all $p \in N$. We shall denote by $\mathscr{K}_Q(N,M)$

the sub-V-semilattice of $\mathscr{A}_Q(N, M)$ generated by the set $\{\Theta_{m,n} : m \in M, n \in N\}$ and the elements of $\mathscr{K}_Q(N, M)$ we will call *compact operators*.

Note that $\mathscr{A}_Q(M)$, the \bigvee -semilattice of all adjointable maps from M to itself, is an involutive quantale. Moreover, if Q = 2, the 2-element Boolean algebra, then we have $\mathscr{Q}(M) = \mathscr{A}_2(M)$. Namely, \bigvee -semilattices with a duality (complete ortholattices) are exactly the Hilbert (strict) 2-modules.

Multiplier algebras

Definition 1. Let Q be an involutive quantale, M an involutive \bigvee -semilattice with an involution #, and let M be both a left Q-module with action \bullet and a right Q-module with action \diamond such that

$$\begin{array}{rcl} (a \bullet m) \diamond b & = & a \bullet (m \diamond b), \\ (a \bullet m)^\# & = & m^\# \diamond a^* \end{array}$$

for all $a, b \in Q$, $m \in M$. Then we shall say that M is an involutive bimodule over Q. An involutive bimodule homomorphism is both a left- and right-module homomorphism preserving involution. Moreover, if Q is an involutive V-subsemilattice of M we shall say that Q is a semiideal of M and M is a semiextension of Q, if

$$a \bullet b = a \cdot b = a \diamond b \text{ and } a \bullet m, m \diamond b \in Q$$

for all $a, b \in Q$ and all $m \in M$. If moreover M is an involutive quantale, Q an involutive subquantale and a semiideal of M we call Q an ideal of M and M an extension of Q. We call a semiideal (ideal) Q essential if for all $m, n \in M$,

$$a \bullet m = a \bullet n \text{ and } m \diamond b = n \diamond b \text{ for all } a, b \in Q \implies m = n.$$

We shall say that a semiextension (extension) M of Q is maximal if any other such semiextension (extension) M' of Q can be embedded in it.

Recall that Q is essential in M iff

 $\text{ for all } m,n\in M, \; a\bullet m=a\bullet n \text{ for all } a\in Q \;\; \Longrightarrow \;\; m=n$ iff

for all $m, n \in M$, $m \diamond b = n \diamond b$ for all $b \in Q \implies m = n$.

Moreover, Q is essential in Q iff Q is a Hilbert Q-module.

Let Q be an involutive quantale, M a (left) Hilbert Q-module and M^{\circledast} the V-semilattice of all Q-module homomorphisms from M to Q. Then we know that M^{\circledast} is a left Q-module with the module multiplication $(c \bullet f)(m) = f(m) \cdot c^*$, for all $c \in Q$, $m \in M$, $f \in M^{\circledast}$. We have a canonical embedding $\iota_M : M \to M^{\circledast}$ defined by $m \mapsto \langle -, m \rangle$, $m \in M$. Namely, let $a \in Q$, $m, n \in M$. Then

$$\iota_M(a \bullet m)(n) = \langle n, a \bullet m \rangle = \langle a \bullet m, n \rangle^* = (a \cdot \langle m, n \rangle)^* =$$

$$= \langle n, m \rangle \cdot a^* = (a \bullet \langle -, m \rangle)(n) = (a \bullet \iota_M(m))(n).$$

Note that for $T \in \operatorname{Hom}_Q(M,M)$ we have a Q-module homomorphism $T^{\circledast}: M^{\circledast} \to M^{\circledast}$ defined by the prescription $(T^{\circledast}(f))(m) = f(T(m)), f \in M^{\circledast}, m \in M$. Namely, we have

$$(a \bullet T^{\circledast}(f))(m) = T^{\circledast}(f)(m) \cdot a^* = f(T(m)) \cdot a^* = (a \bullet f)(T(m)) = (T^{\circledast}(a \bullet f))(m).$$

Evidently, $(T_1 \circ T_2)^{\circledast} = T_2^{\circledast} \circ T_1^{\circledast}$. Similarly, for any $T \in \operatorname{Hom}_Q(M, M^{\circledast})$ we have a \bigvee -preserving map $T^{\#}: M \to M^{\circledast}$ defined by $(T^{\#}(m))(n) = (T(n)(m))^*$ for all $m, n \in M$. Evidently, the map $^{\#}$ is an involution on the \bigvee -semilattice $\operatorname{Hom}_Q(M, M^{\circledast})$ since $^{\#}$ preserves arbitrary joins and any $T^{\#}$ is a module homomorphism by

$$(a \bullet T^{\#}(m))(n) = T^{\#}(m)(n) \cdot a^{*} = (T(n)(m))^{*} \cdot a^{*} = (a \cdot T(n)(m))^{*} = (T(n)(a \bullet m))^{*} = T^{\#}(a \bullet m)(n).$$

Lemma 2. Let Q and Q' be involutive quantales, M a Hilbert Q-module. Then an involutive quantale homomorphism $\rho: Q' \to \mathscr{A}_Q(M)$ determines a structure of a $\rho(Q')$ bimodule on $\operatorname{Hom}_Q(M, M^{\circledast})$ by the following prescription:

$$\rho(a) \bullet T = \rho(a^*)^{\circledast} \circ T, \quad T \diamond \rho(a) = T \circ \rho(a)$$

for all $a \in Q'$, $T \in \text{Hom}_Q(M, M^{\circledast})$.

Proof. Let us check the left module axioms. Let $a, b \in Q', T \in \text{Hom}_Q(M, M^{\circledast})$. Then

$$\begin{array}{lcl} (\rho(a)\circ\rho(b))\bullet T & = & \rho(a\cdot b)\bullet T = \rho((a\cdot b)^*)^{\circledast}\circ T = \rho(b^*\cdot a^*)^{\circledast}\circ T \\ & = & ((\rho(a^*)^{\circledast}\circ\rho(b^*)^{\circledast})\circ T = \rho(a^*)^{\circledast}\circ(\rho(b^*)^{\circledast}\circ T) \\ & = & \rho(a^*)^{\circledast}\circ(\rho(b)\bullet T) = \rho(a)\bullet(\rho(b)\bullet T). \end{array}$$

Similarly, we have

$$(\bigvee_{i \in I} \rho(a_i)) \bullet T = \rho(\bigvee_{i \in I} a_i) \bullet T = \rho(\bigvee_{i \in I} a_i^*)^{\circledast} \circ T$$

$$= \bigvee_{i \in I} (\rho(a_i^*)^{\circledast} \circ T) = \bigvee_{i \in I} (\rho(a_i) \bullet T)$$

and

$$\rho(a) \bullet (\bigvee_{i \in I} T_i) = \rho(a^*)^{\otimes} \circ (\bigvee_{i \in I} T_i) = \bigvee_{i \in I} \rho(a^*)^{\otimes} \circ T_i = \bigvee_{i \in I} \rho(a) \bullet T_i.$$

By the same arguments we can prove that $\operatorname{Hom}_Q(M,M^\circledast)$ is a right module. Let us check that it is an involutive bimodule. We have, for all $a,b\in Q'$ and all $T\in \operatorname{Hom}_Q(M,M^\circledast)$,

$$\begin{array}{lcl} (\rho(a) \bullet T) \diamond \rho(b) & = & (\rho(a^*)^\circledast \circ T) \circ \rho(b) \\ & = & \rho(a^*)^\circledast \circ (T \circ \rho(b)) = \rho(a) \bullet (T \diamond \rho(b)) \end{array}$$

and

$$\begin{array}{lcl} (\rho(a) \bullet T)^{\#}(m)(n) & = & (\rho(a^{*})^{\circledast} \circ T)^{\#}(m)(n) = \left[\left(\rho(a^{*})^{\circledast}(T(n))\right)(m)\right]^{*} \\ & = & [T(n)(\rho(a^{*})(m))]^{*} = T^{\#}(\rho(a)^{*}(m))(n) \\ & = & (T^{\#} \circ \rho(a)^{*})(m)(n) = (T^{\#} \diamond \rho(a)^{*})(m)(n). \end{array}$$

Note that we have a \bigvee - and involution-preserving embedding defined by $j_M: \mathscr{A}_Q(M) \to \operatorname{Hom}_Q(M, M^\circledast), \ T \mapsto i_M \circ T, \ \text{i.e.} \ j_M(T)(m) = \langle -, T(m) \rangle$ for all $m \in M$. Namely, we have $j_M(T)^\# = j_M(T^*), \ j_M(\bigvee_{i \in I} T_i) = \bigvee_{i \in I} j_M(T_i)$ and $T^\circledast \circ i_M = T^*$.

Definition 3. Let Q and Q' be involutive quantales, M a Hilbert Q-module. We say that an involutive quantale homomorphism $\alpha: Q' \to \mathscr{A}_Q(M)$ is non-degenerate if $M = \{\bigvee_{i \in I} \alpha(a_i)(m_i) : a_i \in Q', m_i \in M\}$. We shall say that Q' is non-degenerate if it is a Hilbert Q'-module and the involutive quantale homomorphism $\alpha_{Q'}: Q' \to \mathscr{Q}(Q' \times Q'^{op})$ defined by $\alpha_{Q'}(a) = (a \cdot -, a^* \to_r -)$, for all $a \in Q'$, is non-degenerate.

It may be remarked that Q' is non-degenerate iff it is essential in itself, $Q' \cdot Q' = Q'$ and $Q' \rightarrow_r Q' = Q'$. Evidently, any unital involutive quantale is non-degenerate.

Lemma 4. Let Q and Q' be involutive quantales, M a Hilbert Q-module, Q' a semiideal of an involutive Q' bimodule N, $\alpha: Q' \to \mathscr{A}_Q(M)$ a non-degenerate involutive quantale homomorphism. Then α extends uniquely to an involutive bimodule homomorphism $\overline{\alpha}: N \to \operatorname{Hom}_Q(M, M^{\circledast})$, i.e.

$$\overline{\alpha}(a) = \iota_M(\alpha(a)), \ \overline{\alpha}(a \bullet n) = \alpha(a) \bullet \overline{\alpha}(n), \ \overline{\alpha}(n \diamond b) = \overline{\alpha}(n) \diamond \alpha(b),$$

for all $a, b \in Q'$, $n \in N$. If α is injective and Q' essential in N then $\overline{\alpha}$ is also injective.

Proof. Let us define $\overline{\alpha}(n)(\bigvee_{i\in I}\alpha(a_i)(m_i)) = \bigvee_{i\in I}(\iota_M\circ\alpha(n\diamond a_i))(m_i)$ for all $a_i\in Q', m_i\in M$. First, let us show the correctness of our definition. Let $\bigvee_{i\in I}\alpha(a_i)(m_i) = \bigvee_{i\in I}\alpha(b_j)(r_j)$ and let $y=\bigvee_{k\in K}\alpha(c_k)(q_k)\in M$. Then

```
 \overline{\alpha}(n)(\bigvee_{i \in I} \alpha(a_i)(m_i))(y) &= \bigvee_{i \in I} (\iota_M \circ \alpha(n \diamond a_i))(m_i)(y) \\ &= \bigvee_{i \in I} \left\langle \bigvee_{k \in K} \alpha(c_k)(q_k), \alpha(n \diamond a_i)(m_i) \right\rangle \\ &= \bigvee_{i \in I, k \in K} \left\langle (\alpha(n \diamond a_i)^* \circ \alpha(c_k))(q_k), m_i \right\rangle \\ &= \bigvee_{i \in I, k \in K} \left\langle (\alpha(a_i^* \bullet n^* \diamond c_k)(q_k), m_i \right\rangle \\ &= \bigvee_{i \in I, k \in K} \left\langle (\alpha(n^* \diamond c_k)(q_k), \alpha(a_i)(m_i) \right\rangle \\ &= \bigvee_{k \in K} \left\langle (\alpha(n^* \diamond c_k)(q_k), \bigvee_{i \in I} \alpha(a_i)(m_i) \right\rangle \\ &= \bigvee_{k \in K} \left\langle (\alpha(n^* \diamond c_k)(q_k), \bigvee_{j \in J} \alpha(b_j)(r_j) \right\rangle \\ &= \overline{\alpha}(n)(\bigvee_{j \in J} \alpha(b_j)(r_j))(y).
```

Now, let us check that $\overline{\alpha}$ preserves arbitrary joins and involution. Assume $n_k \in N, k \in K$. Then we have

$$\overline{\alpha}(\bigvee_{k\in K} n_k)(\bigvee_{i\in I} \alpha(a_i)(m_i)) = \bigvee_{i\in I} (\iota_M \circ \alpha((\bigvee_{k\in K} n_k) \diamond a_i))(m_i)
\bigvee_{i\in I, k\in K} (\iota_M \circ \alpha(n_k \diamond a_i))(m_i) = \bigvee_{k\in K} \overline{\alpha}(n_k)(\bigvee_{i\in I} \alpha(a_i)(m_i))$$

and, for $y = \bigvee_{j \in J} \alpha(b_j)(r_j)$,

$$\overline{\alpha}(n)^{\#}(\bigvee_{i\in I}\alpha(a_i)(m_i))(y) = \overline{\alpha}(n)(y)(\bigvee_{i\in I}\alpha(a_i)(m_i))^* =
\left\langle\bigvee_{i\in I}\alpha(a_i)(m_i),\bigvee_{j\in J}\alpha(n\diamond b_j)(r_j)\right\rangle^* = \left\langle\bigvee_{j\in J}\alpha(n\diamond b_j)(r_j),\bigvee_{i\in I}\alpha(a_i)(m_i)\right\rangle
= \bigvee_{i\in I,j\in J}\langle\alpha(n\diamond b_j)(r_j),\alpha(a_i)(m_i)\rangle = \bigvee_{i\in I,j\in J}\langle\alpha(a_i^*\bullet n\diamond b_j)(r_j),m_i\rangle
= \bigvee_{i\in I,j\in J}\langle\alpha(b_j)(r_j),\alpha(n^*\diamond a_i)(m_i)\rangle = \overline{\alpha}(n^*)(\bigvee_{i\in I}\alpha(a_i)(m_i))(y).$$

Let us show that $\overline{\alpha}(a \bullet n) = \alpha(a) \bullet \overline{\alpha}(n)$. We have

$$\overline{\alpha}(a \bullet n)(\bigvee_{i \in I} \alpha(a_i)(m_i))(y) = \bigvee_{i \in I} (\iota_M \circ \alpha(a \bullet n \diamond a_i))(m_i)(y) = \bigvee_{i \in I} \langle y, \alpha(a \bullet n \diamond a_i)(m_i) \rangle = \bigvee_{i \in I} \langle \alpha(a)^*(y), \alpha(n \diamond a_i)(m_i) \rangle = \langle \alpha(a^*)(y), \bigvee_{i \in I} \alpha(n \diamond a_i)(m_i) \rangle = \iota_M(\bigvee_{i \in I} \alpha(n \diamond a_i)(m_i))(\alpha(a^*)(y)) = \overline{\alpha}(n)(\bigvee_{i \in I} \alpha(a_i)(m_i))(\alpha(a^*)(y)) = \alpha(a^*)^{\circledast}(\overline{\alpha}(n)(\bigvee_{i \in I} \alpha(a_i)(m_i))(y) = (\alpha(a^*)^{\circledast} \circ \overline{\alpha}(n))(\bigvee_{i \in I} \alpha(a_i)(m_i))(y) = (\alpha(a) \bullet \overline{\alpha}(n))(\bigvee_{i \in I} \alpha(a_i)(m_i))(y).$$

Similarly, we have

$$\begin{array}{lcl} \overline{\alpha}(n\diamond b)(\bigvee_{i\in I}\alpha(a_i)(m_i)) & = & \bigvee_{i\in I}\alpha(n\diamond b\diamond a_i)(m_i) = \\ \overline{\alpha}(n)(\bigvee_{i\in I}\alpha(b\diamond a_i)(m_i)) & = & \overline{\alpha}(n)(\alpha(b)(\bigvee_{i\in I}\alpha(a_i)(m_i))) \\ & = & (\overline{\alpha}(n)\diamond\alpha(b))(\bigvee_{i\in I}\alpha(a_i)(m_i)). \end{array}$$

Now, let $\beta: N \to \operatorname{Hom}_Q(M, M^\circledast)$ be an involutive bimodule homomorphism such that $\beta(a) = \iota_M(\alpha(a)), \ \beta(a \bullet n) = \alpha(a) \bullet \beta(n), \ \beta(n \diamond b) = \beta(n) \diamond \alpha(b)$. Then

$$\beta(n)(\bigvee_{i\in I}\alpha(a_i)(m_i)) = \bigvee_{i\in I}(\beta(n)\circ\alpha(a_i))(m_i)$$

$$= \bigvee_{i\in I}\beta(n\diamond a_i)(m_i)$$

$$= \bigvee_{i\in I}(\iota_M\circ\alpha(n\diamond a_i))(m_i)$$

$$= \overline{\alpha}(n)(\bigvee_{i\in I}\alpha(a_i)(m_i)).$$

Finally, if α is injective, we have, for all $n_1, n_2 \in N$ and all $a \in Q'$ such that $\overline{\alpha}(n_1) = \overline{\alpha}(n_2)$, the following:

$$\iota_M \circ \alpha(n_1 \diamond a) = \overline{\alpha}(n_1 \diamond a) = (\overline{\alpha}(n_1) \circ \alpha)(a) = (\overline{\alpha}(n_2) \circ \alpha)(a) = \iota_M \circ \alpha(n_2 \diamond a).$$

This gives us that $\alpha(n_1 \diamond a) = \alpha(n_2 \diamond a)$ for all $a \in Q'$, i.e. $n_1 \diamond a = n_2 \diamond a$, i.e. $n_1 = n_2$.

Corollary 5. Let Q and Q' be involutive quantales, M a Hilbert Q-module, Q' an involutive subquantale and an ideal of an involutive quantale Q'', $\alpha: Q' \to \mathscr{A}_Q(M)$ a non-degenerate involutive quantale homomorphism. Then α extends uniquely to an involutive quantale homomorphism $\overline{\overline{\alpha}}: Q'' \to A_Q(M)$. If α is injective and Q' essential in Q'', then $\overline{\overline{\alpha}}$ is also injective.

Proof. Let us define

$$\overline{\overline{\alpha}}(n)(\bigvee_{i\in I} \alpha(a_i)(m_i)) = \bigvee_{i\in I} \alpha(n\cdot a_i)(m_i)$$

for all $n \in Q'$. Then $\overline{\alpha} = \iota_M \circ \overline{\overline{\alpha}}$, i.e. $\overline{\overline{\alpha}}$ is correctly defined, by the injectivity of ι_M . It is easy to verify that $\overline{\alpha}(n_1 \cdot n_2) = \iota_M \circ \overline{\overline{\alpha}}(n_1) \circ \overline{\overline{\alpha}}(n_2)$, i.e. $\overline{\overline{\alpha}}(n_1 \cdot n_2) = \overline{\overline{\alpha}}(n_1) \circ \overline{\overline{\alpha}}(n_2)$. Evidently, $\overline{\overline{\alpha}}$ preserves arbitrary joins. Note that

$$\begin{array}{lcl} \left\langle y, \overline{\overline{\alpha}}(n^*)(\bigvee_{i \in I} \alpha(a_i)(m_i)) \right\rangle & = & \left\langle y, \bigvee_{i \in I} \alpha(n^* \cdot a_i)(m_i) \right\rangle = \\ \left\langle \alpha(n)(y), \bigvee_{i \in I} \alpha(a_i)(m_i) \right\rangle & = & \left\langle \overline{\overline{\alpha}}(n)(y), \bigvee_{i \in I} \alpha(a_i)(m_i) \right\rangle \end{array}$$

i.e. $\overline{\overline{\alpha}}$ preserves involution. If α is injective we have (by the injectivity of $\overline{\alpha}$) that $\overline{\overline{\alpha}}$ is injective.

Definition 6. Let Q, Q' be involutive quantales and let M be a Hilbert Qmodule. Suppose that $\alpha: Q' \to \mathscr{A}_Q(M)$ is a non-degenerate injective involutive
quantale homomorphism. We say that the set

 $\mathscr{SM}_M(Q') = \{ T \in \operatorname{Hom}_Q(M, M^{\circledast}) : T \diamond \alpha(Q') \subseteq \overline{\alpha}(Q') \text{ and } \alpha(Q') \bullet T \subseteq \overline{\alpha}(Q') \}$ is an (M, α) -semimultiplier of the involutive quantale Q'. Similarly, we say that the set

$$\mathscr{M}_M(Q') = \{ T \in \mathscr{A}_Q(M) : T \circ \alpha(Q') \subseteq \alpha(Q') \text{ and } \alpha(Q') \circ T \subseteq \alpha(Q') \}$$
 is an (M, α) -multiplier of the involutive quantale Q' .

Evidently, from the proof of Lemma 4 (Corollary 5) we easily see that $\mathscr{SM}_M(Q')$ is a semiextension of $\alpha(Q')$ ($\mathscr{M}_M(Q')$ is an extension of $\alpha(Q')$). Applying the non-degeneracy we have that, for all $T_1, T_2, T_1 \circ \alpha(a) = T_2 \circ \alpha(a)$ for all $a \in Q'$ implies $T_1 = T_2$, i.e. our semiextension (extension) is essential. Moreover, for any non-degenerate involutive quantale Q', we have a $(Q' \times Q'^{op}, \alpha_{Q'})$ -semimultiplier (multiplier) over **2**. We then have the following:

Lemma 7. Let Q, Q' be involutive quantales and let M be a Hilbert Q-module. Suppose that $\alpha: Q' \to \mathscr{A}_Q(M)$ is a non-degenerate injective involutive quantale homomorphism. Then $\mathscr{S}_{\mathcal{M}_M}(Q')$ ($\mathscr{M}_M(Q')$) is a maximal essential semiextension (extension) of $\alpha(Q')$.

Proof. Let X be any essential semiextension of $\alpha(Q')$. Then we have an injective embedding $\widetilde{\alpha}: X \to \operatorname{Hom}_Q(M, M^{\circledast})$ such that $\widetilde{\alpha}(a) = \iota_M(\alpha(a))$, $\widetilde{\alpha}(a \bullet n) = \alpha(a) \bullet \widetilde{\alpha}(n) \in \overline{\alpha}(Q')$, $\widetilde{\alpha}(n \diamond b) = \widetilde{\alpha}(n) \diamond \alpha(b) \in \overline{\alpha}(Q')$ for all $a, b \in Q'$ and all $n \in X$, i.e. $\widetilde{\alpha}(n) \in \mathscr{SM}_M(Q')$. The extension part of the proof uses the same ideas.

Proposition 8. Let Q' be an involutive quantale with a maximal essential semiextension (extension) over 2. Then Q' has a unique (up to isomorphism) maximal essential semiextension (extension), identical on Q'. In particular, all (M, α) -semimultipliers $((M, \alpha)$ -multipliers) are isomorphic.

Proof. Let $\alpha_0: Q' \to \mathcal{Q}(\overline{M})$ be a maximal semiextension (extension) over **2** and let X be a maximal essential extension of Q', $\alpha: Q' \to X$. We shall show that X is isomorphic to the (\overline{M}, α_0) -semiextension $\mathscr{SM}_{\overline{M}}(Q')$. By the maximality of our semiextension there are involutive bimodule monomorphisms β :

 $X \to \mathscr{S}\mathscr{M}_{\overline{M}}(Q')$ and $\gamma : \mathscr{S}\mathscr{M}_{\overline{M}}(Q') \to X$ such that $\beta_{/\alpha(Q')} \circ \gamma_{/\alpha_0(Q')} = \operatorname{id}_{\alpha_0(Q')}$ and $\gamma_{/\alpha_0(Q')} \circ \beta_{/\alpha(Q')} = \operatorname{id}_{\alpha(Q')}$. Then $\beta \circ \gamma : \mathscr{S}\mathscr{M}_{\overline{M}}(Q') \to \mathscr{S}\mathscr{M}_{\overline{M}}(Q') \subseteq \operatorname{Hom}_{\mathbf{2}}(\overline{M}, \overline{M}^{\otimes}) \simeq \mathscr{A}_{\mathbf{2}}(\overline{M}, \overline{M}^{op}) \simeq \mathscr{Q}(\overline{M})$ and $\beta \circ \gamma_{/\alpha_0(Q')} = \operatorname{id}_{\alpha_0(Q')}$. By Lemma 4, $\operatorname{id}_{\alpha_0(Q')}$ extends both to $\beta \circ \gamma$ and to $\operatorname{id}_{\mathscr{S}\mathscr{M}_{\overline{M}}(Q')}$, i.e. from the uniqueness we have $\beta \circ \gamma = \operatorname{id}_{\mathscr{S}\mathscr{M}_{\overline{M}}(Q')}$. The multiplier part is evident.

Theorem 9. Let Q' be an involutive quantale with a maximal essential semiextension (extension) $\alpha_0: Q' \to \mathcal{Q}(\overline{M})$ over **2**. Then $\mathcal{M}_{\overline{M}}(Q') \simeq \mathcal{SM}_{\overline{M}}(Q')$ $\simeq \{T \in \operatorname{bicomm}(\alpha_0(Q')): T \circ \alpha_0(Q') \subseteq \alpha_0(Q') \text{ and } \alpha_0(Q') \circ T \subseteq \alpha_0(Q')\}, i.e.$ any maximal essential semimultiplier is isomorphic to any maximal essential multiplier and both are isomorphic to the involutive quantale $\mathcal{M}(Q') =$

$$\{T \in \operatorname{bicomm}(\alpha_0(Q')) : T \circ \alpha_0(Q') \subseteq \alpha_0(Q') \text{ and } \alpha_0(Q') \circ T \subseteq \alpha_0(Q')\}.$$

Proof. Note that we have a one-to-one correspondence between $\alpha_0(a)^{\circledast}$ and $\alpha_0(a^*)$, for all $a \in Q'$, since $\alpha_0(a)^{\circledast} = \alpha_0(b)^{\circledast}$ implies $\alpha_0(a) = \alpha_0(b)$, i.e. a = b. Any element $S \in \operatorname{Hom}_2(\overline{M}, \overline{M}^{\circledast})$ is of the form $S = \iota_{\overline{M}} \circ T$, $T \in \mathcal{Q}(\overline{M})$, and the same holds for the module actions. So we have $\mathscr{SM}_{\overline{M}}(Q') \simeq \mathscr{M}_{\overline{M}}(Q')$. Evidently, $\mathscr{M}_{\overline{M}}(Q') \supseteq \{T \in \operatorname{bicomm}(\alpha_0(Q')) : T \circ \alpha_0(Q') \subseteq \alpha_0(Q') \text{ and } \alpha_0(Q') \circ T \subseteq \alpha_0(Q')\}$. Let us show that $\mathscr{M}_{\overline{M}}(Q') \subseteq \operatorname{bicomm}(\alpha_0(Q'))$. Assume $T \in \mathscr{M}_{\overline{M}}(Q')$, $R \in \operatorname{comm}(\alpha_0(Q'))$, $a, b \in Q'$. Then

$$T \circ R \circ \alpha_0(b) = T \circ \alpha_0(b) \circ R = R \circ T \circ \alpha_0(b),$$

 $\alpha_0(a) \circ T \circ R = R \circ \alpha_0(a) \circ T = \alpha_0(a) \circ R \circ T$

i.e.
$$T \circ R = R \circ T$$
, i.e. $T \in \text{bicomm}(\alpha_0(Q'))$.

Theorem 10. Let Q be an involutive quantale, M a Hilbert Q-module such that $M = \{\bigvee_{i \in I} \langle m_i, p_i \rangle \bullet r_i : m_i, p_i, r_i \in M\}$. Then $\mathscr{A}_Q(M) \simeq \mathscr{M}(\mathscr{K}_Q(M))$ and $\operatorname{Hom}_Q(M, M^\circledast) \simeq \mathscr{SM}(\mathscr{K}_Q(M))$.

Proof. We have an embedding (inclusion) $\rho_M : \mathscr{K}_Q(M) \to \mathscr{A}_Q(M)$ and evidently this embedding is non-degenerate. So we have

$$\mathscr{M}(\mathscr{K}_Q(M)) \simeq \{ T \in \operatorname{Hom}_Q(M, M^{\circledast}) : T \circ \iota_M \circ \mathscr{K}_Q(M) \subseteq \iota_M \circ \mathscr{K}_Q(M) \text{ and } (\mathscr{K}_Q(M))^{\circledast} \circ T \subseteq \iota_M \circ \mathscr{K}_Q(M) \} = \operatorname{Hom}_Q(M, M^{\circledast})$$

and

$$\mathscr{M}(\mathscr{K}_Q(M)) \simeq \{ T \in \mathscr{A}_Q(M) : T \circ \mathscr{K}_Q(M) \subseteq \mathscr{K}_Q(M) \text{ and } \mathscr{K}_Q(M) \circ T \subseteq \mathscr{K}_Q(M) \} = \mathscr{A}_Q(M).$$

Corollary 11. Let Q be a non-degenerate involutive quantale. Then $\mathscr{A}_Q(Q) \simeq \mathscr{M}(\mathscr{K}_Q(Q))$.

Proof. We have that Q is a Hilbert Q-module with the standard multiplication satisfying the assumptions of Theorem 10. The rest is evident.

References

- [1] E. C. Lance, *Hilbert C*-Modules*, London Mathematical Society Lecture Note Series 210, Cambridge University Press, Cambridge, 1995.
- [2] J. Paseka, Simple quantales, Proceedings of the Eight Prague Topological Symposium 1996 (Topology Atlas 1997), 314–328.
- [3] J. Paseka, D. Kruml, Embeddings of quantales into simple quantales, *Journal of Pure and Applied Algebra* (in print), 1998.
- [4] J. Paseka, Hilbert Q-Modules and Nuclear Ideals, Proceedings of the Eight Conference on Category Theory and Computer Science (CTCS '99), Electronic Notes in Computer Science 24 (1999) 319–338.
- [5] J. Paseka, J. Rosický, Quantales, preprint 1999.
- [6] A. A. Pavlov, Algebras of multipliers and spaces of quasi-multipliers (in Russian), Vestnik Moskovskogo Universiteta, Ser. 1, Matematika Mechanika 6 (1998), 14–18.
- [7] G. K. Pedersen, C*-Algebras and their Automorphism Groups, London Mathematical Society Monographs, Academic Press, London, 1979.
- [8] K. I. Rosenthal, Quantales and their applications, Pitman Research Notes in Mathematics Series 234, Longman Scientific & Technical, Essex, 1990.

DEPARTMENT OF MATHEMATICS, MASARYK UNIVERSITY JANÁČKOVO NÁM. 2A, 66295 BRNO, CZECH REPUBLIC E-mail address: paseka@math.muni.cz