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The Bicategory of m-regular Involutive Quantales

Jan Paseka1

It is well known that rings are the objects of a bicategory, whose arrows are bimodules,
composed through the bimodule tensor product. We give an analogous bicategorical
description of m-regular involutive quantales. The upshot is that known definition of
Morita equivalence for this case amounts to isomorphism of objects in the pertinent
bicategory.
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1. INTRODUCTION

Recently the theory of Morita equivalence for involutive quantales and the
notion of the interior tensor products of Hilbert modules over involutive quantales
evolved considerably (see e.g. Paseka, 2002 and Paseka, 2001). The present paper
is an attempt to put a part of this theory in a broader context of the bicategory
of m-regular involutive quantales. For facts concerning quantales in general we
refer to Rosenthal (1990), for definitions and motivation concerning involutive
quantales we recommend Mulvey and Pelletier (1992).

A version of Morita’s theory appropriate for C*-algebras was developed
by Rieffel (see Rieffel, 1974 and Raeburn and Williams, 1998) and Blecher
(see Blecher, 2001). It is also well known, for example (see Landsman, 2001a
and Landsman, 2001b), that C*-algebras form a bicategory and two C*-algebras
A, B are isomorphic in this bicategory iff they are Morita equivalent.
Here we shall present a translation of this result to m-regular involutive
quantales.

The plan is as follows: in Section 2 we shall review some basic facts concern-
ing Hilbert modules and modules over involutive quantales in general and then
we recall the notion of a bicategory. In Section 3 we subsequently explain the bi-
category of m-regular involutive quantales in some detail, including the pertinent
Morita theory.
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2. PRELIMINARIES

Let us begin by establishing the common symbols and notations in this pa-
per. Let A be an involutive quantale. We shall denote by MODA (AMOD) the
category of right (left) A–modules with the right (left) action � (•) and right
(left) module homomorphisms. For a right A-module X in M O DA the submodule
ess(X ) = X � A generated by the elements x � a is called the essential part of
X. If ess(X ) = X we say that X is (right) essential. We shall say that A is (right)
separating for the A-module M and that M is (right) separated by A if m� (—) =
n� (—) implies m = n. We say that M is m-regular if it is both separated by A
and essential. An involutive quantale A is called m-regular if it is m-regular as
an A-module. Then, evidently 1 · 1 = 1 in A and a· (—) = b· (—) implies a = b.
In what follows we shall always assume that our involutive quantales will be
m-regular.

Note that we may dually define the notion of a left (essential, separating,
m-regular) A-module with a left multiplication •. Evidently, A is m-regular iff it is
left m-regular.

The theory of right (left) Hilbert A-modules (we refer the reader to Paseka,
1999 for details and examples) is a generalization of the theory of complete
semilattices with a duality and it is the natural framework for the study of mod-
ules over an involutive quantale A endowed with A-valued inner products. Note
only that for each right Hilbert A-module M there is a conjugate left Hilbert
A-module M∗: as an sup-semilattice M∗ is just M with a left module multipli-
cation a • m = m � a∗ and a left A-valued inner product A〈m, n〉 = 〈m, n〉A (see
Lemma 1.5 in Paseka, 1999). Recall that a Hilbert A-module M is said to be full if
〈M = M〉 = {∨ j∈J 〈x j , y j 〉 : x j , y j ∈ M, j ∈ J } = A. Evidently, any conjugate
Hilbert module to an m-regular (full) Hilbert module is m-regular (full).

Let f : M → N be a map between right (left) Hilbert A-modules. We say that
a map g : N → M is a∗-adjoint to f and f is adjointable if 〈 f (m), n〉 = 〈m, g(n)〉
for all m ∈ M, n ∈ N . Note that the ∗-adjoint g to f is uniquely determined.
Namely, if 〈 f (m), n〉 = 〈m, g(n)〉 = 〈m, h(n)〉 then g(n) = h(n) for all n i.e. g =
h. We then put f ∗ = g. Evidently, any adjointable map is a right (left) module
homomorphism (see Paseka, 1999). The set of all adjointable maps from M to N
is denoted by AA(M, N ), AA(M, M) = AA(M, M). The representation category
Rep(A) of an m-regular involutive quantale A has m-regular right Hilbert A-
modules as objects, and adjointable maps as arrows.

Let B be an m-regular involutive quantale such that ϕ : B → AA(M) is
an involutive quantale homomorphism. Then ϕ is said to be nondegenerate if
M = ϕ(B(M). i.e. for any m ∈ M we have that m = ∨

j∈J ϕ(b j )(m j ) for suitable
elements m j ∈ M and b j ∈ B, j ∈ J . Similarly, an involutive quantale homomor-
phism f : B → A is said to be nondegenerate if the left B-module A with the
action b • a = f (b) · a is essential.
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We say that an adjointable map f : M → N is an isometry if, for all m1, m2 ∈
M, 〈m1, m2〉 = 〈 f (m1), f (m2)〉. This is equivalent to f ∗ ◦ f = idM . Similarly, an
adjointable map f : M → N is unitary if f ∗ ◦ f = idM and f ◦ f ∗ = idN . Note
that an isometry is unitary iff it is surjective.

Recall that from Paseka (1999) we know that, for any right Hilbert A-module
M and for all m ∈ M , the map m∼ : A → M defined by a → m � a has a ∗-adjoint
m� : M → A defined by n �→ 〈m, n〉. The maps of the form

T =
∨

j∈J

�n j , m j ,

here �n,m = n � 〈m, −〉 = n∼ ◦ m�, m ∈ M, n ∈ N are said to be compact maps
and the set of all compact maps will be denoted KA(M, N ) or just KA(M) in case
M = N . Note that any compact map is an adjointable map and that a composi-
tion of a compact map with an adjointable one is again compact, i.e. KA(N , P) ◦
AA(M, N ) ⊆ KA(M, P) and AA(N , P) ◦ KA(M, N ) ⊆ KA(M, P). An exposi-
tory treatment of compact maps on Hilbert A-modules may be found in Paseka
(1999).

Bicategories generalize categories, as follows.

Definition 2.1. A bicategory C consists of

• A class of objects C0 (with elements 0-cells A, B, . . .);
• A category (A, B) (with objects 1-cells f, g, . . . and arrows 2-cellsα, β, . . .)

for each pair (A, B) ∈ C0 × C0;
• A (bi)functor φA, B,C : (A, B) × (B, C) → (A, C) for each triple (A, B, C)

∈ C0 × C0 × C0;
• A functor UA : 1 → (A, A) from the trivial (or terminal category) 1 (with

one object and one arrow), UA(1) = 1A, for each A ∈ C0,

such that

1. The functors φA,C, DφA, B,C and φA, B, DφB,C, D from (A, B) × (B, C)×
(C, D) to (A, D) are naturally isomorphic;

2. The functors f �→ f 1B (where f ∈ (A, B)) and id(A, B) from (A, B) to
itself are naturally isomorphic;

3. The functors 1A f �→ f and id(A, B) from (A, B) to itself are naturally
isomorphic,

subject to coherence laws stated on p. 282 of MacLane (1998) (these laws lead to
consistency of various orders of bracketing).

The bifunctors φ are sometimes said to define the “horizontal” composition
of arrows, in contradistinction to the “vertical” composition of arrows in each of
the categories (A, B).
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Since the theory of Morita equivalence will involve isomorphism of objects
in a bicategory, we have to point out that this notion is weaker than in a category.

Definition 2.2. Two objects A, B in a bicategory are isomorphic, written A ∼= B,
when there exist arrows f ∈ (A, B) and g ∈ (B, A) such that fg � 1A (isomor-
phism in the usual sense as objects in the category (A, A)) and gf � 1B in (B, B).

3. THE BICATEGORY OF M-REGULAR INVOLUTIVE QUANTALES

The involutive quantale analogue of a bimodule for rings is a Hilbert bimodule.
This concept involves the theory of Hilbert modules, for which we refer to Paseka
(1999).

Definition 3.1. Let A and B be involutive quantales, and let F and X be right
Hilbert B-modules. We say that F is a right Hilbert A − B bimodule if it is a left
A-module satisfying

a • (x � b) = (a • x) � b and 〈a • x , y〉B = 〈x , a∗ • y〉B

for all a ∈ A, x , y ∈ F, and b ∈ B. We say that F is an m-regular right Hilbert
A − B bimodule if it is both an essential left A-module and an m-regular right
B-module. We write then A → F ⇀↽ B.

We say that a (full m-regular) right Hilbert A − B bimodule X is a Hilbert
(imprimitivity) A − B bimodule if X is also a (full m-regular) left Hilbert A-
module in such a way that

A〈x , y〉 • z = x � 〈y, z〉B and A〈x � b, y〉 = A〈x , y � b∗〉.
The following example is the involutive quantale version of the ring bimodule

R → R ⇀↽ R.

Example 3.2. An m-regular involutive quantale A may be seen as an imprimitivity
Hilbert A − A bimodule A → A ⇀↽ A over itself, in which 〈a, b〉A = a∗b, and the
left and right actions are given by left and right multiplication, respectively.

The involutive quantale analogue of the ring bimodule tensor product is the
interior tensor product ⊗̇B defined and studied in Paseka (2001). Recall only that
a map that is both a left module map and a right adjointable map is preserved by
an interior tensor product. In complete parallel with ring theory and C∗-algebra
theory, one now has

Theorem 3.3. For any two m-regular involutive quantales A, B, let (A, B) be the
collection of all m-regular right Hilbert A − B bimodules A → M ⇀↽ B, seen as
a category, whose arrows are adjointable A-module maps (such maps are auto-
matically bimodule maps).
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With (horizontal) composition functor φABC : (A, B) × (B, C) → (A, C)
given by ⊗̇B, and unit arrow in (B, B) given by 1B = B → B ⇀↽ B, the collec-
tion of all m-regular involutive quantales as objects, and m-regular right Hilbert
A − B bimodules as arrows, forms a bicategory [Q∗].

Proof: We have from Proposition 1.19 in Paseka (2001)

Similarly, from the Lemma 1.17 in Paseka (2001) we have

and from the Lemma 1.16 in Paseka (2001) we have

thus easily extending the above diagrams to 2-cells we have

Again, from Paseka (2001) we have that the following diagrams commute:
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and

�

Remark 3.4. An (m-regular) right Hilbert A − B bimodule may be seen as a
generalization of a (nondegenerate) ∗-homomorphism ρ : A → B, for given such
a ρ one constructs an (m-regular) right Hilbert A − B bimodule B (A → B ⇀↽ B)
by a • b = ρ(a) · b, and the other operations as in Example 2.2. We write also
A → B ⇀↽ B.

Thus one obtains a contravariant faithful functor F from the category of Qu
of m-regular involutive quantales with nondegenerate ∗-homomorphisms as arrows
into the bicategory [Q∗]. Namely, F(A) = A and F(ρ) = A

ρ→ B ⇀↽ B. Clearly,
F(idA) = 1A = A → A ⇀↽ A and again from the Lemma 1.16 in Paseka (2001)
we have F(ρ2 ◦ ρ1) = A

ρ2◦ρ1−→ C ⇀↽ C = (A
ρ1→ B ⇀↽ B) ⊗̇B (B

ρ2→ C ⇀↽ C).
Morita’s theorems give a necessary and sufficient condition for the represen-

tation categories of two m-regular involutive quantales to be equivalent. In the
present language, Morita theory starts as follows.

Theorem 3.5. (Paseka, 2002). Two m-regular involutive quantales are isomor-
phic objects in the bicategory [Q∗] iff they have equivalent representation cate-
gories (where the equivalence functor is required to be sup-preserving ∗-functor).

Proof: Let A, B be m-regular involutive quantales. Then A and B are isomorphic
in [Q∗] iff there are an m-regular right Hilbert A – B bimodule A → M ⇀↽ B and
an m-regular right Hilbert B – A bimodule B → N ⇀↽ A and such that M⊗̇B N ∼=
A and N⊗̇A M ∼= B. Then we may construct a functor G : Rep (B) → Rep (A) by
taking interior tensor products (see Paseka, 2001): on objects one has G0(Y ) =
Y ⊗̇B N ∈ Rep (A)0 for Y ∈ Rep (B)0, and on arrows one puts, in obvious notation,
G1( f ) = f ⊗̇B idN .

To go in the opposite direction, one repeats the above procedure, in defining
a functor F : Rep (A) → Rep (B) by means of F0(X ) = X⊗̇A M , etc. The proof
is finished by applying the Theorem 2.4. in [Paseka (2002)]. �

Remark 3.6. An equivalence functor F : Rep (A) → Rep (B) is automatically
fibered, in the following sense. For each fixed m-regular involutive quantale C , the
functor F defines an equivalence FC between the categories (A, C) and (B, C),
natural in C .

Naturality here means that, for any m-regular involutive quantales C , C ′

and nondegenerate involutive quantale homomorphisms ϕ : C → C ′, one has
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ϕB ◦ FC = FC ′ϕ A, where ϕA : (A, C) → (A, C ′) is the induced functor given by
X �→ X⊗̇cC ′ and f : X1 → X2 �→ f ⊗̇C id′

C : X1⊗̇C C ′ → X2⊗̇C C ′.
We have the following proposition.

Theorem 3.7. Two m-regular involutive quantales A, B are isomorphic in [Q∗]
iff for any m-regular involutive quantale C one has a category equivalence (A, C)
� (B, C), natural in C.

Proof: Let A, B be m-regular involutive quantales. Then A and B are iso-
morphic in [Q∗] iff there are an m-regular right Hilbert A − B bimodule A →
M ⇀↽ B and an m-regular right Hilbert B − A bimodule B → N ⇀↽ A and such
that M⊗̇B N ∼= A and N⊗̇A M ∼= B. For any m-regular involutive quantale C ,
there is a functor FC : (A, C) → (B, C) given by A → X1 ⇀↽ C �→ N⊗̇A X1,
α �→ idN ⊗̇Aα for all m-regular right Hilbert A − C bimodules A → X1 ⇀↽ C ,
A → X2 ⇀↽ C and all adjointable A-module maps α : X1 → X2 and there is a func-
tor GC : (B, C) → (A, C) given by B → Y1 ⇀↽ C �→ M⊗̇BY1, β �→ idM⊗̇Bβ for
all m-regular right Hilbert B − C bimodules B → Y1 ⇀↽ C , B → Y2 ⇀↽ C and all
adjointable B-module maps β : Y1 → Y2 such that we have natural isomorphisms
τC : GCFC → Id(A,C) and σC : FCGC → Id(B,C). Conversely, if we have natural
isomorphisms τC : GCFC → Id(A,C) and σC : FCGC → Id(B,C), putting C = A
we have N = FA(A) and putting C = B we have M = GB(B). The left B action
on B is turned into a left A action on M by definition of GB , and the right B action
on B is turned into a right B action on M through GB . Thus M ∈ (A, B). Similarly,
we have FA(A) ∈ (B, A). The definition of equivalence of categories then trivially
implies that M−1 = FA(A). �

Proposition 3.8. An m-regular right Hilbert bimodule M ∈ (A, B) is invertible
as an arrow in [Q∗], so that A and B are isomorphic in [Q∗], iff the nonde-
generate involutive quantale homomorphism of A into AB(M) of Definition 2.1
is an isomorphism A � KB(M). (If A has a unit, this isomorphism will be A �
AB(M).)

If A → M ⇀↽ B is invertible, its inverse (up to isomorphism) is B → M∗ ⇀↽
A, where M∗ is the conjugate bimodule of M, on which B acts from the left by
b • m = m � b∗ and a acts from the right by n � a = a∗ • n. The A-valued inner
product on M∗ is given by 〈m, n〉A = ϕ−1(�B

m,n), where ϕ : A → KB(M) is the
pertinent isomorphism.

Proof: This is essentially Prop. 2.3 in [Schweizer (1999)] (Schweizer works
with the category of C∗-algebras with equivalence classes of Hilbert bimodules
as arrows, rather than with the bicategory whose arrows are the Hilbert bimodules
themselves, but his proof may trivially be adapted to our situation). �
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Remark 3.9. Note that, for any commutative C∗-algebra A, the corresponding
lattice of closed ideals is a locally compact regular locale (frame) (Johnstone,
1982). Any locale is always an m-regular involutive quantale. So taking any locale
that is not locally compact or regular we have an natural example of an involutive
m-regular quantale that does not correspond to a C∗-algebra and to which results
obtained before can applied.
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