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Introduction 
 J-divergence (beside Hellinger and Jensen-Shannon) is widely used to 
describe the difference between two probability distributions F0 and F1.  

 

 It is also called the Information value for the purpose of scoring 
models. 

 I.e. models that try to predict a probability of an event, e.g. client’s 
default.  

 In this case, the J-divergence is widely used (beside Gini index and 
K-S statistic) for assessment of the scoring models.  

 

 Empirical estimate using deciles of scores is the common way how to 
compute it.  

 However, it may lead to strongly biased results. 

 Moreover, there are some computational issues to solve.  



Introduction 

 Two alternative methods to this approach can be used. First, it is the 
kernel smoothing theory, which allows estimating unknown densities and 
consequently, using some numerical method for integration, to estimate 
value of the J-divergence.  

 

 ESIS (empirical estimate with supervised interval selection) estimator is 
the second alternative. 

 It is based on idea of constructing such intervals of scores which 
ensure to have sufficiently enough observations in each interval. 

 The quantile functions F0
-1 and F1

-1  are used for this purpose.  

 

 The main objective of this paper is to describe the behaviour of the J-

divergence estimates of credit scoring models with Beta distributed score. 



J-divergence 
 Symetrized Kullback-Leibler divergence of two random variables X, Y is given by: 

where 

         are densities of scores of bad and good clients. 
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Kernel estimate 

 The kernel density estimates are defined by 
 
 
 

where         , K is a kernel function, for instance the 

Epanechnikov kernel and hi  is a smoothing parameter. 

 Using the composite trapezoidal rule with given M+1 equidistant points   
   we have: 
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Empirical estimate of DJ 

EMPJD ,
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Empirical estimate of DJ 

 However in practice, there could occur 
computational problems. The J-divergence becomes 
infinite in cases when some of n0j

 or n1j
 are equal to 0.  

 
 Choosing of the number of bins is also very 
important. In the literature and also in many 
applications in credit scoring, the value r=10 is 
preferred. 

Empirical estimate using deciles of scores  



Empirical estimate with supervised 
interval selection (ESIS) 

 We want to avoid zero values of n0j
 or n1j

 . 

 We propose to require to have at least k, where k  is a positive integer, 
observations of scores of both good and bad clients in each interval.  
 Intervals of score are given by 

 

  

, 

where       is the empirical quantile function appropriate to the empirical 
cumulative distribution function of scores of bad clients. 

 Very important is the choice of k. If we choose too small value, we get 
overestimated value of the J-divergence, and vice versa. As a reasonable 
compromise seems to be adjusted square root of number of bad clients given by 
 
 The estimate of the J-div. is given by 

ESISJD ,
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ESIS1 

 Algorithm for the modified ESIS: 
 

1)   
 

2)   
 

3)   
 

4) Add         to the sequence, i.e.  
 
5) Erase  all scores  

 
6) While n0 and n1 are greater than 2*k, repeat step 2) – 5) 

 
7)    
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ESISJD

passing data just once with no need 
to merge the constructed intervals. 



ESIS2 

 Algorithm for the modified ESIS: 
 

1)      
 

2)   
 

3)   
 

4)   
 

5) Merge intervals given by q1 where number of bads is less than k. 
 
6) Merge intervals given by q0 where number of goods is less than k. 
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 it is necessary to solve the case when   

takes its maximal value for more than one value s. 
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Beta distributed scores 
 Densities of Beta distributed scores: 

  

  

 

• transformation   leads to densities: 
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 The J-divergence is not generally invariant with respect to 

transformations. Indeed, this holds for transformations used for converting 

four-parameters Beta distributed variables given by     to two-parameters 

Beta distributed variables given by      . Nevertheless, when comparing the 

discriminative power of several credit scoring models on the same data, 

then this property (disadvantage) does not matter. And what is quite 

important, estimation of parameters in       and consequent computation of 

the J-divergence is quite complicated. From this perspective, it seems to be 

appropriate to use parametric estimate given by 
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Beta distributed scores 



Real data – fitted Beta 
distributions of scores 

Parameters for Beta Distribution 

Parameter Symbol Estimate 

Threshold Theta -0.35327 

Scale Sigma 7.662249 

Shape Alpha 7.479128 

Shape Beta 14.81027 

Mean   2.217774 

Std Dev   0.749697  

 

DJ

decil 2.508551

kern 2.797372

esis 2.945658

esis1 3.117013

esis2 2.967163

param 3.403594



Simulation settings 

 Consider following values of parameters: 
 n = 1000 to 100 000 

 Very small to large data set. 

 (0, 1, 0, 1) that lead to DJ = 0.25, 1, 2.25 

 Weak to very high performance of a model. 

 pB = 0.02, 0.05, 0.1, 0.2 

 Portfolios with very low risk (mortgages) to very high risk 
(subprime cash loans). 

 

 Very common way how to assess quality of the J-divergence estimators is to 
compute bias and mean square error (MSE), or its logarithm. 
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Simulation results 

 From these figures it is apparent that the decile estimate is significantly biased, specifically undervalued. 
The value of log MSE became quite quickly stabilized and with increasing number of observations did not 
fall. Overall, this estimate is thus not very suitable. In contrast, algorithms ESIS1 and ESIS2 led in the case 
of a weaker model (DJ = 1.00) to almost unbiased estimate. For a stronger model (DJ = 2.25) are their 
properties worse. However, they were the best of all considered methods of estimating DJ. 
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Thank you for 
your attention 


