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Introduction 

 J-divergence is widely used to describe the difference between two probability 
distributions F0 and F1. It is also called the Information value for the purpose of 
scoring models. 

 I.e. models that try to predict a probability of client’s default.  

 Empirical estimate using deciles of scores is the common way how to compute it.  

 However, it may lead to strongly biased results. 

 Moreover, there are some computational issues to solve.  

 To avoid these issues and to lower the bias, the empirical estimate with 
supervised interval selection (esis) can be used.  

 It is based on idea of constructing such intervals of scores which ensure to have 
sufficiently enough observations in each interval. 

 The quantile function F0
-1 is used for this purpose.  

 The main aim of this paper is to give an alternative estimator of the J-divergence, 
which leads to lowered bias and MSE. 



J-divergence 
 Symetrized Kullback-Leibler divergence of two random variables X, Y given by: 

where 

         are densities of scores of bad and good clients. 
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Kernel estimate 

 The kernel density estimates are defined by 
 
 
 

where         , K is a kernel function, for instance the 

Epanechnikov kernel and hi  is a smoothing parameter. 
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Empirical estimate of DJ 
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Empirical estimate of DJ 

 However in practice, there could occur 
computational problems. The Information value index 
becomes infinite in cases when some of n0j

 or n1j
 are 

equal to 0.  
 

 Choosing of the number of bins is also very 
important. In the literature and also in many 
applications in credit scoring, the value r=10 is 
preferred. 

Empirical estimate using deciles of scores  



Empirical estimate with supervised 
interval selection (ESIS) 

 We want to avoid zero values of n0j
 or n1j

 . 

 We propose to require to have at least k, where k  is a 
positive integer, observations of scores of both good and bad 
clients in each interval.  
 Intervals of score are given by 

 

  

, 

where       is the empirical quantile function appropriate to the 
empirical cumulative distribution function of scores of bad clients. 



Empirical estimate with supervised 
interval selection (ESIS) 

  

, 

 Usage of quantile function of scores of bad clients is motivated by the 
assumption, that number of bad clients is less than number of good clients. 

 If n0 is not divisible by k, it is necessary to adjust our intervals, because 
we obtain number of scores of bad clients in the last interval, which is less 
than k. In this case, we have to merge the last two intervals. 

 Furthermore we need to ensure, that the number of scores of good 
clients is as required in each interval. To do so, we compute n1j

 for all 
actual intervals. If we obtain n1j

 < k for jth interval, we merge this interval 
with its neighbor on the right side. 

 This can be done for all intervals except the last one. If we have n1j
 < k 

for the last interval, than we have to merge it with its neighbor on the left 
side, i.e. we merge the last two intervals. 



Empirical estimate with 
supervised interval selection 

 Very important is the choice of k. If we choose too small value, we get 
overestimated value of the J-divergence, and vice versa. As a reasonable 
compromise seems to be adjusted square root of number of bad clients 
given by 
 
 

 
 The estimate of the J-divergence is given by 

 
 

  
 
 
 

 and  

where n0j
 and n1j

 correspond to observed counts of good and bad clients 
in intervals created according to the described procedure.  
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ESIS.1 

 Algorithm for the modified ESIS: 
 

1)   
 

2)   
 

3)   
 

4) Add         to the sequence, i.e.  
 
5) Erase  all scores  

 
6) While n0 and n1 are greater than 2*k, repeat step 2) – 5) 

 
7)    
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passing data just once with no need 
to merge the constructed intervals. 



ESIS.2 

 The original ESIS often merge calculated 
intervals in the second phase of the algorithm. 

 Only          is used for computation.  

 But it is clear that in order to meet the condition 

n11
>k, the border of the first interval has to be 

greater or equal to 

    

 This directly leads to idea to use F1 firstly, and 
then, from some value of the score, to use F0 . 

 A suitable value of the score for this purpose 
would be the value of s0 , in which intersect the 
density functions of the scores, difference of 
distribution functions of the scores takes its 
maximum value and also the function FIV becomes 
zero.    
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ESIS.2 

 Algorithm for the modified ESIS: 
 

1)      
 

2)   
 

3)   
 

4)   
 

5) Merge intervals given by q1 where number of bads is less than k. 
 
6) Merge intervals given by q0 where number of goods is less than k. 
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Simulation settings 
 Consider n clients, 100pB% of bad and 100(1-pB)% of good clients with 1) normally, 2) beta 

and 3) gamma distributed scores: 
 

1)   

  

2)   

  

3)   
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Simulation settings 
 The exact value is then 

1)   

 

2)   

 

3)   
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Simulation settings 

 Consider following values of parameters: 
 n = 1000 to 100 000 

 Very small to large data set. 

 (μ0, μ1, σ0, σ1), (0, 1, 0, 1), (0, 1, 0, 1) that lead to DJ = 0.25, 1, 2.25 

 Weak to very high performance of a model. 

 pB = 0.02, 0.05, 0.1, 0.2 

 Portfolios with very low risk (mortgages) to very high risk 
(subprime cash loans). 

 

 Very common way how to assess quality of the J-divergence estimators is to 
compute bias and mean square error (MSE), or its logarithm. 

  

 

  

 valval IIEBias  ˆ

 2)ˆ(loglog valval IIEMSE 



Simulation results 
 Bias and MSE for normally distributed scores: 

 
 pB=0.1, DJ=1 for bias, pB=0.2, DJ=2.25 for MSE 

 Estimator using deciles is strongly biased – DJ was underestimated – for majority of 
considered values of parameters. 

 Overall, the proposed algorithm ESIS2 had the best performance, followed by ESIS1 and 

ESIS estimator.  
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Simulation results 

 Estimator using deciles is even worse than for normally distributed scores. 

 The proposed algorithms ESIS1 and ESIS2 had the best performance again. 

 Bias and MSE for beta distributed scores: 
 
 pB=0.2, DJ=1 for bias, pB=0.1, DJ=2.25 for MSE 

0 2 4 6 8 10

x 10
4

-0.15

-0.1

-0.05

0

0.05
BIAS

n

 

 

decil

kern

esis

esis1

esis2

0 2 4 6 8 10

x 10
4

10
-2

10
-1

10
0

log MSE

n

 

 

decil

kern

esis

esis1

esis2



Simulation results 

 ESIS and ESIS2 had very similar performance considering both bias and MSE. However, 
all estimators were biased in case of gamma distributed scores – DJ was underestimated for 
majority of considered values of parameters. 

 Overall, considering bias and MSE, ESIS1 had the best performance. 

 Bias and MSE for gamma distributed scores: 
 
 pB=0.02, DJ=2.25 for bias, pB=0.02, DJ=2.25 for MSE 
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Simulation results 

 Jde o zprůměrované hodnoty přes uvažované hodnoty parametru pB. 

 Nejstabilnější (z pohledu vychýlení) je ESIS2. 

 Zajímavé je chování estimátoru „DECIL“ pro slabé modely/proměnné (DJ=0.25) – pro 
malé počty pozorování je odhad nadhodnocený, pro cca 20 000 pozorování je odhad 
nevychýlený, pro vyšší počty pozorování je odhad podhodnocený. Značně podhodnocený je 
pro silnější modely/proměnné, a to bez ohledu na počet pozorování. 

 Bias for normally distributed scores (according to DJ): 
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Simulation results 

 Vlastnosti odhadů jsou velmi podobné jako předchozím případě. Pro DJ=1 a DJ=2.25 jsou 
nejlepší ESIS1 a ESIS2. 

 Největší rozdíl je u DJ=0.25. Všechny tři algoritmy ESIS, ESIS1 i ESIS2 dávají 
nadhodnocený odhad DJ. Pro jádrový odhad a odhad decilový platí to, co pro decilový odhad 
v případě normálních dat. 

 Bias for beta distributed scores (according to DJ): 
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Simulation results 

 ESIS a ESIS2 se chovají téměř identicky – pro DJ=0.25 velmi dobře, pro vyšší hodnoty DJ 
nic moc. Zde se jako nejlepší jeví ESIS1, popř. decilový odhad. 

 Pro DJ=0.25 a decilový odhad platí opět totéž jako v předchozích případech. 

 Celkově je zřejmé, že algoritmy ESIS se na datech s gamma rozložením chovají hůř než v 
případě normálních nebo beta rozložených dat. 

 Bias for gamma distributed scores (according to DJ): 
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Conclusions 

 The classical way of computation of the J-divergence (Information 
value), i.e. empirical estimator using deciles of scores, is easy to 
implement, but may lead to strongly biased results. We conclude that 
kernel estimator and empirical estimators with supervised interval 
selection (ESIS) are much more appropriate to use. In total, the new 
algorithms ESIS1 and ESIS2 outperformed all other considered estimators. 

  

  Consequently, ESIS1 and ESIS2 seem to be the right choice to estimate 
the J-divergence (Information value) when assessing discriminatory power 
of scoring models. Moreover the Information value is very often used to 
assess the discriminatory power of variables that enter into these models. 
This means that ESIS1/ESIS2 may lead to more appropriate, compared to 
the empirical estimator using deciles, filter for variable selection.  
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