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Introduction 

 Information value is widely used to assess discriminatory power of 
credit scoring models. 

 I.e. models that try to predict a probability of client’s default.  

 Moreover it is very often used to assess the discriminatory power of 
variables that enter into these models.  

 This means that the Information value is used as a filter for variable 

selection. 

 However, empirical estimate using deciles of scores, which is the 
common way how to compute it, may lead to strongly biased results.  

 The main aim of this paper is to give an alternative estimator of the 
Information value, which leads to lowered bias and MSE. 



Information value 

 The special case of Kullback-Leibler divergence given by: 

where 

  are densities of scores of bad and good clients. 



Kernel estimator, empirical est. 
 The kernel density estimators are defined by 
 
where      and K  is the Epanechnikov kernel. 
 

  

 The main idea of empirical estimators is to replace unknown densities by their empirical 
estimates. Consider counts of bad (good) clients in given intervals of score: 

 
 
 
 
 

 For intervals given by deciles of score we have: 
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Empirical estimate with supervised 
interval selection (ESIS) 

 We want to avoid zero values of n0j
 or n1j

 . 

 We propose to require to have at least k, where k  is a 
positive integer, observations of scores of both good and bad 
clients in each interval.  
 Intervals of score are given by 
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where       is the empirical quantile function appropriate to the 
empirical cumulative distribution function of scores of bad clients. 



Empirical estimate with supervised 
interval selection (ESIS) 

  

, 

 Usage of quantile function of scores of bad clients is motivated by the 
assumption, that number of bad clients is less than number of good clients. 

 If n0 is not divisible by k, it is necessary to adjust our intervals, because 
we obtain number of scores of bad clients in the last interval, which is less 
than k. In this case, we have to merge the last two intervals. 

 Furthermore we need to ensure, that the number of scores of good 
clients is as required in each interval. To do so, we compute n1j

 for all 
actual intervals. If we obtain n1j

 < k for jth interval, we merge this interval 
with its neighbor on the right side. 

 This can be done for all intervals except the last one. If we have n1j
 < k 

for the last interval, than we have to merge it with its neighbor on the left 
side, i.e. we merge the last two intervals. 



ESIS.2 

 The original ESIS often merge calculated 
intervals in the second phase of the algorithm. 

 Only          is used for computation.  

 But it is clear that in order to meet the condition 

n11
>k, the border of the first interval has to be 

greater or equal to 

    

 This directly leads to idea to use F1 firstly, and 
then, from some value of the score, to use F0 . 

 A suitable value of the score for this purpose 
would be the value of s0 , in which intersect the 
density functions of the scores, difference of 
distribution functions of the scores takes its 
maximum value and also the function FIV becomes 
zero.    
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ESIS.2 

 Algorithm for the modified ESIS: 
 

1)      
 

2)   
 

3)   
 

4)   
 

5) Merge intervals given by q1 where number of bads is less than k. 
 
6) Merge intervals given by q0 where number of goods is less than k. 
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Simulation results 
 Consider n clients, 100pB% of bad and 100(1-pB)% of good clients with 1) normally, 2) beta 

and 3) gamma distributed scores: 
 

1)   

2)   

3)   

 The exact value is then 

1)   

2)   

3)   
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Simulation results 

 Consider following values of parameters: 
 n = 1000 to 100 000 

 Very small to large data set. 

 (μ0, μ1, σ0, σ1), (0, 1, 0, 1), (0, 1, 0, 1) that lead to Ival = 0.25, 1, 2.25 

 Weak to very high performance of a model. 

 pB = 0.02, 0.05, 0.1, 0.2 

 Portfolios with very low risk (mortgages) to very high risk 
(subprime cash loans). 

 

 Very common way how to assess quality of the Information value estimators is to 
compute bias and mean square error (MSE), or its logarithm. 

  

  

valval IIBias  ˆ

 2)ˆ(loglog valval IIEMSE 



Simulation results 
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 Bias and MSE for normally distributed scores: 
 

 pB=0.1, Ival=1 for bias, pB=0.2, Ival=2.25 for MSE 

 Estimator using deciles is strongly biased – Ival was underestimated – for all considered 
values of parameters. 

 Overall, the proposed algorithm ESIS2 had the best performance, followed by ESIS and 

kernel estimator.  



Simulation results 
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 Estimator using deciles is even worse than for normally distributed scores. 

 The proposed algorithm ESIS2 had the best performance again. 

 Bias and MSE for beta distributed scores: 
 

 pB=0.2, Ival=1 for bias, pB=0.1, Ival=2.25 for MSE 



Simulation results 
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 ESIS and ESIS2 had very similar performance considering both bias and MSE. However, 
all estimators were biased in case of gamma distributed scores – Ival was underestimated for 
all considered values of parameters. 

 Overall, considering bias and MSE, ESIS and ESIS2 had the best performance. 

 Bias and MSE for gamma distributed scores: 
 

 pB=0.02, Ival=2.25 for bias, pB=0.02, Ival=2.25 for MSE 



Conclusions 

 The classical way of computation of the Information value, i.e. empirical 
estimator using deciles of scores, is easy to implement, but may lead to strongly 
biased results. We conclude that kernel estimator and empirical estimators with 
supervised interval selection (ESIS) are much more appropriate to use. In total, 
the new algorithm ESIS2 outperformed all other considered estimators.  

 The ESIS2 seems to be almost unbiased for normally and beta distributed 
scores. Its bias is negligible for all considered sizes of data samples, MSE tends to 
zero much more quickly compared to other estimators. However, it is biased in 
case of gamma distributed scores. Still, it is better than other considered 
estimators. 

 Consequently, ESIS2 seems to be the right choice to estimate the Information 
value when assessing discriminatory power of credit scoring models. Moreover the 
Information value is very often used to assess the discriminatory power of 
variables that enter into these models. This means that ESIS2 may lead to more 
appropriate, compared to the empirical estimator using deciles, filter for variable 
selection.  
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