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An outline of the content of this talk:

Abstract Elementary Classes:

I Topologizing Sets of Types

I Rank Functions

I Stability Spectra

Accessible Categories:

I Connections to AECs

I Implications for Stability

I A Structure Theorem for Categorical AECs
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Let T be a complete first order theory in language L(T ).
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Let T be a complete first order theory in language L(T ).

Spectrum of T : For each cardinal λ, I (T , λ) is the number of
models of T of size λ (up to isomorphism).
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Let T be a complete first order theory in language L(T ).

Spectrum of T : For each cardinal λ, I (T , λ) is the number of
models of T of size λ (up to isomorphism).

Theorem (Morley, 1965)

L(T ) countable. If I (T , λ) = 1 for some λ > ℵ0, I (T , κ) = 1 for
all κ > ℵ0.
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Let T be a complete first order theory in language L(T ).

Spectrum of T : For each cardinal λ, I (T , λ) is the number of
models of T of size λ (up to isomorphism).

Theorem (Morley, 1965)

L(T ) countable. If I (T , λ) = 1 for some λ > ℵ0, I (T , κ) = 1 for
all κ > ℵ0.

Theorem (Shelah, 1970)

If I (T , λ) = 1 for some λ > |L(T )|, I (T , κ) = 1 for all κ > |L(T )|.
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Let T be a complete first order theory in language L(T ).

Spectrum of T : For each cardinal λ, I (T , λ) is the number of
models of T of size λ (up to isomorphism).

Theorem (Morley, 1965)

L(T ) countable. If I (T , λ) = 1 for some λ > ℵ0, I (T , κ) = 1 for
all κ > ℵ0.

Theorem (Shelah, 1970)

If I (T , λ) = 1 for some λ > |L(T )|, I (T , κ) = 1 for all κ > |L(T )|.
The associated stability spectrum, which tracks the number of
types over sets of each cardinality, is also well-understood.
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Let T be a complete first order theory in language L(T ).

Spectrum of T : For each cardinal λ, I (T , λ) is the number of
models of T of size λ (up to isomorphism).

Theorem (Morley, 1965)

L(T ) countable. If I (T , λ) = 1 for some λ > ℵ0, I (T , κ) = 1 for
all κ > ℵ0.

Theorem (Shelah, 1970)

If I (T , λ) = 1 for some λ > |L(T )|, I (T , κ) = 1 for all κ > |L(T )|.
The associated stability spectrum, which tracks the number of
types over sets of each cardinality, is also well-understood.

Problem: elementary classes—classes of models of such
theories—do not exhaust the interesting classes of mathematical
objects.

Michael Lieberman Topological and category-theoretic aspects of AECs



Overview
Topology

Ranks
Accessible Categories

AECs
Galois types
Motivation

Concretely, we would like our results to encompass nonelementary
examples like:
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Concretely, we would like our results to encompass nonelementary
examples like:

I Banach spaces.
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Concretely, we would like our results to encompass nonelementary
examples like:

I Banach spaces.

I Artinian commutative rings with unit.
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Concretely, we would like our results to encompass nonelementary
examples like:

I Banach spaces.

I Artinian commutative rings with unit.

I (C,+, ·, exp).
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Concretely, we would like our results to encompass nonelementary
examples like:

I Banach spaces.

I Artinian commutative rings with unit.

I (C,+, ·, exp).

Abstractly, we would like analogous results for classes of models of
sentences in infinitary logics (such as L∞,ω) or logics incorporating
the quantifier Q (i.e. “there exist uncountably many”).
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Concretely, we would like our results to encompass nonelementary
examples like:

I Banach spaces.

I Artinian commutative rings with unit.

I (C,+, ·, exp).

Abstractly, we would like analogous results for classes of models of
sentences in infinitary logics (such as L∞,ω) or logics incorporating
the quantifier Q (i.e. “there exist uncountably many”).

Generalize by abandoning syntax, and considering abstract classes
of structures that retain only the essential properties common to
such classes of models.
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
I Unions of chains: if (Mi | i < δ) is a ≺K-increasing chain,

1.
⋃

i<δ Mi ∈ K
2. for each j < δ, Mj≺K

⋃
i<δ Mi

3. if each Mj≺KM ∈ K,
⋃

i<δ Mi≺KM
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
I Unions of chains: if (Mi | i < δ) is a ≺K-increasing chain,

1.
⋃

i<δ Mi ∈ K
2. for each j < δ, Mj≺K

⋃
i<δ Mi

3. if each Mj≺KM ∈ K,
⋃

i<δ Mi≺KM

I Coherence: If M0≺KM2, M0 ⊆ M1≺KM2, then M0≺KM1
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
I Unions of chains: if (Mi | i < δ) is a ≺K-increasing chain,

1.
⋃

i<δ Mi ∈ K
2. for each j < δ, Mj≺K

⋃
i<δ Mi

3. if each Mj≺KM ∈ K,
⋃

i<δ Mi≺KM

I Coherence: If M0≺KM2, M0 ⊆ M1≺KM2, then M0≺KM1

I Löwenheim-Skolem: Exists cardinal LS(K) such that for any
M ∈ K, subset A ⊆ M, there is an M0 ∈ K with
A ⊆ M0≺KM and |M0| ≤ |A|+ LS(K).
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
I Unions of chains: if (Mi | i < δ) is a ≺K-increasing chain,

1.
⋃

i<δ Mi ∈ K
2. for each j < δ, Mj≺K

⋃
i<δ Mi

3. if each Mj≺KM ∈ K,
⋃

i<δ Mi≺KM

I Coherence: If M0≺KM2, M0 ⊆ M1≺KM2, then M0≺KM1

I Löwenheim-Skolem: Exists cardinal LS(K) such that for any
M ∈ K, subset A ⊆ M, there is an M0 ∈ K with
A ⊆ M0≺KM and |M0| ≤ |A|+ LS(K).

A strong embedding f : M ↪→K N is an isomorphism from M to a
strong submodel of N, f : M ∼= M ′≺KN.
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Example 1: Let K be the class of models of a first order theory T ,
and ≺K the elementary submodel relation. Then K is an AEC with
LS(K) = ℵ0 + |L(T )|.

One can think of AECs as the category-theoretic hulls of
elementary classes—abandoning syntax, but retaining certain basic
properties of the elementary submodel relation.

Example 2: Let φ be a sentence of L∞,ω, A a fragment containing
φ. The class K = Mod(φ), with ≺K elementary embedding with
respect to A, is an AEC (LS(K) = |A|). With suitable ≺K, can do
the same with models of sentences in L(Q), Lω1,ω(Q), etc.
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We assume the following additional properties:

Definition (Joint Embedding Property)

For any M1,M2 ∈ K, there is N ∈ K with embeddings
f1 : M1 ↪→K N and f2 : M2 ↪→K N.

Definition (Amalgamation Property)

If M≺KM1 and M≺KM2 (with all three models in K), there is an
N ∈ K and embeddings g1 : M1 ↪→K N and g2 : M2 ↪→K N that
agree on M.
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Having discarded syntax, we consider a new notion of type: Galois
types. In AECs with sufficient amalgamation, there is a monster
model C in K, and the Galois types have a simple description:

Definition
For a ∈ C, M ∈ K, the Galois type of a over M is defined to be the
orbit of a under automorphisms of C that fix M. The set of all
types over M is denoted by ga-S(M).

Example: If K an EC and ≺K elementary submodel, the Galois
types over M ∈ K are precisely the complete types over M:

ga-tp(a/M) = ga-tp(b/M) iff tp(a/M) = tp(b/M)
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In general, though, the Galois types will not have a nice syntactic
description. More terminology:
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In general, though, the Galois types will not have a nice syntactic
description. More terminology:

Definition

1. We say that K is λ-Galois stable if for every M ∈ Kλ,
|ga-S(M)| = λ.
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In general, though, the Galois types will not have a nice syntactic
description. More terminology:

Definition

1. We say that K is λ-Galois stable if for every M ∈ Kλ,
|ga-S(M)| = λ.

2. For any M, a ∈ C, and N≺KM, the restriction of ga-tp(a/M)
to N, denoted ga-tp(a/M) � N, is the orbit of a under
AutN(C).
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In general, though, the Galois types will not have a nice syntactic
description. More terminology:

Definition

1. We say that K is λ-Galois stable if for every M ∈ Kλ,
|ga-S(M)| = λ.

2. For any M, a ∈ C, and N≺KM, the restriction of ga-tp(a/M)
to N, denoted ga-tp(a/M) � N, is the orbit of a under
AutN(C).

3. We say that M ∈ K is λ-Galois saturated if for every type p
over N≺KM with |N| < λ, p is realized in M, i.e. the orbit
corresponding to p meets M.
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Question
What can we say about the stability spectra of AECs? Can we use
vaguely classical techniques to address the problem? Topology?
Rank functions?

We give:

I A way of topologizing the sets ga-S(M) in such a way that
topological properties of the resulting spaces correspond to
semantic properties of M and K.

I A closely related notion of rank (actually, a family of ranks)
which is useful in analyzing the stability spectra of reasonably
well-behaved AECs.
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Let K be an AEC with monster model C. Let λ ≥ LS(K) and
M ∈ K.

Definition (X λ
M)

For each N≺KM with |N| ≤ λ and type p ∈ ga-S(N), let

Up,N = {q ∈ ga-S(M) : q � N = p}

The sets Up,N form a basis for a topology on ga-S(M). We denote
by Xλ

M the set ga-S(M) endowed with this topology.

Note
The Up,N are, in fact, clopen. Types over small submodels play a
role analogous to formulas in topologizing spaces of syntactic
types.
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One virtue of this setup is that it provides a dictionary between
model-theoretic properties of K and models M ∈ K and
topological properties of the spaces Xλ

M . Recall:

Definition
An AEC K is said to be χ-tame if for any M ∈ K, if
q, q′ ∈ ga-S(M) are distinct, then there is submodel N≺KM with
|N| ≤ χ such that q � N 6= q′ � N.

Intuition: if we regard types over small models as formulas,
tameness means that types are determined entirely by their
constituent formulas.
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The centerpiece:

Theorem (Tameness As Separation Principle)

The AEC K is χ-tame iff for all M ∈ K, Xχ
M is Hausdorff.

Since each space Xλ
M has a basis of clopens (i.e. the Up,N) we

have a bit more:

Proposition

K is χ-tame iff Xχ
M is totally disconnected for every M ∈ K.

Moreover,

Proposition

If K is χ-tame, Xµ
M is totally disconnected for every M ∈ K and

µ ≥ χ.
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Naturally, compactness is too much to hope for. In particular,

Proposition

Let K be an arbitrary AEC with monster model, M ∈ K, and
λ ≥ LS(K). Then Xλ

M is not compact.

We might hope for some weaker form of compactness, but this
proves incompatible with our desire for tameness. The critical
complication results from the following:

Fact
For any M ∈ K, the intersection of any λ many open sets in Xλ

M is
open.
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If K is sufficiently tame to guarantee Hausdorffness, this leads to
near-discreteness:

Remark
Any subset S ⊆ Xλ

M with |S | = λ is discrete and closed.

As a consequence:

Proposition

Let K be χ-tame. Then for any M ∈ K and any λ ≥ χ, the space
Xλ

M is not countably compact.

Another important consequence of sufficient tameness:

Proposition

Let K be χ-tame. Then for any M ∈ K and any λ ≥ χ, a type
q ∈ Xλ

M is an accumulation point of S ⊆ Xλ
M only if every

neighborhood of q contains more than λ elements of S.
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In light of this fact, we define a related, slightly Morley-like rank:

Definition (RMλ)

For λ ≥ LS(K), we define RMλ by the following induction: for any
q ∈ ga-S(M) with |M| ≤ λ,

I RMλ[q] ≥ 0.

I RMλ[q] ≥ α for limit α if RMλ[q] ≥ β for all β < α.

I RMλ[q] ≥ α + 1 if there exists a structure M ′�KM such that
q has strictly more than λ many extensions to types q′ over
M ′ with RMλ[q′] ≥ α.

For types q over M of arbitrary size, we define

RMλ[q] = min{RMλ[q � N] : N≺KM, |N| ≤ λ}.
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The ranks RMλ are: monotonic, invariant under automorphisms of
C, decreasing in λ. They are larger (typewise) than the appropriate
Cantor-Bendixson ranks: for any q ∈ ga-S(M), RMλ[q] is greater
than or equal to the CB-rank of q in Xλ

M .

Definition (λ-t.t.)

We say that K is λ-totally transcendental if for every M ∈ K and
q ∈ ga-S(M), RMλ[q] is an ordinal.
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No guarantee that types have unique extensions of same RMλ

rank, but:

Proposition (Quasi-unique Extension)

Let M≺KM ′, q ∈ ga-S(M), and say that RMλ[q] = α. Given any
rank α extension q′ of q to a type over M ′, there is an
intermediate structure M ′′, M≺KM ′′≺KM ′, |M ′′| ≤ |M|+ λ, and a
rank α extension p ∈ ga-S(M ′′) of q with q′ ∈ ga-S(M ′) as its
unique rank α extension.
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Connections with Galois stability, in case K is tame:

Theorem
If K is λ-stable where λ satisfies λℵ0 > λ, then K is λ-t.t.

In the other direction,

Theorem
If K is λ-t.t., and M ∈ K with cf(|M|) > λ, then
|ga-S(M)| ≤ |M| · sup{|ga-S(N)| |N≺KM, |N| < |M|}.
Roughly: the number of types over M is no worse than the number
of types over submodels of strictly smaller size.
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Theorem
Let K be λ-stable with λℵ0 > λ, and let κ satisfy cf(κ) > λ. If
there is an interval [µ, κ) such that every M ∈ K[µ,κ) satisfies
|ga-S(M)| ≤ κ, then K is κ-stable.

A very nice special case:

Corollary

If K is ℵ0-stable, and κ is of uncountable cofinality, then if K is
stable in every cardinality below κ, it is κ-stable as well.

This was established in (Baldwin-Kueker-VanDieren, 2004), using
the machinery of splitting. Our method has produced a vastly
more general result.
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If K is only weakly χ-tame (the defining condition of tameness
holds only for saturated models), the analysis still works, provided
the class contains enough saturated models.

Theorem
If K is weakly χ-tame and µ-t.t., and κ is such that cf(κ) > µ and
each M of size κ has a saturated extension also of size κ, then K is
κ-stable.

The property of having enough saturated models crops up, oddly
enough, in the context of accessible categories.
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Categorical model theory timeline:
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Categorical model theory timeline:

I (Lawvere, 1963) Functorial semantics for algebraic
theories—theories as categories with finite products, models
as product-preserving functors from the associated categories.
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Categorical model theory timeline:

I (Lawvere, 1963) Functorial semantics for algebraic
theories—theories as categories with finite products, models
as product-preserving functors from the associated categories.

I (Lawvere/Tierney; Makkai/Reyes, 1977) Functorial semantics
for general first order theories—theories as topoi, models as
structure preserving functors.
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Categorical model theory timeline:

I (Lawvere, 1963) Functorial semantics for algebraic
theories—theories as categories with finite products, models
as product-preserving functors from the associated categories.

I (Lawvere/Tierney; Makkai/Reyes, 1977) Functorial semantics
for general first order theories—theories as topoi, models as
structure preserving functors.

I (Makkai/Paré, 1989) Theories set aside, instead consider
categories that have essential properties of categories of
models—accessible categories.
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Categorical model theory timeline:

I (Lawvere, 1963) Functorial semantics for algebraic
theories—theories as categories with finite products, models
as product-preserving functors from the associated categories.

I (Lawvere/Tierney; Makkai/Reyes, 1977) Functorial semantics
for general first order theories—theories as topoi, models as
structure preserving functors.

I (Makkai/Paré, 1989) Theories set aside, instead consider
categories that have essential properties of categories of
models—accessible categories.

I (Rosický, 1997) Accessible categories with directed colimits,
considers exceedingly model-theoretic notions.
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Roughly speaking, an accessible category is one that is generated
by colimits of a set of small objects. To be precise:

Definition
An object N in a category C is λ-presentable if the functor
HomC(N,−) preserves λ-directed colimits.

Definition
A category C is λ-accessible if

I it has at most a set of λ-presentables

I it is closed under λ-directed colimits

I every object is a λ-directed colimit of λ-presentables
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The Downward Löwenheim-Skolem Property ensures that models
in an AEC are generated as directed unions of their submodels of
size LS(K). As it happens,

Theorem
As a category, an AEC K is LS(K)+-accessible (actually,
µ-accessible for all regular µ ≥ LS(K)+), and the µ-presentable
objects are precisely the models of size less than µ. Moreover, K is
closed under directed colimits.

Rosický considers categories of this form, in which context he
defines a number of category-theoretic analogues of notions from
model theory. Most notably: weak κ-stability.
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Weak κ-stability is precisely what we need to guarantee the
existence of saturated extensions of size κ. So:

Theorem
If K is weakly χ-tame and µ-t.t., and κ is such that cf(κ) > µ, if
K is weakly κ-stable, then K is κ-stable.

Curiously, weak stability occurs in any category of the form under
consideration.
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For example,

Proposition

If LS(K) = ℵ0, K is ℵ0-t.t. and weakly ℵ0-tame, then for any
µ > |Kmor

ℵ0
| with ℵ1 E µ, K is µ<µ-stable.

The notion of sharp inequality, E, is well treated in texts on
accessible categories. Suffice to say, there are many (and arbitrarily
large) cardinals µ with ℵ1 E µ.

For example, if K is ℵ0-categorical, |Kmor
ℵ0
| ≤ 2ℵ0 . Then K is

stable in

[(2ℵk )+(n+1)](2
ℵk )+n

for n < ω and 1 ≤ k < ω,

and so on.
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By an easy exercise in category theory,

Theorem
If K is λ-categorical, the sub-AEC K≥λ consisting of models of size
at least λ is equivalent to a category of sets with actions of M, the
monoid of endomorphisms of the unique structure of size λ, say C .

The assignment is:

N ∈ K≥λ 7→ HomK(C ,N)

where M = HomK(C ,C ) acts by precomposition.

This amounts to an astonishing transformation of a very abstract
entity—an AEC—into a category of relatively simple algebraic
objects.
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