Bootstrapping structural properties, via accessible images (Joint with Jiří Rosický)

Michael Lieberman

Masaryk University, Department of Mathematics and Statistics http://www.math.muni.cz/~lieberman

University of Illinois at Chicago December 15, 2016

Accessible Images Joint Embedding Amalgamation

We consider a pair of (refreshingly simple) consequences of the accessibility of powerful images of accessible functors assuming large cardinals, namely:

Accessible Images Joint Embedding Amalgamation

We consider a pair of (refreshingly simple) consequences of the accessibility of powerful images of accessible functors assuming large cardinals, namely:

Theorem

Let $\mathcal K$ be a λ -accessible category. If $\mathcal K$ has the $<\kappa$ -joint embedding property ($<\kappa$ -JEP) for κ a $\mu_{\mathcal K}$ -strongly compact cardinal, it has the JEP.

We consider a pair of (refreshingly simple) consequences of the accessibility of powerful images of accessible functors assuming large cardinals, namely:

Theorem

Let K be a λ -accessible category. If K has the $<\kappa$ -joint embedding property ($<\kappa$ -JEP) for κ a μ_K -strongly compact cardinal, it has the JEP.

Theorem

Let K be a λ -accessible category. If K has the $<\kappa$ -amalgamation property ($<\kappa$ -AP) for κ a μ_K -strongly compact cardinal, it has the AP.

We consider a pair of (refreshingly simple) consequences of the accessibility of powerful images of accessible functors assuming large cardinals, namely:

Theorem

Let K be a λ -accessible category. If K has the $<\kappa$ -joint embedding property ($<\kappa$ -JEP) for κ a μ_K -strongly compact cardinal, it has the JEP.

Theorem

Let K be a λ -accessible category. If K has the $<\kappa$ -amalgamation property ($<\kappa$ -AP) for κ a μ_K -strongly compact cardinal, it has the AP.

The beauty of this is that, with the exception of some gruesome details we suppress, everything is clean and clear.

Definition

For a regular cardinal λ , we say a category \mathcal{K} is λ -accessible if

- \blacktriangleright it has at most a set of λ -presentable objects.
- it is closed under λ -directed colimits.
- every object is a λ -directed colimit of λ -presentable objects.

Definition

For a regular cardinal λ , we say a category $\mathcal K$ is λ -accessible if

- it has at most a set of λ -presentable objects.
- \blacktriangleright it is closed under λ -directed colimits.
- every object is a λ -directed colimit of λ -presentable objects.

Note

A general λ -accessible category need not be closed under arbitrary directed colimits. . .

Definition

For a regular cardinal λ , we say a category $\mathcal K$ is λ -accessible if

- it has at most a set of λ -presentable objects.
- it is closed under λ -directed colimits.
- every object is a λ -directed colimit of λ -presentable objects.

Note

Presentability gives a notion of size. If K has directed colimits the presentability rank of any object M is a successor, say $\pi(M) = \lambda^+$, and we define the internal size of M in K by $|M|_K = \lambda$.

Definition

For a regular cardinal λ , we say a category $\mathcal K$ is λ -accessible if

- it has at most a set of λ -presentable objects.
- \blacktriangleright it is closed under λ -directed colimits.
- every object is a λ -directed colimit of λ -presentable objects.

Note

Presentability gives a notion of size. If K has directed colimits the presentability rank of any object M is a successor, say $\pi(M) = \lambda^+$, and we define the internal size of M in K by $|M|_{K} = \lambda$.

$$\mathcal{K}$$
 an AEC: $|M|_{\mathcal{K}} = |M|$. \mathcal{K} an mAEC: $|M|_{\mathcal{K}} = dc(M)$.

Definition

For a regular cardinal λ , we say a category $\mathcal K$ is λ -accessible if

- it has at most a set of λ -presentable objects.
- \blacktriangleright it is closed under λ -directed colimits.
- every object is a λ -directed colimit of λ -presentable objects.

Definition

A functor $F: \mathcal{K} \to \mathcal{L}$ is λ -accessible if \mathcal{K} and \mathcal{L} are λ -accessible, and F preserves λ -directed colimits.

Definition

For a regular cardinal λ , we say a category \mathcal{K} is λ -accessible if

- it has at most a set of λ -presentable objects.
- it is closed under λ -directed colimits.
- every object is a λ -directed colimit of λ -presentable objects.

Definition

A functor $F: \mathcal{K} \to \mathcal{L}$ is λ -accessible if \mathcal{K} and \mathcal{L} are λ -accessible, and F preserves λ -directed colimits.

"Accessible" means " λ -accessible for some λ ."

Raising the index of accessibility can be complicated:

Definition

Given regular cardinals $\mu \geq \lambda$, we say that μ is sharply larger than λ , denoted $\mu \trianglerighteq \lambda$, if the following equivalent conditions hold:

- Every λ -accessible category is μ -accessible.
- ▶ For each set X, $|X| < \mu$, the poset of subsets $P_{\lambda}(X)$ has a cofinal set of cardinality less than μ .

Notes

- For any regular λ , $\lambda \trianglerighteq \omega$.
- If $\mu > 2^{\lambda}$, then $\mu^+ \trianglerighteq \lambda^+$ iff $\mu^{\lambda} = \mu$.

Any λ -accessible category with arbitrary directed colimits is *well* λ -accessible: μ -accessible for all $\mu > \lambda$.

Question: \mathbf{Ab} is beautifully accessible, but is \mathcal{F} ?

Question: Ab is beautifully accessible, but is \mathcal{F} ?

Theorem (Eklof/Mekler, '77)

Assume V=L. For every successor κ , there is a nonfree abelian group A of size κ , all of whose subgroups of size less than κ are free.

Question: Ab is beautifully accessible, but is \mathcal{F} ?

Theorem (Eklof/Mekler, '77)

Assume V=L. For every successor κ , there is a nonfree abelian group A of size κ , all of whose subgroups of size less than κ are free.

Corollary

Assuming V = L, \mathcal{F} is not accessible.

 \mathbf{Ab} is beautifully accessible, but is \mathcal{F} ?

Ab is beautifully accessible, but is \mathcal{F} ?

Theorem (Eklof/Mekler, '90)

Assume there is a proper class of strongly compact cardinals. Then ${\cal F}$ is accessible.

Ab is beautifully accessible, but is \mathcal{F} ?

Theorem (Eklof/Mekler, '90)

Assume there is a proper class of strongly compact cardinals. Then $\mathcal F$ is accessible.

Notes

► The free abelian group functor F : Sets → Ab is accessible, and F is its image.

Ab is beautifully accessible, but is \mathcal{F} ?

Theorem (Eklof/Mekler, '90)

Assume there is a proper class of strongly compact cardinals. Then $\mathcal F$ is accessible.

Notes

- The free abelian group functor F : Sets → Ab is accessible, and F is its image.
- $ightharpoonup \mathcal{F}$ is closed under subobjects, hence the powerful image of F.

Assume there is a proper class of strongly compact cardinals. Then the powerful image of any accessible functor is accessible.

Assume there is a proper class of strongly compact cardinals. Then the powerful image of any accessible functor is accessible.

Definition

A cardinal κ is *strongly compact* if any κ -complete filter can be extended to a κ -complete ultrafilter. We say κ is μ -strongly compact if the ultrafilter need only be μ -complete.

Assume there is a proper class of strongly compact cardinals. Then the powerful image of any accessible functor is accessible.

Definition

A cardinal κ is *strongly compact* if any κ -complete filter can be extended to a κ -complete ultrafilter. We say κ is μ -strongly compact if the ultrafilter need only be μ -complete.

Theorem (Brooke-Taylor/Rosický)

Let \mathcal{L} be λ -accessible, such that there exists a $\mu_{\mathcal{L}}$ -strongly compact cardinal κ , $\kappa \trianglerighteq \lambda$. The powerful image of any λ -accessible functor to \mathcal{L} that preserves $\mu_{\mathcal{L}}$ -presentable objects is κ -accessible.

Assume there is a proper class of strongly compact cardinals. Then the powerful image of any accessible functor is accessible.

Definition

A cardinal κ is strongly compact if any κ -complete filter can be extended to a κ -complete ultrafilter. We say κ is μ -strongly compact if the ultrafilter need only be μ -complete.

Theorem (Brooke-Taylor/Rosický)

Let \mathcal{L} be λ -accessible, such that there exists a $\mu_{\mathcal{L}}$ -strongly compact cardinal κ , $\kappa \trianglerighteq \lambda$. The powerful image of any λ -accessible functor to \mathcal{L} that preserves $\mu_{\mathcal{L}}$ -presentable objects is κ -accessible.

Note

If \mathcal{L} is well λ -accessible, we can remove the \trianglerighteq condition.

Let $\mathbf{Pres}_{\lambda}(\mathcal{L})$ denote a skeleton of the full subcategory of λ -presentable objects in \mathcal{L} ; let $\beta = |\mathbf{Pres}_{\lambda}(\mathcal{L})|$. Take $\gamma_{\mathcal{L}}$ the smallest cardinal such that $\gamma_{\mathcal{L}} \geq \beta$ and $\gamma_{\mathcal{L}} \trianglerighteq \lambda$.

Note

 $\gamma_{\mathcal{L}}$ will not be too large: if $\lambda < \beta$,

$$\gamma_{\mathcal{L}} < (2^{\beta})^+,$$

and clearly $\gamma_{\mathcal{L}} = \lambda$ otherwise.

In case $\mathcal K$ is well λ -accessible, we may simply take $\gamma_{\mathcal L}=\max(\beta,\lambda)$, noting the parallel between this cardinal and the corresponding bound for AECs, i.e. $I(\mathcal K,\lambda)+\lambda$.

Finally, we define $\mu_{\mathcal{L}} = (\gamma_{\mathcal{L}}^{<\gamma_{\mathcal{L}}})^+$. By design, $\mu_{\mathcal{L}} \geq \lambda$.

Given an abstract class of structures \mathcal{K} , we often ask: can every diagram of shape \mathcal{A} be completed to a diagram of shape \mathcal{A}' ?

Given an abstract class of structures \mathcal{K} , we often ask: can every diagram of shape \mathcal{A} be completed to a diagram of shape \mathcal{A}' ?

For our purposes, $\mathcal A$ and $\mathcal A'$ will be finite categories, and we can identify the categories of diagrams with $\mathcal K^{\mathcal A}$ and $\mathcal K^{\mathcal A'}$. The forgetful functor

$$F:\mathcal{K}^{\mathcal{A}'}\to\mathcal{K}^{\mathcal{A}}$$

picks out precisely the completable diagrams.

Given an abstract class of structures K, we often ask: can every diagram of shape A be completed to a diagram of shape A'?

For our purposes, $\mathcal A$ and $\mathcal A'$ will be finite categories, and we can identify the categories of diagrams with $\mathcal K^{\mathcal A}$ and $\mathcal K^{\mathcal A'}$. The forgetful functor

$$F: \mathcal{K}^{\mathcal{A}'} \to \mathcal{K}^{\mathcal{A}}$$

picks out precisely the completable diagrams.

If the (powerful) image of F is accessible, completability of an \mathcal{A} -diagram is determined by its small sub- \mathcal{A} -diagrams, hence we can bootstrap full completability from completability in the small...

Definition

We say that an accessible category $\mathcal K$ has the $<\kappa$ -JEP if for any κ -presentable $M_0, M_1 \in \mathcal K$, there are $f_i: M_i \to N$ for i=1,2. We say that $\mathcal K$ has the JEP if this holds for arbitrary $M_0, M_1 \in \mathcal K$.

Definition

We say that an accessible category $\mathcal K$ has the $<\kappa$ -JEP if for any κ -presentable $M_0, M_1 \in \mathcal K$, there are $f_i: M_i \to N$ for i=1,2. We say that $\mathcal K$ has the JEP if this holds for arbitrary $M_0, M_1 \in \mathcal K$.

In terms of diagrams:

Definition

We say that an accessible category $\mathcal K$ has the $<\kappa$ -JEP if for any κ -presentable $M_0, M_1 \in \mathcal K$, there are $f_i: M_i \to N$ for i=1,2. We say that $\mathcal K$ has the JEP if this holds for arbitrary $M_0, M_1 \in \mathcal K$.

In terms of diagrams:

Let $F_J: \mathcal{K}^{\mathcal{A}'} \to \mathcal{K}^{\mathcal{A}}$ be the forgetful functor that retains only the outermost objects.

Notes

1. \mathcal{K} has the $< \kappa$ -JEP just in case $\mathbf{Pres}_{\kappa}(\mathcal{K})^{\mathcal{A}}$ is contained in the image of F_J .

$$\begin{array}{cccc}
A & A' \\
\bullet & \bullet & \bullet \leftarrow \bullet
\end{array}$$

$$F_J: \mathcal{K}^{A'} \to \mathcal{K}^A$$

Notes

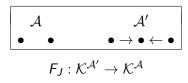
- 1. K has the $< \kappa$ -JEP just in case $\operatorname{Pres}_{\kappa}(K)^{\mathcal{A}}$ is contained in the image of F_J .
- 2. K has the JEP just in case F_J is surjective.

$$\begin{array}{c|c}
A & A' \\
\bullet & \bullet & \bullet \leftarrow \bullet
\end{array}$$

$$F_J: \mathcal{K}^{A'} \to \mathcal{K}^A$$

Notes

- 1. K has the $< \kappa$ -JEP just in case $\mathbf{Pres}_{\kappa}(K)^{A}$ is contained in the image of F_{J} .
- 2. K has the JEP just in case F_J is surjective.
- 3. The image of F_J is closed under subobjects, hence powerful.



Notes

- 1. K has the $< \kappa$ -JEP just in case $\mathbf{Pres}_{\kappa}(K)^{\mathcal{A}}$ is contained in the image of F_J .
- 2. K has the JEP just in case F_J is surjective.
- 3. The image of F_J is closed under subobjects, hence powerful.
- 4. As colimits are computed componentwise in $\mathcal{K}^{\mathcal{A}}$, $\mathcal{K}^{\mathcal{A}'}$, \mathcal{F}_{J} preserves everything. Hence \mathcal{F}_{J} is as accessible as $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$ are.

If K is λ -accessible, so are K^A and $K^{A'}$. In either case, the λ -presentables are precisely the diagrams in which all objects are λ -presentable. If K is well λ -accessible, so are K^A and $K^{A'}$.

If K is λ -accessible, so are $K^{\mathcal{A}}$ and $K^{\mathcal{A}'}$. In either case, the λ -presentables are precisely the diagrams in which all objects are λ -presentable. If K is well λ -accessible, so are $K^{\mathcal{A}}$ and $K^{\mathcal{A}'}$.

Hence if \mathcal{K} is λ -accessible, the functor F_J , which we know preserves colimits, has λ -accessible domain and codomain; that is, it is λ -accessible. Moreover:

If K is λ -accessible, so are K^A and $K^{A'}$. In either case, the λ -presentables are precisely the diagrams in which all objects are λ -presentable. If K is well λ -accessible, so are K^A and $K^{A'}$.

Hence if K is λ -accessible, the functor F_J , which we know preserves colimits, has λ -accessible domain and codomain; that is, it is λ -accessible. Moreover:

Proposition

The functor F_J preserves μ -presentable objects for all $\mu \geq \lambda$.

If K is λ -accessible, so are $K^{\mathcal{A}}$ and $K^{\mathcal{A}'}$. In either case, the λ -presentables are precisely the diagrams in which all objects are λ -presentable. If K is well λ -accessible, so are $K^{\mathcal{A}}$ and $K^{\mathcal{A}'}$.

Hence if K is λ -accessible, the functor F_J , which we know preserves colimits, has λ -accessible domain and codomain; that is, it is λ -accessible. Moreover:

Proposition

The functor F_J preserves μ -presentable objects for all $\mu \geq \lambda$.

So F_J satisfies the conditions of B-T/R, and thus we are ready to prove the main theorem.

Let K be λ -accessible. If κ is a μ_K -strongly compact cardinal and $\kappa \trianglerighteq \lambda$, then if K has the $< \kappa$ -JEP, it has the JEP.

Let \mathcal{K} be λ -accessible. If κ is a $\mu_{\mathcal{K}}$ -strongly compact cardinal and $\kappa \trianglerighteq \lambda$, then if \mathcal{K} has the $< \kappa$ -JEP, it has the JEP.

Proof.

Let K be λ -accessible. If κ is a μ_K -strongly compact cardinal and $\kappa \trianglerighteq \lambda$, then if K has the $< \kappa$ -JEP, it has the JEP.

Proof.

By B-T/R, the powerful image of F_J is κ -accessible—as noted, the image itself is powerful.

Let K be λ -accessible. If κ is a μ_K -strongly compact cardinal and $\kappa \trianglerighteq \lambda$, then if K has the $< \kappa$ -JEP, it has the JEP.

Proof.

By B-T/R, the powerful image of F_J is κ -accessible—as noted, the image itself is powerful.

Consider a pair $(M_0,M_1)\in\mathcal{K}$. Since $\mathcal{K}^{\mathcal{A}}$ is λ -accessible, it is also κ -accessible, meaning that (M_0,M_1) is a κ -directed colimit of pairs of κ -presentables. If \mathcal{K} has the $<\kappa$ -JEP, all pairs of κ -presentables are in the image of F_J . As the image of F_J is κ -accessible, it is closed under κ -directed colimits. That is, (M_0,M_1) is in the image of F_J .

Let K be λ -accessible. If κ is a μ_K -strongly compact cardinal and $\kappa \trianglerighteq \lambda$, then if K has the $< \kappa$ -JEP, it has the JEP.

Proof.

By B-T/R, the powerful image of F_J is κ -accessible—as noted, the image itself is powerful.

Consider a pair $(M_0,M_1)\in\mathcal{K}$. Since $\mathcal{K}^{\mathcal{A}}$ is λ -accessible, it is also κ -accessible, meaning that (M_0,M_1) is a κ -directed colimit of pairs of κ -presentables. If \mathcal{K} has the $<\kappa$ -JEP, all pairs of κ -presentables are in the image of F_J . As the image of F_J is κ -accessible, it is closed under κ -directed colimits. That is, (M_0,M_1) is in the image of F_J .

Thus every pair of objects in K is jointly embeddable.

In case $\ensuremath{\mathcal{K}}$ is well accessible, we can dispense with the sharp inequality:

Theorem

Let K be well λ -accessible. If κ is a μ_K -strongly compact cardinal, then if K has the $< \kappa$ -JEP, it has the JEP.

Baldwin/Boney give a syntax-heavy argument for an analogue of this result for AECs.

The theorem above is a two-fold improvement, encompassing metric AECs and generalizations, and offering a tighter characterization of the compactness required of κ .

Definition

We say that \mathcal{K} has the $<\kappa$ -AP if for all cospans $M_0 \stackrel{f_0}{\leftarrow} M \stackrel{f_1}{\rightarrow} M_1$, there are $g_i: M_i \rightarrow N$ such that

$$g_0f_0=g_1f_1.$$

We say K has the AP if the above holds for all κ .

Definition

We say that \mathcal{K} has the $<\kappa$ -AP if for all cospans $M_0 \stackrel{f_0}{\leftarrow} M \stackrel{f_1}{\rightarrow} M_1$, there are $g_i: M_i \rightarrow N$ such that

$$g_0f_0=g_1f_1.$$

We say $\mathcal K$ has the AP if the above holds for all κ .

Diagramatically, again:

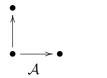
Definition

We say that \mathcal{K} has the $<\kappa$ -AP if for all cospans $M_0 \stackrel{f_0}{\leftarrow} M \stackrel{f_1}{\rightarrow} M_1$, there are $g_i: M_i \rightarrow N$ such that

$$g_0f_0=g_1f_1.$$

We say $\mathcal K$ has the AP if the above holds for all κ .

Diagramatically, again:



Let $F_A: \mathcal{K}^{A'} \to \mathcal{K}^A$ be the obvious forgetful functor.

Notes

- 1. K has the $< \kappa$ -AP just in case $\mathbf{Pres}_{\kappa}(K)^{\mathcal{A}}$ is contained in the image of $F_{\mathcal{A}}$.
- 2. K has the AP just in case F_A is surjective.
- 3. The image of F_A is closed under subobjects, hence powerful.
- 4. As colimits are computed componentwise in $\mathcal{K}^{\mathcal{A}}$, $\mathcal{K}^{\mathcal{A}'}$, F_A preserves everything. Hence F_A is as accessible as $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$ are.

Notes

- 1. K has the $< \kappa$ -AP just in case $\mathbf{Pres}_{\kappa}(K)^{\mathcal{A}}$ is contained in the image of F_A .
- 2. K has the AP just in case F_A is surjective.
- 3. The image of F_A is closed under subobjects, hence powerful.
- 4. As colimits are computed componentwise in $\mathcal{K}^{\mathcal{A}}$, $\mathcal{K}^{\mathcal{A}'}$, F_A preserves everything. Hence F_A is as accessible as $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$ are.

Proposition

If \mathcal{K} is λ -accessible, so are $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$. In either case, the λ -presentables are precisely the diagrams in which all objects are λ -presentable. If \mathcal{K} is well λ -accessible, so are $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$.

In fact, the argument runs exactly as before, giving:

Theorem

Let K be λ -accessible. If κ is a μ_K -strongly compact cardinal and $\kappa \trianglerighteq \lambda$, then if K has the $< \kappa$ -AP, it has the AP.

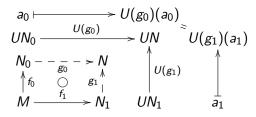
Theorem

Let K be well λ -accessible. If κ is a μ_K -strongly compact cardinal, then if K has the $< \kappa$ -AP, it has the AP.

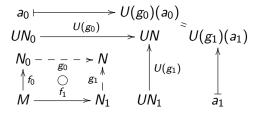
This again generalizes the analogue for AECs in Baldwin/Boney.

In an AEC K, $U: K \to \mathbf{Sets}$, pairs $(f_i: M \to N_i, a_i \in U(N_i))$ for i = 0, 1 determine the same *Galois type* if there is an amalgam $g_i: N_i \to N$ of the form:

In an AEC K, $U: K \to \mathbf{Sets}$, pairs $(f_i: M \to N_i, a_i \in U(N_i))$ for i = 0, 1 determine the same *Galois type* if there is an amalgam $g_i: N_i \to N$ of the form:



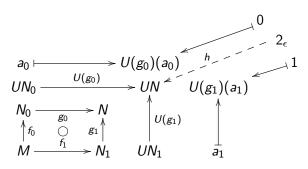
In an AEC K, $U: K \to \mathbf{Sets}$, pairs $(f_i: M \to N_i, a_i \in U(N_i))$ for i = 0, 1 determine the same *Galois type* if there is an amalgam $g_i: N_i \to N$ of the form:



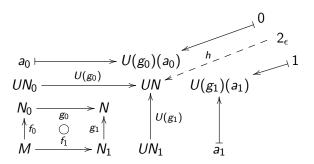
 κ -tameness follows from κ -accessibility (in sufficiently compact κ) of the image of the forgetful functor to category of "pointed spans."

In an mAEC \mathcal{K} , $U: \mathcal{K} \to \mathbf{Met}$, the Galois types of pairs $(f_i: M \to N_i, a_i \in U(N_i))$, i = 0, 1 are within ϵ if there is an amalgam $g_i: N_i \to N$ with:

In an mAEC \mathcal{K} , $U: \mathcal{K} \to \mathbf{Met}$, the Galois types of pairs $(f_i: M \to N_i, a_i \in U(N_i))$, i = 0, 1 are within ϵ if there is an amalgam $g_i: N_i \to N$ with:



In an mAEC K, $U: K \to \mathbf{Met}$, the Galois types of pairs $(f_i: M \to N_i, a_i \in U(N_i))$, i = 0, 1 are within ϵ if there is an amalgam $g_i: N_i \to N$ with:



 κ -d-tameness: determined (for all $\epsilon > 0$) over κ -sized structures...