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Let T be a complete first order theory in language L(T ).
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Let T be a complete first order theory in language L(T ).

Spectrum of T : For each cardinal λ, I (T , λ) is the number of
models of T of size λ (up to isomorphism).
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Let T be a complete first order theory in language L(T ).

Spectrum of T : For each cardinal λ, I (T , λ) is the number of
models of T of size λ (up to isomorphism).

Theorem (Morley, 1965)

L(T ) countable. If I (T , λ) = 1 for some λ > ℵ0, I (T , κ) = 1 for
all κ > ℵ0.
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Let T be a complete first order theory in language L(T ).

Spectrum of T : For each cardinal λ, I (T , λ) is the number of
models of T of size λ (up to isomorphism).

Theorem (Morley, 1965)

L(T ) countable. If I (T , λ) = 1 for some λ > ℵ0, I (T , κ) = 1 for
all κ > ℵ0.

Theorem (Shelah, 1970)

If I (T , λ) = 1 for some λ > |L(T )|, I (T , κ) = 1 for all κ > |L(T )|.
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Let T be a complete first order theory in language L(T ).

Spectrum of T : For each cardinal λ, I (T , λ) is the number of
models of T of size λ (up to isomorphism).

Theorem (Morley, 1965)

L(T ) countable. If I (T , λ) = 1 for some λ > ℵ0, I (T , κ) = 1 for
all κ > ℵ0.

Theorem (Shelah, 1970)

If I (T , λ) = 1 for some λ > |L(T )|, I (T , κ) = 1 for all κ > |L(T )|.
The associated stability spectrum, which tracks the number of
types over sets of each cardinality, is also well-understood.
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Let T be a complete first order theory in language L(T ).

Spectrum of T : For each cardinal λ, I (T , λ) is the number of
models of T of size λ (up to isomorphism).

Theorem (Morley, 1965)

L(T ) countable. If I (T , λ) = 1 for some λ > ℵ0, I (T , κ) = 1 for
all κ > ℵ0.

Theorem (Shelah, 1970)

If I (T , λ) = 1 for some λ > |L(T )|, I (T , κ) = 1 for all κ > |L(T )|.
The associated stability spectrum, which tracks the number of
types over sets of each cardinality, is also well-understood.

Problem: elementary classes—classes of models of such
theories—do not exhaust the interesting classes of mathematical
objects.
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Concretely, we would like our results to encompass nonelementary
examples like:
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Concretely, we would like our results to encompass nonelementary
examples like:

I Banach spaces.
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Concretely, we would like our results to encompass nonelementary
examples like:

I Banach spaces.

I Artinian commutative rings with unit.
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Concretely, we would like our results to encompass nonelementary
examples like:

I Banach spaces.

I Artinian commutative rings with unit.

I (C,+, ·, exp).
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Concretely, we would like our results to encompass nonelementary
examples like:

I Banach spaces.

I Artinian commutative rings with unit.

I (C,+, ·, exp).

Abstractly, we would like analogous results for classes of models of
sentences in infinitary logics (such as L∞,ω) or logics incorporating
the quantifier Q (i.e. “there exist uncountably many”).
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Concretely, we would like our results to encompass nonelementary
examples like:

I Banach spaces.

I Artinian commutative rings with unit.

I (C,+, ·, exp).

Abstractly, we would like analogous results for classes of models of
sentences in infinitary logics (such as L∞,ω) or logics incorporating
the quantifier Q (i.e. “there exist uncountably many”).

Generalize by abandoning syntax, and considering abstract classes
of structures that retain only the essential properties common to
such classes of models.
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
I Unions of chains: if (Mi | i < δ) is a ≺K-increasing chain,

1.
⋃

i<δ Mi ∈ K
2. for each j < δ, Mj≺K

⋃
i<δ Mi

3. if each Mj≺KM ∈ K,
⋃

i<δ Mi≺KM
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
I Unions of chains: if (Mi | i < δ) is a ≺K-increasing chain,

1.
⋃

i<δ Mi ∈ K
2. for each j < δ, Mj≺K

⋃
i<δ Mi

3. if each Mj≺KM ∈ K,
⋃

i<δ Mi≺KM

I Coherence: If M0≺KM2, M0 ⊆ M1≺KM2, then M0≺KM1
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
I Unions of chains: if (Mi | i < δ) is a ≺K-increasing chain,

1.
⋃

i<δ Mi ∈ K
2. for each j < δ, Mj≺K

⋃
i<δ Mi

3. if each Mj≺KM ∈ K,
⋃

i<δ Mi≺KM

I Coherence: If M0≺KM2, M0 ⊆ M1≺KM2, then M0≺KM1

I Löwenheim-Skolem: Exists cardinal LS(K) such that for any
M ∈ K, subset A ⊆ M, there is an M0 ∈ K with
A ⊆ M0≺KM and |M0| ≤ |A|+ LS(K).
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
I Unions of chains: if (Mi | i < δ) is a ≺K-increasing chain,

1.
⋃

i<δ Mi ∈ K
2. for each j < δ, Mj≺K

⋃
i<δ Mi

3. if each Mj≺KM ∈ K,
⋃

i<δ Mi≺KM

I Coherence: If M0≺KM2, M0 ⊆ M1≺KM2, then M0≺KM1

I Löwenheim-Skolem: Exists cardinal LS(K) such that for any
M ∈ K, subset A ⊆ M, there is an M0 ∈ K with
A ⊆ M0≺KM and |M0| ≤ |A|+ LS(K).

A K-embedding f : M ↪→K N is an isomorphism from M to a
strong submodel of N, f : M ∼= M ′≺KN.
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Example 1: Let K be the class of models of a first order theory T ,
and ≺K the elementary submodel relation. Then K is an AEC with
LS(K) = ℵ0 + |L(T )|.

One can think of AECs as the category-theoretic hulls of
elementary classes—abandoning syntax, but retaining certain basic
properties of the elementary submodel relation.

Example 2: Let φ be a sentence of Lκ,ω, A a fragment containing
φ. The class K = Mod(φ), with ≺K elementary embedding with
respect to L∗, is an AEC (LS(K) = |A|). With suitable ≺K, can do
the same with models of sentences in L(Q), Lω1,ω(Q), etc.
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We assume the following additional properties:

Definition (Joint Embedding Property)

For any M1,M2 ∈ K, there is N ∈ K with embeddings
f1 : M1 ↪→K N and f2 : M2 ↪→K N.

Definition (Amalgamation Property)

If M≺KM1 and M≺KM2 (with all three models in K), there is an
N ∈ K and embeddings g1 : M1 ↪→K N and g2 : M2 ↪→K N that
agree on M.
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Having discarded syntax, we consider a new notion of type: Galois
types. In AECs with sufficient amalgamation, there is a monster
model C in K, and the Galois types have a simple description:

Definition
For a ∈ C, M ∈ K, the Galois type of a over M is defined to be the
orbit of a under automorphisms of C that fix M. The set of all
types over M is denoted by ga-S(M).

Example: If K an EC and ≺K elementary submodel, the Galois
types over M ∈ K are precisely the complete types over M:

ga-tp(a/M) = ga-tp(b/M) iff tp(a/M) = tp(b/M)
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In general, though, the Galois types will not have a nice syntactic
description. More terminology:
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In general, though, the Galois types will not have a nice syntactic
description. More terminology:

Definition

1. We say that K is λ-Galois stable if for every M ∈ Kλ,
|ga-S(M)| = λ.
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In general, though, the Galois types will not have a nice syntactic
description. More terminology:

Definition

1. We say that K is λ-Galois stable if for every M ∈ Kλ,
|ga-S(M)| = λ.

2. For any M, a ∈ C, and N≺KM, the restriction of ga-tp(a/M)
to N, denoted ga-tp(a/M) � N, is the orbit of a under
AutN(C).
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In general, though, the Galois types will not have a nice syntactic
description. More terminology:

Definition

1. We say that K is λ-Galois stable if for every M ∈ Kλ,
|ga-S(M)| = λ.

2. For any M, a ∈ C, and N≺KM, the restriction of ga-tp(a/M)
to N, denoted ga-tp(a/M) � N, is the orbit of a under
AutN(C).

3. Let N≺KM and p ∈ ga-S(N). We say that M realizes p if
there is a ∈ M such that ga-tp(a/M) � N = p. Or: the orbit
in C corresponding to p meets M.
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In general, though, the Galois types will not have a nice syntactic
description. More terminology:

Definition

1. We say that K is λ-Galois stable if for every M ∈ Kλ,
|ga-S(M)| = λ.

2. For any M, a ∈ C, and N≺KM, the restriction of ga-tp(a/M)
to N, denoted ga-tp(a/M) � N, is the orbit of a under
AutN(C).

3. Let N≺KM and p ∈ ga-S(N). We say that M realizes p if
there is a ∈ M such that ga-tp(a/M) � N = p. Or: the orbit
in C corresponding to p meets M.

4. We say that M ∈ K is λ-Galois saturated if for every
p ∈ ga-S(N), N≺KM with |N| < λ, p is realized in M.

Michael Lieberman Topology and rank functions for Galois types in AECs



Overview
Topology

Ranks
Epilogue

AECs
Galois types
Motivation

Question
What can we say about the stability spectra of AECs? Can we use
vaguely classical techniques to address the problem? Topology?
Rank functions?

In this talk, we give:

I A way of topologizing the sets ga-S(M) in such a way that
topological properties of the resulting spaces correspond to
semantic properties of M and K.

I A closely related notion of rank (actually, a family of ranks)
which shows some promise in analyzing the stability spectra of
reasonably well-behaved AECs.

Michael Lieberman Topology and rank functions for Galois types in AECs



Overview
Topology

Ranks
Epilogue

Definition
Tameness
Compactness, Isolated Points

Let K be an AEC with monster model C. Let λ ≥ LS(K) and
M ∈ K.

Definition (X λ
M)

For each N≺KM with |N| ≤ λ and type p ∈ ga-S(N), let

Up,N = {q ∈ ga-S(M) : q � N = p}

The sets Up,N form a basis for a topology on ga-S(M). We denote
by Xλ

M the set ga-S(M) endowed with this topology.

Note
The Up,N are, in fact, clopen. Types over small submodels play a
role analogous to formulas in topologizing spaces of syntactic
types.

Michael Lieberman Topology and rank functions for Galois types in AECs



Overview
Topology

Ranks
Epilogue

Definition
Tameness
Compactness, Isolated Points

Remark
The assignment (M, λ) 7→ Xλ

M is functorial in both arguments:

I For any µ > λ, the set-theoretic identity map
Idµ,λ : Xµ

M → Xλ
M is continuous.

I For M,M ′ ∈ K and f : M → M ′ a K-embedding, the induced
map from ga-S(M ′) to ga-S(M) is a continuous surjection
from Xλ

M′ to Xλ
M .

In particular, for each M ∈ K, we obtain a well-behaved spectrum
of spaces, with topological properties passing up and down the line.
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An easy connection between semantic and topological properties:

Note
A type of the form ga-tp(a/M) with a ∈ M is always isolated in
Xλ
M . There is no reason to think that these are the only isolated

types in Xλ
M .

Theorem
If M is λ-saturated, isolated points are dense in Xµ

M for all µ < λ.

There is a partial converse, if not a full one:

Theorem
If {ga-tp(a/M) : a ∈ M} is a dense subset of Xµ

M for all µ < λ, M
is λ-saturated.
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Definition
An AEC K is said to be χ-tame if for any M ∈ K, if
q, q′ ∈ ga-S(M) are distinct, then there is submodel N≺KM with
|N| ≤ χ such that q � N 6= q′ � N.

Intuition: if we regard types over small models as formulas,
tameness means that types are determined entirely by their
constituent formulas.

A critically important property. Automatic for ECs, but may fail in
certain contexts (Baldwin/Shelah and Baldwin/Kolesnikov build
non-tame classes from Abelian groups), and does not hold in a
general AEC. Required for all existing stability and categoricity
transfer results for AECs.
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The centerpiece:

Theorem (Tameness As Separation Principle)

The AEC K is χ-tame iff for all M ∈ K, Xχ
M is Hausdorff.

Since each space Xλ
M has a basis of clopens (i.e. the Up,N) we

have a bit more:

Proposition

K is χ-tame iff Xχ
M is totally disconnected for every M ∈ K.

Moreover,

Proposition

If K is χ-tame, Xµ
M is totally disconnected for every M ∈ K and

µ ≥ χ.
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Naturally, compactness is too much to hope for. In particular,

Proposition

Let K be an arbitrary AEC with monster model, M ∈ K, and
λ ≥ LS(K). Then Xλ

M is not compact.

We might hope for some weaker form of compactness, but this
proves incompatible with our desire for tameness. The critical
complication results from the following:

Fact
For any M ∈ K, the intersection of any λ many open sets in Xλ

M is
open.
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If K is sufficiently tame to guarantee Hausdorffness, this leads to
near-discreteness:

Remark
Any subset S ⊆ Xλ

M with |S | = λ is discrete and closed.

The spaces Xλ
M are uniform, hence completely regular. So:

Proposition

Let K be χ-tame. Then for any M ∈ K and any λ ≥ χ, the space
Xλ
M is not countably compact.
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Another important consequence of sufficient tameness:

Proposition

Let K be χ-tame. Then for any M ∈ K and any λ ≥ χ, a type
q ∈ Xλ

M is an accumulation point of S ⊆ Xλ
M only if every

neighborhood of q contains more than λ elements of S.

The latter will be worth remembering in the discussion of ranks.
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In light of this fact, we define a related, slightly Morley-like rank:

Definition (RMλ)

Assume K is χ-tame. For λ ≥ χ, we define RMλ by the following
induction: for any q ∈ ga-S(M) with |M| ≤ λ,
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In light of this fact, we define a related, slightly Morley-like rank:

Definition (RMλ)

Assume K is χ-tame. For λ ≥ χ, we define RMλ by the following
induction: for any q ∈ ga-S(M) with |M| ≤ λ,

I RMλ[q] ≥ 0.
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In light of this fact, we define a related, slightly Morley-like rank:

Definition (RMλ)

Assume K is χ-tame. For λ ≥ χ, we define RMλ by the following
induction: for any q ∈ ga-S(M) with |M| ≤ λ,

I RMλ[q] ≥ 0.

I RMλ[q] ≥ α for limit α if RMλ[q] ≥ β for all β < α.
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In light of this fact, we define a related, slightly Morley-like rank:

Definition (RMλ)

Assume K is χ-tame. For λ ≥ χ, we define RMλ by the following
induction: for any q ∈ ga-S(M) with |M| ≤ λ,

I RMλ[q] ≥ 0.

I RMλ[q] ≥ α for limit α if RMλ[q] ≥ β for all β < α.

I RMλ[q] ≥ α + 1 if there exists a structure M ′�KM such that
q has strictly more than λ many extensions to types q′ over
M ′ with RMλ[q′] ≥ α.
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In light of this fact, we define a related, slightly Morley-like rank:

Definition (RMλ)

Assume K is χ-tame. For λ ≥ χ, we define RMλ by the following
induction: for any q ∈ ga-S(M) with |M| ≤ λ,

I RMλ[q] ≥ 0.

I RMλ[q] ≥ α for limit α if RMλ[q] ≥ β for all β < α.

I RMλ[q] ≥ α + 1 if there exists a structure M ′�KM such that
q has strictly more than λ many extensions to types q′ over
M ′ with RMλ[q′] ≥ α.

For types q over M of arbitrary size, we define

RMλ[q] = min{RMλ[q � N] : N≺KM, |N| ≤ λ}.
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The ranks RMλ are: monotonic, invariant under automorphisms of
C, and decreasing in λ. Are larger (typewise) than
Cantor-Bendixson ranks in spaces Xλ

M .

Definition (λ-t.t.)

We say that K is λ-totally transcendental if for every M ∈ K and
q ∈ ga-S(M), RMλ[q] is an ordinal.

Note
A sample consequence: If K is λ-t.t., isolated points are dense in
Xµ
M for any µ ≥ λ.
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No guarantee that types have unique extensions of same RMλ

rank, but:

Proposition (Quasi-unique Extension)

Let M≺KM ′, q ∈ ga-S(M), and say that RMλ[q] = α. Given any
rank α extension q′ of q to a type over M ′, there is an
intermediate structure M ′′, M≺KM ′′≺KM ′, |M ′′| ≤ |M|+ λ, and a
rank α extension p ∈ ga-S(M ′′) of q with q′ ∈ ga-S(M ′) as its
unique rank α extension.
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Connections with Galois stability, in case K is tame:

Theorem
If K is λ-stable where λ satisfies λℵ0 > λ, then K is λ-t.t.

Proof (Sketch): Assume K isn’t λ-t.t, and deduce failure of
λ-stability.

Note
There exists an ordinal α such that for all M ∈ K, q ∈ ga-S(M),
RMλ[q] =∞ iff RMλ[q] ≥ α.

If K not λ-t.t., there is q ∈ ga-S(M) for some M ∈ K with
RMλ[q] =∞ ≥ α + 1. This rank is witnessed by a restriction to
some N≺KM, |N| = λ: p = q � N has rank ≥ α + 1.

We construct an extension Nω of N of size λ over which p has λℵ0

distinct extensions, hence more than λ types over Nω.

Michael Lieberman Topology and rank functions for Galois types in AECs



Overview
Topology

Ranks
Epilogue

Definitions
Properties
Stability

Construction:
Stage 1: There is an extension of N over which p has extensions
{qi | i < λ} of rank ≥ α. Exists size λ extension N1 of N over
which restrictions are distinct: {pi = qi � N | i < λ}. All rank ≥ α.

Stage 2: Repeat process for each pi , obtaining extension N2 of N1

over which we have family {pij | i , j < λ}, where pij extends pi for
all i , j . All rank ≥ α.

. . .
Stage n: Same procedure. End up with extension Nn, types
{pσ |σ ∈ λn}, where pσ extends pσ�m for all m ≤ n. All rank ≥ α.

. . .
Stage ω: Set Nω =

⋃
i<λ Ni . For each τ ∈ λω, there is

pτ ∈ ga-S(Nω) with pτ � Nn = pτ�n. Distinct, λℵ0 many.
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Theorem
If K is λ-totally transcendental, and M ∈ K with cf(|M|) > λ, then
|ga-S(M)| ≤ |M| · sup{|ga-S(N)| |N≺KM, |N| < |M|}.
Proof (Sketch): Say |M| = κ. Take a filtration of M of length κ:

M0≺KM1≺K . . .≺KMi≺K . . .

with i < κ, |Mi | < |M| and M =
⋃

i<κ Mi . Let q ∈ ga-S(M). We

have RMλ[q] = β for some ordinal β, and there must be N≺KM
with |N| = λ such that p = q � N has rank β.

Expand to N ′�KN so q is unique rank β extension of q � N ′.
N ′≺KMi for some i , so q is unique rank β extension of q � Mi .

So no more types over M than over all of the submodels Mi .

Michael Lieberman Topology and rank functions for Galois types in AECs



Overview
Topology

Ranks
Epilogue

Definitions
Properties
Stability

Theorem
Let K be λ-stable with λℵ0 > λ, and let κ satisfy cf(κ) > λ. If
there is an interval [µ, κ) such that every M ∈ K[µ,κ) satisfies
|ga-S(M)| ≤ κ, then K is κ-stable.

A very nice special case:

Corollary

If K is ℵ0-stable, and κ is of uncountable cofinality, then if K is
stable in every cardinality below κ, it is κ-stable as well.

This was established in (Baldwin-Kueker-Van Dieren, 2004), using
the machinery of splitting. Our method has produced a vastly
more general result.
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We can also say something in case K is only weakly χ-tame (the
defining condition of tameness holds only for saturated models):

Theorem
If K is λ-t.t., and κ is regular with κ > λ, if there is an interval
[µ, κ) on which K is stable, then K is κ-stable.

Note: we must now assume t.t. explicitly, as the implication from
stability to t.t. holds only for tame AECs.

Question: Can we find a sufficient condition for total
transcendence when K is only weakly tame? Not tame at all?
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Note: the stronger stability assumption in the last result serves
only to guarantee the existence of enough saturated models that
the weakening of tameness is not an issue.

A purely category-theoretic notion due to Rosický—weak
κ-stability—will do just as well.

As it happens, AECs are accessible categories, and any accessible
category is weakly κ-stable in infinitely many, arbitrarily large
cardinals.

The result: the beginnings of a stability spectrum for weakly tame
AECs.
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