Extensions of ZFC through the lens of accessible categories (Joint with Jiří Rosický and Sebastien Vasey)

Michael Lieberman

Masaryk University, Department of Mathematics and Statistics http://www.math.muni.cz/~lieberman

Accessible categories and their connections School of Mathematics, University of Leeds

The dream of a categorical algebra with no meaningful dependence on set theory is somewhat feasible in the following popular context:

Definition

Let λ be a regular cardinal. We say that a category ${\cal K}$ is *locally* $\lambda\text{-}presentable$ if it

- contains a set S of λ -presentable objects (up to iso),
- any object of \mathcal{K} is a λ -directed colimit of objects in S,
- and \mathcal{K} has all (small) colimits, i.e. it is *cocomplete*.

Here we can nearly get away with thinking of cardinals simply as parameters drawn from a well-ordered collection—up to some basic bookkeeping: regular versus singular, successor versus limit.

Things work very smoothly in this case, e.g.

Fact

```
Trivially, if \mathcal{K} is locally \lambda-presentable, it is locally \mu-presentable for all regular \mu \geq \lambda.
```

But locally presentable categories are a paradise in which few can live. An equivalent definition:

Definition

A category ${\mathcal K}$ is locally $\lambda\text{-presentable}$ if it

- \blacktriangleright is λ -accessible, and
- ▶ has all (small) limits, i.e. it is *complete*.

For model theorists, say, who tend to like concrete monomorphisms of structures, this means (among many, many other things) that pullbacks exist, hence we must be closed under intersections...

A little abstract model theory:

Definition

Let *L* be a finitary vocabulary. An *abstract elementary class* in *L* consists of a class of *L*-structures \mathcal{K} and an isomorphism-closed strong substructure relation \prec with properties that include:

- ▶ Tarski-Vaught: (\mathcal{K}, \prec) is closed under unions of \prec -chains.
- ▶ Löwenheim-Skolem: There is an infinite cardinal LS(\mathcal{K}) such that for any $M \in \mathcal{K}$ and subset A of M, there is $N \in \mathcal{K}$ with $A \subseteq N \prec M$, and $|N| \leq |A| + LS(\mathcal{K})$.

Considering \mathcal{K} with \prec -embeddings, we obtain a LS(\mathcal{K})⁺-accessible category with (concrete) directed colimits.

From locally presentable... ... to accessible.

A little abstract model theory:

Definition

Let *L* be a finitary vocabulary. A *metric AEC* (or *mAEC*) in *L* consists of a class of complete metric *L*-structures \mathcal{K} and an isomorphism-closed strong substructure relation \prec with properties that include:

- Tarski-Vaught: (K, ≺) is closed under metric completions of unions of ≺-chains.
- ▶ Löwenheim-Skolem: There is an infinite cardinal $LS^{d}(\mathcal{K})$ such that for any $M \in \mathcal{K}$ and subset A of M, there is $N \in \mathcal{K}$ with $A \subseteq N \prec M$, and $dc(N) \leq |A| + LS^{d}(\mathcal{K})$.

Considering \mathcal{K} with \prec -embeddings, we obtain an $\mathsf{LS}^d(\mathcal{K})^+$ -accessible category with (not necessarily concrete) directed colimits and concrete \aleph_1 -directed colimits.

From locally presentable... ... to accessible.

A little abstract model theory:

Definition ([BGL+16])

Let *L* be a μ -ary vocabulary. A μ -*AEC* in *L* consists of a class of *L*-structures \mathcal{K} and an isomorphism-closed strong substructure relation \prec with properties that include:

- Tarski-Vaught: (*K*, ≺) is closed under µ-directed unions of ≺-inclusions.
- Löwenheim-Skolem: There is an infinite cardinal λ = λ^{<μ} ≥ μ such that for any M ∈ K and subset A of M, there is N ∈ K with A ⊆ N ≺ M, and |N| ≤ |A|^{<μ} + λ.

Fact

Any λ -accessible category with all morphisms monomorphisms is equivalent to a λ -AEC. Any μ -AEC with LS-number λ is equivalent to a λ^+ -accessible category with all morphisms monomorphisms.

From locally presentable... ... to accessible.

This gives a useful synthesis of model-theoretic and accessible category perspectives. Foundation for more:

Definition

A category is *locally* λ -*polypresentable* if it is λ -presentable with wide pullbacks.

Proposition ([LRVb])

Any locally λ -polypresentable category with all morphisms mono is equivalent to a λ -AEC admitting intersections.

Definition

A category is *locally* λ -multipresentable if it is λ -accessible with connected limits.

Proposition ([LRVb])

Any locally λ -multipresentable category with all morphisms mono is equivalent to a **universal** λ -AEC.

Theorem ([BR12])

If \mathcal{K} is a λ -accessible category with directed colimits, it is μ -accessible for all regular $\mu \geq \lambda$, i.e. it is well- λ -accessible.

Question

Given a λ -accessible category, is it μ -accessible for regular $\mu \geq \lambda$? Definition

For regular $\mu > \lambda$, we say that $\mu \succeq \lambda$ if the following equivalent conditions hold:

- 1. Every λ -accessible category is μ -accessible.
- For any set X with |X| < μ, the set P_λ(X) consisting of all subsets of X of size λ has a cofinal subset of size < μ.
- 3. In any λ -directed poset, any subset of size $< \mu$ is contained in a λ -directed subset of size $< \mu$.

None of this is very intuitive...

Examples ([MP89],[AR94])

- 1. For any (uncountable) regular μ , $\mu \triangleright \omega$.
- 2. For any regular μ , $\mu^+ \triangleright \mu$.
- 3. For regular $\mu \geq \lambda$, $(2^{\mu})^+ \triangleright \lambda$.
- 4. If $\mu \ge \lambda$ and for all cardinals $\alpha < \lambda$ and $\beta < \mu$, $\beta^{\alpha} < \mu$, then $\mu \triangleright \lambda$.

Definition

We say λ is μ -closed if $\theta^{<\mu} < \lambda$ for all $\theta < \lambda$; we say it is almost μ -closed if $\theta^{<\mu} \leq \lambda$.

Proposition ([LR17b]/Ref,[LRVa])

Let $\lambda > \mu$ regular. If λ is μ -closed, $\lambda \triangleright \mu$. If $\lambda > 2^{<\mu}$ and $\lambda \triangleright \mu$, λ is μ -closed.

Definition

The Generalized Continuum Hypothesis (GCH) states that for all infinite λ , $2^{\lambda} = \lambda^+$.

We don't much like assuming GCH, but it makes exponentiation easy: if $\lambda>\mu\text{,}$

$$\lambda^{\mu} = \begin{cases} \lambda^{+} & \mathsf{cf}(\lambda) \leq \mu \\ \lambda & \mathsf{cf}(\lambda) > \mu \end{cases} \qquad \lambda^{<\mu} = \begin{cases} \lambda^{+} & \lambda = \kappa^{+}, \mathsf{cf}(\kappa) \leq \mu \\ \lambda & \mathsf{else} \end{cases}$$

So, under GCH, any $\lambda > \mu$ is closed as long as it is not the successor of a cardinal of small cofinality.

Proposition

Under GCH, any μ -accessible category is λ -accessible for pretty much every $\lambda > \mu$.

This is cracking a walnut with a sledgehammer, though: we can get away with much weaker assumptions.

Definition

- 1. The Singular Cardinal Hypothesis (SCH) states that $2^{\lambda} = \lambda^+$ if λ is a singular strong limit cardinal ($2^{\mu} < \lambda$ for all $\mu < \lambda$).
- 2. We say that SCH_{μ,λ} holds if there is a set of almost μ -closed cardinals unbounded in λ .
- 3. For any θ , we say SCH_{$\mu,\geq\theta$} holds if SCH_{μ,λ} holds for all $\lambda \geq \theta$. Notes ([LRVa])
 - 1. Relevant instances $SCH_{\mu,\lambda}$ follow from SCH (hence GCH).
 - 2. SCH holds iff $SCH_{\mu,\geq 2^{>\mu}}$ holds for all regular μ .
 - If κ is a (ω₁-)strongly compact cardinal, then SCH_{μ,θ} holds for all θ ≥ κ and regular μ ≤ θ.

If ${\rm SCH}_{\mu,\geq\theta}$ holds, then cardinal exponential behaves just nicely above $\theta,$ so:

Proposition

Assuming $SCH_{\mu,\geq\theta}$, a μ -accessible category is λ -accessible for any $\lambda \geq \theta$ that is not the successor of a cardinal of cofinality $\leq \mu$.

The move to instances of SCH is not an idle one, or a product of the usual pathology of generalization—by the previous note, they follow not just from GCH, but from a large cardinal axiom.

That is, if our additional axioms contract or expand the universe, we still get well-accessibility, almost. More about this later...

Set theory creeps in	Accessibility spectrum
Arithmetic	Internal size
Large Cardinals	LS-accessibility

Fact/Definition

Let \mathcal{K} be an accessible category. Any object M is λ -presentable for some regular λ . The presentability rank of M, denoted $r_{\mathcal{K}}(M)$, is the least such λ .

In examples, this tracks the right notion of size.

Examples

For sufficiently large λ ,

• **Grp**:
$$r_{\text{Grp}}(G) = \lambda^+$$
 iff G is λ -presented.

•
$$\mathcal{K}$$
 an AEC: $r_{\mathcal{K}}(M) = \lambda^+$ iff $|M| = \lambda$.

•
$$\mathcal{K}$$
 an mAEC: $r_{\mathcal{K}}(M) = \lambda^+$ iff $dc(M) = \lambda$.

Definition

Define the internal size of M in \mathcal{K} to be

$$|M|_{\mathcal{K}} = \left\{ egin{array}{ll} \lambda & ext{if } \mathsf{r}_{\mathcal{K}}(M) = \lambda^+ \ \mathsf{r}_{\mathcal{K}}(M) & ext{else} \end{array}
ight.$$

Set theory creeps in... Accessibility spectrum Arithmetic Internal size Large Cardinals LS-accessibility

Questions

Is presentability rank always a successor? Always the successor of the natural notion of size?

There is no known counterexample to the first question: an accessible category \mathcal{K} and object M such that $r_{\mathcal{K}}(M)$ is a regular **limit** cardinal, i.e. a *weakly inaccessible cardinal*.

Fact ([BR12])

Let \mathcal{K} be λ -accessible with directed colimits. For any M in \mathcal{K} with $r_{\mathcal{K}}(M) > \lambda$, $r_{\mathcal{K}}(M)$ is a successor.

They show that the same holds for λ -accessible \mathcal{K} , under GCH. Boils down to cardinal arithmetic again...

Fact ([LRVa])

Assuming a suitable instance of SCH, the ranks of objects in any λ -accessible category are successors.

We consider an internal analogue of Löwenheim-Skolem.

Definition

We say that a category \mathcal{K} is *LS*-accessible if there is some λ such that for all $\lambda' \geq \lambda$, \mathcal{K} contains an object of internal size λ . We say that \mathcal{K} is weakly *LS*-accessible if this holds only for regular λ' .

Question

Is every large accessible category LS-accessible?

No counterexample is known.

Proposition ([LR14])

If \mathcal{K} is a large accessible category with directed colimits and all morphisms mono, it is LS-accessible.

Purely category-theoretic arguments give weak LS-accessibility in the locally multi- and polypresentable cases, [LRVa]. Via μ -AECs?

Set theory creeps in	Accessibility spectrum
Arithmetic	Internal size
Large Cardinals	LS-accessibility

The question remains how internal size relates to, say, cardinality. Example

Assume SCH_{$\mu,\geq\theta$}. Let \mathcal{K} be a μ -AEC, $U : \mathcal{K} \rightarrow$ Sets the forgetful functor. Given M in \mathcal{K} , $|UM| = \lambda \geq \theta + LS(\mathcal{K})$, what are the possibilities for $|M|_{\mathcal{K}}$?

$$|M|_{\mathcal{K}} = \begin{cases} \lambda & \lambda \neq \lambda_0^+, cf(\lambda_0) < \mu \\ \lambda \text{ or } \lambda_0 & else \end{cases}$$

It is remarkably easy to construct μ -AECs with gaps in cardinalities λ with cf(λ) < μ , but internal size is much smoother—these gaps may simply disappear. Hence the difficulty with counterexamples. Fact ([LRVa])

Assume SCH_{$\mu,\geq\theta$}. Let \mathcal{K} be a μ -AEC admitting intersections with arbitrarily large models. Then \mathcal{K} is LS-accessible.

Set theory creeps in... Arithmetic Large Cardinals Accessible images Co-wellpoweredness

We toy with a few large cardinal (or anti-large cardinal) axioms:

- V = L, the axiom of constructibility.
- Strongly inaccessible cardinals.
- Measurable cardinals.
- Almost strongly compact cardinals/µ-strongly compact cardinals.
- Strongly compact cardinals.
- Vopěnka cardinals.
- Huge cardinals.

For each of the large cardinal axioms, you may wish to add "There exists a proper class of. . . "

Accessible images Co-wellpoweredness

Definition (Vopěnka's Principle)

We say that Vopěnka's Principle holds if the following equivalent conditions hold:

- 1. No locally presentable category contains a large discrete full subcategory.
- 2. For any class C of first-order structures in a finitary signature L, there are distinct $M, N \in \mathcal{C}$ with an elementary embedding $i: M \rightarrow N$.

(This can be turned, rather artificially, into an explicit large cardinal principle.)

This is a category-theoretic magic wand: see Chapter 6 of [AR94].

Funny story: this was meant as a kind of satire on large cardinal principles, but proved to be independent.

Accessible images Co-wellpoweredness

We concentrate on certain flavors of compactness.

Definition

A cardinal κ is *strongly compact* if the following equivalent conditions hold:

- 1. Every κ -complete filter extends to a κ -complete ultrafilter.
- 2. The infinitary logic $L_{\kappa\kappa}$ is compact: any inconsistent set of formulas contains an inconsistent subset of size $< \kappa$.

We say that κ is μ -strongly compact if every κ -complete filter extends to a μ -complete ultrafilter.

We say κ is *almost strongly compact* if it is μ -strongly compact for all $\mu < \kappa$.

What do these have to do with anything? Well, instances of SCH.

Set theory creeps in... Arithmetic Large Cardinals Accessible images Co-wellpoweredness

Let Ab denote the category of abelian groups, and \mathcal{F} the full subcategory of free abelian groups.

Ab is beautifully accessible, but is \mathcal{F} ?

Theorem ([EM90])

Assume V = L. Then \mathcal{F} is **not** accessible.

Theorem ([EM90])

Assume there is a strongly compact cardinal. Then \mathcal{F} is accessible.

Notes

- The free abelian group functor F : Sets → Ab is finitely accessible, and F is its image.
- ▶ *F* is closed under subobjects, hence the powerful image of *F*.

Theorem ([MP89])

Assume there is a proper class of strongly compact cardinals. Then the powerful image of any accessible functor is accessible.

Theorem ([BTR16])

Let \mathcal{L} be (well-) λ -accessible, such that there exists a $\mu_{\mathcal{L}}$ -strongly compact cardinal κ . The powerful image of any λ -accessible functor to \mathcal{L} that preserves $\mu_{\mathcal{L}}$ -presentable objects is κ -accessible.

One can give an explicit bound on this $\mu_{\mathcal{L}}$.

Accessible images Co-wellnoweredness

Corollary

If there is a μ -strongly compact cardinal for every μ , then the powerful image of any accessible functor is accessible.

Note

The following statements are equivalent:

- There is a μ-strongly compact cardinal for every μ.
- There is a proper class of almost strongly compact cardinals.

So a proper class of almost strongly compact cardinals suffices.

Question

Is this an improvement?

Answer

Consistently yes, consistently no?

Given an abstract class of structures \mathcal{K} , we often ask: can every diagram of shape \mathcal{A} be completed to a diagram of shape \mathcal{A}' ?

Example

We say that an accessible category \mathcal{K} has the $< \kappa$ -JEP if for any κ -presentable $M_0, M_1 \in \mathcal{K}$, there are $f_i : M_i \to N$ for i = 1, 2. We say that \mathcal{K} has the JEP if this holds for arbitrary $M_0, M_1 \in \mathcal{K}$. In terms of diagrams:

ullet ullet

The collection of jointly embeddable pairs corresponds to the image of the forgetful functor

$$F_J: \mathcal{K}^{\mathcal{A}'} \to \mathcal{K}^{\mathcal{A}}.$$

Roughly, if the (powerful) image of F_J is accessible, completability of an A-diagram is determined by the completability of its small sub-A-diagrams. In short:

Proposition ([BB17],[LR17a])

Let \mathcal{K} be well- λ -accessible. If κ is a $\mu_{\mathcal{K}}$ -strongly compact cardinal, then if \mathcal{K} has the $< \kappa$ -JEP, it has the JEP.

Notes

- 1. \mathcal{K} has the $< \kappa$ -JEP just in case $\operatorname{Pres}_{\kappa}(\mathcal{K})^{\mathcal{A}}$ is contained in the image of F_J .
- 2. \mathcal{K} has the JEP just in case F_J is surjective.
- 3. The image of F_J is closed under subobjects, hence powerful.
- 4. As colimits are computed componentwise in $\mathcal{K}^{\mathcal{A}}$, $\mathcal{K}^{\mathcal{A}'}$, F_J preserves everything. Hence F_J is as accessible as $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$ are.

Accessible images Co-wellpoweredness

There's a little work to do, to check that the conditions of the Brooke-Taylor/Rosický theorem apply—but very little.

Proof.

By B-T/R, the powerful image–in this case, just the image–if F_J is κ -accessible.

Consider a pair $(M_0, M_1) \in \mathcal{K}$. Since $\mathcal{K}^{\mathcal{A}}$ is λ -accessible, it is also κ -accessible, meaning that (M_0, M_1) is a κ -directed colimit of pairs of κ -presentables. If \mathcal{K} has the $< \kappa$ -JEP, all pairs of κ -presentables are in the image of F_J . As the image of F_J is κ -accessible, it is closed under κ -directed colimits. That is, (M_0, M_1) is in the image of F_J .

Thus every pair of objects in \mathcal{K} is jointly embeddable.

Set theory creeps in... Arithmetic Large Cardinals Accessible images Co-wellpoweredness

With only minor changes, this argument can be applied much more broadly, e.g.

Definition

We say that \mathcal{K} has the $\langle \kappa - AP$ if for all cospans $M_0 \stackrel{f_0}{\leftarrow} M \stackrel{f_1}{\rightarrow} M_1$, there are $g_i : M_i \to N$ such that

$$g_0f_0=g_1f_1.$$

We say \mathcal{K} has the AP if the above holds for all κ .

Theorem

Let \mathcal{K} be well- λ -accessible. If κ is a $\mu_{\mathcal{K}}$ -strongly compact cardinal, then if \mathcal{K} has the $< \kappa$ -AP, it has the AP.

With sufficient care, the same can be done for the disjoint versions of the JEP and AP.

Accessible images Co-wellpoweredness

With still more care, one can derive the tameness of AECs—an important locality property of *Galois* (or *orbital*) types. This forms part of a deep equivalence:

Theorem

The following are equivalent:

- 1. There is a proper class of almost strongly compact cardinals.
- 2. The powerful image of every accessible functor is accessible.
- 3. Every AEC is tame.

Proof.

 $(1 \Rightarrow 2)$ [BTR16]. $(2 \Rightarrow 3)$ [LR14]. $(3 \Rightarrow 1)$ [BU17].

So, in particular, accessibility of powerful images is a large cardinal principle.

I would like to suggest that *co-wellpoweredness*, which is currently sandwiched between two large cardinal axioms, may warrant further examination.

Definition

We say that a category ${\cal K}$ is co-wellpowered if any object of ${\cal K}$ has at most a set of quotients.

Any locally presentable category is co-wellpowered ([AR94]), but things are more complicated in the accessible case.

Theorem ([MP89])

If there is a proper class of strongly compact cardinals, every accessible category is co-wellpowered.

Theorem ([AR94])

If every accessible category is co-well-powered, there is a proper class of measurable cardinals.

Set theory creeps in... Arithmetic Large Cardinals Accessible images Co-wellpoweredness

Seems difficult to improve on [MP89] in the style of [BTR16]. Another route?

Definition

A cardinal κ is *measurable* if it satisfies the following equivalent conditions:

- 1. There is a nonprincipal κ -complete ultrafilter on κ .
- 2. If a theory T in $L_{\kappa\kappa}$ is the union of an increasing chain of satisfiable theories, then T is satisfiable ([Bon]).

The latter chain-compactness condition must be useful...

References I

- J. Adámek and J. Rosický, *Locally presentable and accessible categories*, London Math. Soc. Lect. Notes, Cambridge UP, 1994.

J. Baldwin and W. Boney, *Hanf numbers and presentation theorems in model theory*, Beyond first order model theory (J. lovino, ed.), CRC, 2017, pp. 327–352.

W. Boney, R. Grossberg, M. Lieberman, J. Rosický, and S. Vasey, *µ-Abstract elementary classes and other generalizations*, J. Pure Appl. Alg. **220** (2016), no. 9, 3048–3066.

W. Boney, *Model-theoretic characterization of large cardinals*, Submitted. arXiv:1708.07561.

T. Beke and J. Rosický, *Abstract elementary classes and accessible categories*, Ann. Pure Appl. Log. **163** (2012), 2008–2017.

A. Brooke-Taylor and J. Rosický, *Accessible images revisited*, Proc. AMS **145** (2016), no. 3, 1317–1327.

W. Boney and S. Unger, *Large cardinal axioms from tameness in aecs*, Proc. AMS **145** (2017), no. 10, 4517–4532.

P. Eklof and A. Mekkler, *Almost free modules*, Tribology Series, no. 46, North-Holland, 1990.

References II

- M. Lieberman and J. Rosický, *Classification theory for accessible categories*, arXiv:1404.2528, 2014.
- Hanf numbers via accessible images, Log. Meth. Comp. Sci. 13 (2017), no. 2:11, 1–15.
 - , Metric abstract elementary classes as accessible categories, J. Symb. Log. **82** (2017), no. 3, 1022–1040.
- M. Lieberman, J. Rosický, and S. Vasey, *Internal sizes in μ-abstract elementary classes*, Submitted. URL: http://arxiv.org/abs/1708.06782v2.
- . Universal abstract elementary classes and locally multipresentable categories, Submitted. arXiv:1707.09005.

M. Makkai and R. Paré, *Accessible categories: The foundations of categorical model theory*, Contemporary Mathematics, vol. 104, AMS, 1989.