Set-theoretic pathologies in accessible categories (Joint with Jiří Rosický and Sebastien Vasey)

Michael Lieberman

Masaryk University, Department of Mathematics and Statistics http://www.math.muni.cz/~lieberman

Logic Colloquium 2017, Stockholm

Vopěnka	\Leftrightarrow	Any subfunctor of an accessible functor is accessible (Adámek/Rosický)
Strongly compact	\Rightarrow	Any accessible category is cowellpowered (Makkai/Paré)
Almost strongly	\Leftrightarrow	Powerful images of accessible functors are
compact		accessible (Boney/Unger, et al)
Boundedly many	\Rightarrow	Exists a non-cowellpowered accessible
measurables		category (Adámek/Rosický)
V = L		Failure of eventual categoricity?

Under GCH*, we can say a great deal about internal sizes versus cardinalities, and gather compelling evidence for the former as the better way of phrasing test questions: categoricity, existence, etc.

No measurables Boundedly many measurables

Makkai/Paré: Let *ZC* denote Zermelo-Fraenkel with choice, but without replacement. Let \mathcal{K} be the category of well-founded models of *ZC*, with elementary embeddings.

Facts

- 1. Mostowski Collapse: Any object of \mathcal{K} is uniquely iso to unique transitive standard model: $\widehat{M} = (M, \in |_M)$, M transitive.
- 2. In particular, \mathcal{K} contains $\widehat{V_{\alpha}} = (V_{\alpha}, \in |_{V_{\alpha}})$, for limit α .
- 3. \mathcal{K} is accessible: category of models of ZC plus $L_{\omega_1\omega_1}$ -sentence

$$\forall (x_i)_{i \in \omega} \lor_{i \in \omega} \neg [x_{i+1} \in x_i]$$

4. Directly: \mathcal{K} is \aleph_1 -accessible, with $M \in \mathcal{K} \aleph_1$ -presentable iff countable.

No measurables Boundedly many measurables

Form \mathcal{K}^* by formally adjoining an initial object *I*. This new category is still \aleph_1 -accessible.

Claim

If there are no measurables, I has a proper class of quotients, namely those represented by the $I \rightarrow \widehat{V_{\alpha}}$, α limit.

It suffices to show that there is at most one $f : \widehat{V_{\alpha}} \to N$ for $N \in \mathcal{K}$, hence that the maps $I \to \widehat{V_{\alpha}}$ are trivially surjective, and that the full models form a proper class of pairwise nonisomorphic objects.

Set theory: If $f : \widehat{V_{\alpha}} \to N$ is such that $f(\beta) = \beta$ for all ordinals β , f(x) = x for all $x \in V_{\alpha}$. So if f is not simply the inclusion, $f(\beta) \neq \beta$ for some ordinal β . The least such must be a measurable cardinal. But there aren't any of those...

No measurables Boundedly many measurables

Proposition (Adámek/Rosický)

If there are boundedly many measurables, there is a non-cowellpowered accessible category.

Let \mathcal{K} be the accessible category with the same objects, and with λ -elementary embeddings, where λ is larger than any measurable cardinal. Again, formally adjoin initial object 1.

By λ -elementarity, any \mathcal{K} -morphism $f : \widehat{V_{\alpha}} \to N$ preserves ordinals $\beta < \lambda$, meaning that the first ordinal it moves must be a measurable above λ . Doesn't work.

Question

Does the existence of a proper class of measurables imply cowellpoweredness of accessible categories?

The central organizing concern of abstract model theory is the following:

Conjecture (Shelah)

Let \mathcal{K} be an abstract elementary class (AEC). If \mathcal{K} is λ -categorical for some sufficiently large λ , it is μ -categorical for all sufficiently large μ .

Convincing approximations exist, particularly assuming, e.g. strongly compact cardinals. But at what level of generality does it fail? Is the following true?

Conjecture (Beke/Rosický—who don't believe it either.)

Let \mathcal{K} be an accessible category. If \mathcal{K} is categorical in sufficiently large internal size λ (λ -IS-categorical), it is μ -IS-categorical for all sufficiently large μ .

Intuition: Look for a counterexample here, with V = L.

Eventual categoricity, pt. 1 Internal size Failure of eventual IS-categoricity?

Any accessible category \mathcal{K} comes with a notion of size:

Definition

An object K in \mathcal{K} is λ -presentable (λ regular) if Hom_{\mathcal{K}}(K, -) preserves λ -directed colimits. The presentability rank of K, $\pi_{\mathcal{K}}(K)$, is the least λ such that K is λ -presentable.

In Sets, $\pi(X) = |X|^+$. In an AEC, $\pi(M) = |M|^+$. In a metric AEC (mAEC), $\pi(M) = dc(M)^+$. A pattern here...

Fact (Beke/Rosický)

Let \mathcal{K} be accessible, $M \in \mathcal{K}$. If

1. GCH* holds, or

2. \mathcal{K} has directed colimits and all morphisms mono,

then $\pi(M) = \lambda^+$ for some λ . In either case, we define the internal size of M in \mathcal{K} , denoted $|M|_{\mathcal{K}}$, to be λ .

Eventual categoricity, pt. 1 Internal size Failure of eventual IS-categoricity?

Tossed out in the opening paragraph of Shelah:1019 is the following example (this version due to L/Rosický/Vasey):

Let \mathcal{K} be the category of well-founded models of Kripke-Platek set theory (no powerset, restricted separation and replacement) plus V=L, with morphisms the elementary embeddings.

Fact

1. By Condensation, any M in \mathcal{K} is uniquely isomorphic to a unique

$$\widehat{L_{\alpha}} = (L_{\alpha}, \in |_{L_{\alpha}}).$$

2. \mathcal{K} is an accessible category (because an \aleph_1 -AEC...),

$$|M|_{\mathcal{K}}=|M|,$$

and there are λ^+ models in every infinite cardinality λ .

Eventual categoricity, pt. 1 Internal size Failure of eventual IS-categoricity?

Example

Let \mathcal{K}^* be the full subcategory of \mathcal{K} on the $M \in \mathcal{K}$ isomorphic to (L_{α}, \in) such that for all $\beta < \alpha$, $[L_{\beta}]^{\leq \aleph_0} \cap L \subseteq L_{\alpha}$.

Fact

 \mathcal{K}^* is also accessible (still an \aleph_1 -AEC).

Lemma

For λ an infinite cardinal we have:

$$I(\mathcal{K}^*, \lambda) = \begin{cases} 1 & \text{if } |[L_{\lambda}]^{\leq \aleph_0} \cap L| > \lambda \\ \lambda^+ & \text{if } (\forall \alpha < \lambda^+) (\exists \beta < \lambda^+) ([L_{\alpha}]^{\leq \aleph_0} \cap L \subseteq L_{\beta}) \\ \mu & \text{otherwise, for some } \mu \in [1, \lambda^+) \end{cases}$$

Cardinalities!

Eventual categoricity, pt. 1 Internal size Failure of eventual IS-categoricity?

Theorem

Assume V = L and let λ be an infinite cardinal. Then:

$$I(\mathcal{K}^*, \lambda) = \begin{cases} 1 & \text{if } cf(\lambda) = \aleph_0 \\ \lambda^+ & \text{if } cf(\lambda) > \aleph_0 \end{cases}$$

Eventual categoricity, pt. 1 Internal size Failure of eventual IS-categoricity?

Theorem

Assume V = L and let λ be an infinite cardinal. Then:

$$I(\mathcal{K}^*, \lambda) = \begin{cases} 1 & \text{if } cf(\lambda) = \aleph_0 \\ \lambda^+ & \text{if } cf(\lambda) > \aleph_0 \end{cases}$$

So we're done! Obviously cardinalities and internal sizes coincide, so we have a failure of eventual IS-categoricity not just in an accessible category, but in an accessible category with all morphisms mono.

Eventual categoricity, pt. 1 Internal size Failure of eventual IS-categoricity?

Theorem

Assume V = L and let λ be an infinite cardinal. Then:

$$I(\mathcal{K}^*, \lambda) = \begin{cases} 1 & \text{if } cf(\lambda) = \aleph_0 \\ \lambda^+ & \text{if } cf(\lambda) > \aleph_0 \end{cases}$$

So we're done! Obviously cardinalities and internal sizes coincide, so we have a failure of eventual IS-categoricity not just in an accessible category, but in an accessible category with all morphisms mono.

Or not: one discovers that objects of cardinality λ_0^+ with $cf(\lambda_0) = \aleph_0$ can have internal size λ_0 or λ_0^+ , and enough drop down to destroy our hopes...

μ-AECs μ-AECs, accessible categories Sizes under GCH* Eventual categoricity conjectures

Although AECs are very general, they are, for some purposes, not general enough: many classes of interest lack (concrete) directed colimits (e.g. mAECs), only have models in certain cardinalities (e.g. Sat_{λ}(\mathcal{K}) $\subseteq \mathcal{K}$), or call for infinitary operations (e.g. μ -complete BAs). This led to:

Definition (Boney/Grossberg/L/Rosický/Vasey)

An abstract class of structures \mathcal{K} in a μ -ary signature is a μ -AEC if it satisfies the AEC axioms, but with the following modifications:

- \mathcal{K} is only assumed to have μ -directed colimits, and
- there is λ with λ^{<μ} = λ such that for any A ⊆ M ∈ K, there is A ⊆ N ≺_K M and |N| ≤ |A|^{<μ} + λ. Define LST(K) to be least such λ.

 μ -AECs μ -AECs, accessible categories Sizes under GCH* Eventual categoricity conjectures

While this characterization isn't terribly easy to motivate, there is another:

Theorem (BGLRV)

- 1. Any μ -AEC \mathcal{K} is a LST $(\mathcal{K})^+$ -accessible category with all morphisms mono.
- 2. Any μ -accessible category with all morphisms mono is (equivalent to) a μ -AEC.

Good news in many ways: allows extensive application of MT tools to accessible categories with monos, on the one hand, and allows clean, uncluttered CT arguments involving μ -AECs, on the other.

As already seen, we have a tension here: $|-|_{\mathcal{K}}$ versus |-|.

μ-AECs μ-AECs, accessible categories Sizes under GCH* Eventual categoricity conjectures

We consider only the case GCH*. Given a μ -AEC \mathcal{K} , $|-|_{\mathcal{K}}$ and |-| mostly agree, except—as in Shelah's example—when it comes to successors of cardinals of cofinality less than μ .

Theorem (L/Rosický/Vasey)

Let \mathcal{K} be a μ -AEC, $M \in \mathcal{K}$, and $\lambda = |M|$.

$$|M|_{\mathcal{K}} = \begin{cases} \lambda \text{ or } \lambda_0 & \text{ if } \lambda = \lambda_0^+, \text{ } cf(\lambda_0) < \mu \\ \lambda & \text{ else} \end{cases}$$

Here you can clearly see the smoothing that comes with passing to internal sizes.

In a μ -AEC, it is easy to create, say, gaps in cardinalities λ with $cf(\lambda) < \mu$, but this is precisely where internal sizes drop back to fill the holes.

There are two natural ways of generalizing Shelah's conjecture to $\mu\text{-}\mathsf{AECs}\text{:}$

Conjecture (Eventual categoricity in power)

If a μ -AEC is categorical in a large enough cardinal λ with $\lambda = \lambda^{<\mu}$, it is categorical in all sufficiently large κ such that $\kappa = \kappa^{<\mu}$.

Note: we write off all cardinals of cofinality less than μ .

Conjecture (Eventual IS-categoricity)

If a μ -AEC is λ -IS-categorical for some sufficiently large λ , then it is κ -IS-categorical in sufficiently large κ .

In AECs, these are the same. In mAECs, research is (secretly) focused on the second. But what to pursue in a general μ -AEC?

Hilbert spaces

Example

Let **Hilb** denote the category of (complex) Hilbert spaces and linear isometries.

Note

- 1. **Hilb** is \aleph_1 -accessible, hence an \aleph_1 -AEC.
- 2. For any $V \in \text{Hilb}$, $|V|_{\text{Hilb}}$ is the size of an orthonormal basis of V.
- 3. Clearly, V is λ -IS-categorical for every λ .

So what about categoricity in power?

Fact (Bartoszyński/Džamonja/Halbeisen/Murtinová/Plichko) Any $V \in$ Hilb has cardinality λ^{\aleph_0} for some λ .

Hilbert spaces

Assume GCH. For any infinite cardinal λ ,

$$I(\mathbf{Hilb}, \lambda) = \begin{cases} 0 & \text{if } cf(\lambda) = \aleph_0 \\ 2 & \text{if } \lambda = \lambda_0^+, \ cf(\lambda_0) = \aleph_0 \\ 1 & \text{else} \end{cases}$$

Here we have a failure of eventual categoricity in power, even in the limited sense of \aleph_1 -AECs.

In fact, if for all α , $\aleph_{\alpha}^{\aleph_0} = \aleph_{\alpha+\beta}$ for some β , there are $|\beta| + 1$ objects of cardinality $\aleph_{\alpha+\beta}$, encompassing internal sizes

$$\aleph_{\alpha}, \aleph_{\alpha+1}, \ldots, \aleph_{\alpha+\beta}$$

Possible moral: categoricity in power is wildly extrinsic and dependent on background set theory. IS-categoricity, though...

Hilbert spaces

All occurrences of "GCH*" should be interpreted as follows: "GCH or even SCH_{$\mu,\geq\theta$} for suitable θ ," where:

Definition

Let $\mu \leq \lambda$.

- 1. We say that λ is almost μ -closed if $\theta^{<\mu} \leq \lambda$ for all $\theta < \lambda$.
- 2. For S a class of infinite cardinals greater than or equal to μ , we write SCH_{μ,S} for the statement "every $\lambda \in S$ is almost μ -closed." SCH_{$\mu,\geq\theta$} has the obvious meaning.

Note

If μ is strongly compact, $SCH_{\mu,\geq\mu}$ holds, so the above results hold not just under V=L/GCH, but also in the newly favored context of ZFC+(strongly compacts).