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An outline of the content of this talk:

Model Theoretic Background:

I AECs

I Galois Types

I Partial Spectrum Results

Accessible Categories:

I Connections to AECs

I Implications for Stability

I A Structure Theorem for Categorical AECs
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
I Unions of chains: if (Mi | i < δ) is a ≺K-increasing chain,

1.
⋃

i<δ Mi ∈ K
2. for each j < δ, Mj≺K

⋃
i<δ Mi

3. if each Mj≺KM ∈ K,
⋃

i<δ Mi≺KM
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structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
I Unions of chains: if (Mi | i < δ) is a ≺K-increasing chain,

1.
⋃

i<δ Mi ∈ K
2. for each j < δ, Mj≺K

⋃
i<δ Mi

3. if each Mj≺KM ∈ K,
⋃

i<δ Mi≺KM

I Coherence: If M0≺KM2, M0 ⊆ M1≺KM2, then M0≺KM1
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
I Unions of chains: if (Mi | i < δ) is a ≺K-increasing chain,

1.
⋃

i<δ Mi ∈ K
2. for each j < δ, Mj≺K

⋃
i<δ Mi

3. if each Mj≺KM ∈ K,
⋃

i<δ Mi≺KM

I Coherence: If M0≺KM2, M0 ⊆ M1≺KM2, then M0≺KM1

I Löwenheim-Skolem: Exists cardinal LS(K) such that for any
M ∈ K, subset A ⊆ M, there is an M0 ∈ K with
A ⊆ M0≺KM and |M0| ≤ |A|+ LS(K).
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An Abstract Elementary Class (AEC) is a nonempty class of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:

I ≺K is a partial order.
I Unions of chains: if (Mi | i < δ) is a ≺K-increasing chain,

1.
⋃

i<δ Mi ∈ K
2. for each j < δ, Mj≺K

⋃
i<δ Mi

3. if each Mj≺KM ∈ K,
⋃

i<δ Mi≺KM

I Coherence: If M0≺KM2, M0 ⊆ M1≺KM2, then M0≺KM1

I Löwenheim-Skolem: Exists cardinal LS(K) such that for any
M ∈ K, subset A ⊆ M, there is an M0 ∈ K with
A ⊆ M0≺KM and |M0| ≤ |A|+ LS(K).

A strong embedding f : M ↪→K N is an isomorphism from M to a
strong submodel of N, f : M ∼= M ′≺KN.
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Example 1: Let K be the class of models of a first order theory T ,
and ≺K the elementary submodel relation. Then K is an AEC with
LS(K) = ℵ0 + |L(T )|.

One can think of AECs as the category-theoretic hulls of
elementary classes—abandoning syntax, but retaining certain basic
properties of the elementary submodel relation.

Example 2: Let φ be a sentence of L∞,ω, A a fragment containing
φ. The class K = Mod(φ), with ≺K elementary embedding with
respect to A, is an AEC (LS(K) = |A|). With suitable ≺K, can do
the same with models of sentences in L(Q), Lω1,ω(Q), etc.

Michael Lieberman Accessible categories and AECs



Introduction
AECs

Accessible Categories

Definitions
Partial Spectra

We fix our context: K is an AEC, with Löwenheim-Skolem number
LS(K). Unless otherwise indicated, K satisfies both the
amalgamation and joint embedding properties, hence contains a
monster model C.
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We fix our context: K is an AEC, with Löwenheim-Skolem number
LS(K). Unless otherwise indicated, K satisfies both the
amalgamation and joint embedding properties, hence contains a
monster model C. We identify Galois types with orbits in C, and
make the usual definitions:

1. For any M, a ∈ C, and N≺KM, the restriction of ga-tp(a/M)
to N, denoted ga-tp(a/M) � N, is the orbit of a under
AutN(C).
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We fix our context: K is an AEC, with Löwenheim-Skolem number
LS(K). Unless otherwise indicated, K satisfies both the
amalgamation and joint embedding properties, hence contains a
monster model C. We identify Galois types with orbits in C, and
make the usual definitions:

1. For any M, a ∈ C, and N≺KM, the restriction of ga-tp(a/M)
to N, denoted ga-tp(a/M) � N, is the orbit of a under
AutN(C).

2. M ∈ K is λ-Galois saturated if for every type p over N≺KM
with |N| < λ, p is realized in M, i.e. the orbit corresponding
to p meets M.
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We fix our context: K is an AEC, with Löwenheim-Skolem number
LS(K). Unless otherwise indicated, K satisfies both the
amalgamation and joint embedding properties, hence contains a
monster model C. We identify Galois types with orbits in C, and
make the usual definitions:

1. For any M, a ∈ C, and N≺KM, the restriction of ga-tp(a/M)
to N, denoted ga-tp(a/M) � N, is the orbit of a under
AutN(C).

2. M ∈ K is λ-Galois saturated if for every type p over N≺KM
with |N| < λ, p is realized in M, i.e. the orbit corresponding
to p meets M.

3. K is λ-Galois stable if for every M ∈ Kλ, |ga-S(M)| = λ.
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One virtue of this setup: λ-Galois saturation corresponds to
λ-model-homogeneity—for any N≺KM with |N| < λ, if N ′�KN
and |N ′| < λ, there is an embedding f : N ′ ↪→K M that fixes N.

Final condition:

Definition
An AEC K is said to be χ-tame if for any M ∈ K, if
q, q′ ∈ ga-S(M) are distinct, then there is submodel N≺KM with
|N| ≤ χ such that q � N 6= q′ � N.

Intuition: if we regard types over small models as formulas,
tameness means that types are determined entirely by their
constituent formulas.
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Categoricity: Story fragmentary, results only for tame classes.

Theorem (Grossberg-VanDieren)

If K is categorical in λ and λ+, it is categorical in λ++.

Theorem (G-V)

If K is categorical in λ+ > H(K), it is categorical in all µ > H(K).

These results are obtained by resorting to syntax, EM-models, etc.

Question: Can a purely category-theoretic perspective reveal
anything new about the structure of categorical AECs?
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Stability: if anything, the picture is even less clear. For tame
AECs, we have

Theorem (G-V)

If K is λ-stable, it is κ-stable for all κ such that κλ = κ.

Theorem (L)

Let K be λ-stable, where λℵ0 > λ. If cf(κ) > λ and |ga-S(M)| ≤ κ
for every M ∈ K<κ, then K is κ-stable.

As a particularly nice special case:

Corollary

If K is ℵ0-stable, and κ is of uncountable cofinality, then if K is
stable in every cardinality below κ, it is κ-stable as well.
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If K is only weakly χ-tame (the defining condition of tameness
holds only for Galois saturated models), less is known.

Theorem (Baldwin-Kueker-VanDieren)

If K is λ-stable, it is stable in λ+n for all n < ω.

Theorem (L)

If K is λ-t.t., and κ is such that cf(κ) > λ and each M of size κ
has a saturated extension also of size κ, then K is κ-stable.

Can we guarantee the existence of saturated extensions without
making the standard model-theoretic assumption: |ga-S(M)| < κ
for all M ∈ K<κ?
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If K is only weakly χ-tame (the defining condition of tameness
holds only for Galois saturated models), less is known.

Theorem (Baldwin-Kueker-VanDieren)

If K is λ-stable, it is stable in λ+n for all n < ω.

Theorem (L)

If K is λ-t.t., and κ is such that cf(κ) > λ and each M of size κ
has a saturated extension also of size κ, then K is κ-stable.

Can we guarantee the existence of saturated extensions without
making the standard model-theoretic assumption: |ga-S(M)| < κ
for all M ∈ K<κ?

Yes: weak κ-stability, a purely category-theoretic (and weaker)
notion, will suffice.
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Categorical model theory timeline:

I (Lawvere, 1963) Functorial semantics for algebraic
theories—theories as categories with finite products, models
as product-preserving functors from the associated categories.
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theories—theories as categories with finite products, models
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I (Lawvere/Tierney; Makkai/Reyes, 1977) Functorial semantics
for general first order theories—theories as topoi, models as
structure preserving functors.
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I (Makkai/Paré, 1989) Theories set aside, instead consider
categories that have essential properties of categories of
models—accessible categories.
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for general first order theories—theories as topoi, models as
structure preserving functors.

I (Makkai/Paré, 1989) Theories set aside, instead consider
categories that have essential properties of categories of
models—accessible categories.

I (Rosický, 1997) Accessible categories with directed colimits,
considers exceedingly model-theoretic notions.
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Categorical model theory timeline:

I (Lawvere, 1963) Functorial semantics for algebraic
theories—theories as categories with finite products, models
as product-preserving functors from the associated categories.

I (Lawvere/Tierney; Makkai/Reyes, 1977) Functorial semantics
for general first order theories—theories as topoi, models as
structure preserving functors.

I (Makkai/Paré, 1989) Theories set aside, instead consider
categories that have essential properties of categories of
models—accessible categories.

I (Rosický, 1997) Accessible categories with directed colimits,
considers exceedingly model-theoretic notions.

I (Beke/Rosický; L) Accessible categories and AECs.
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Roughly speaking, an accessible category is one that is generated
by colimits of a set of small objects. Basic terminology:

Definition
An object N in a category C is finitely presentable (ω-presentable)
if the functor HomC(N,−) preserves directed colimits.
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Roughly speaking, an accessible category is one that is generated
by colimits of a set of small objects. Basic terminology:

Definition
An object N in a category C is finitely presentable (ω-presentable)
if the functor HomC(N,−) preserves directed colimits.

Equivalently, N is finitely presentable if for any directed diagram
D : (I ,≤)→ C with colimit cocone (φi : D(i)→ M)i∈I ), any map
f : N → M factors through one of the cocone maps: f = φi ◦ g for
some i ∈ I and g : N → D(i), as below.
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Roughly speaking, an accessible category is one that is generated
by colimits of a set of small objects. Basic terminology:

Definition
An object N in a category C is finitely presentable (ω-presentable)
if the functor HomC(N,−) preserves directed colimits.

Equivalently, N is finitely presentable if for any directed diagram
D : (I ,≤)→ C with colimit cocone (φi : D(i)→ M)i∈I ), any map
f : N → M factors through one of the cocone maps: f = φi ◦ g for
some i ∈ I and g : N → D(i), as below.

M

N

D(i) D(j)

66

f

//
D(i → j)

AA��������

φi
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Example: In Grp, the category of groups, an object G is finitely
presentable iff G is finitely presented. Same for any finitary
algebraic variety.

Michael Lieberman Accessible categories and AECs



Introduction
AECs

Accessible Categories

Connections to AECs
A Dictionary
Stability
Structure Theorem

Example: In Grp, the category of groups, an object G is finitely
presentable iff G is finitely presented. Same for any finitary
algebraic variety.

Definition
A category C is finitely accessible (ω-accessible) if

I it has at most a set of finitely presentable objects,

I it is closed under directed colimits, and

I every object is a directed colimit of finitely presentable objects.
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Example: In Grp, the category of groups, an object G is finitely
presentable iff G is finitely presented. Same for any finitary
algebraic variety.

Definition
A category C is finitely accessible (ω-accessible) if

I it has at most a set of finitely presentable objects,

I it is closed under directed colimits, and

I every object is a directed colimit of finitely presentable objects.

Example: Grp, or any other finitary algebraic variety, is finitely
accessible.
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For general regular cardinal λ:

Definition
An object N in a category C is λ-presentable if the functor
HomC(N,−) preserves λ-directed colimits.
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Definition
An object N in a category C is λ-presentable if the functor
HomC(N,−) preserves λ-directed colimits.

Definition
A category C is λ-accessible if

I it has at most a set of λ-presentables

I it is closed under λ-directed colimits

I every object is a λ-directed colimit of λ-presentables
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For general regular cardinal λ:

Definition
An object N in a category C is λ-presentable if the functor
HomC(N,−) preserves λ-directed colimits.

Definition
A category C is λ-accessible if

I it has at most a set of λ-presentables

I it is closed under λ-directed colimits

I every object is a λ-directed colimit of λ-presentables

Example: Hilb, the category of Hilbert spaces with linear
contractions, lacks directed colimits, so is not finitely accessible. It
is, however, ℵ1-accessible.
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The Downward Löwenheim-Skolem Property ensures that models
in an AEC are generated as directed unions of their submodels of
size LS(K). As it happens (no AP or JEP needed),

Theorem
As a category, an AEC K is µ-accessible for all regular
µ ≥ LS(K)+, and the µ-presentable objects are precisely the
models of size less than µ. Moreover, K is closed under directed
colimits.

Rosický/Beke consider categories of this form, in which context
the former has defined a number of category-theoretic analogues of
notions from model theory. Most notably: weak κ-stability.
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Definition
An object N is λ-saturated if for any λ-presentable objects M,M ′

and morphisms f : M → N and g : M → M ′, there is a morphism
h : M ′ → N such that h ◦ g = f .
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Definition
An object N is λ-saturated if for any λ-presentable objects M,M ′

and morphisms f : M → N and g : M → M ′, there is a morphism
h : M ′ → N such that h ◦ g = f .

In an AEC K (with AP, JEP now),

N is λ-saturated ⇔ N is λ-model-homogeneous
⇔ N is λ-Galois-saturated
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Definition
A morphism f : M → N in a category C is said to be λ-pure (λ
regular) if for any commutative square

M
f−→ N

u ↑ ↑ v

C
g−→ D

in which C and D are λ-presentable, there is a morphism
h : D → M such that h ◦ g = u.
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Definition
A morphism f : M → N in a category C is said to be λ-pure (λ
regular) if for any commutative square

M
f−→ N

u ↑ ↑ v

C
g−→ D

in which C and D are λ-presentable, there is a morphism
h : D → M such that h ◦ g = u.

In an AEC K, M ↪→K N is λ-pure iff M is λ-Galois-saturated
relative to N. An inclusion M ↪→K C is λ-pure iff M is
λ-Galois-saturated.
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Definition
A category C is weakly κ-stable if for every κ+-presentable M and
morphism f : M → N, f factors as

M −→ M ′ −→ N

where M ′ is κ+-presentable and the map M ′ → N is κ-pure.

Michael Lieberman Accessible categories and AECs



Introduction
AECs

Accessible Categories

Connections to AECs
A Dictionary
Stability
Structure Theorem

Definition
A category C is weakly κ-stable if for every κ+-presentable M and
morphism f : M → N, f factors as

M −→ M ′ −→ N

where M ′ is κ+-presentable and the map M ′ → N is κ-pure.

If an AEC K is weakly κ-stable, then for any M ∈ Kκ, the inclusion
M ↪→K C factors through a κ+-presentable object M ′ (i.e. a model
M ′ ∈ Kκ) such that M ′ ↪→K C is λ-pure, whence M ′ is saturated.

That is, every M ∈ Kκ has a saturated extension M ′ ∈ Kκ.

Michael Lieberman Accessible categories and AECs



Introduction
AECs

Accessible Categories

Connections to AECs
A Dictionary
Stability
Structure Theorem

The partial spectrum result for weakly tame AECs becomes:

Proposition

If K is λ-t.t., and weakly κ-stable with cf(κ) > λ, K is κ-stable.

As it happens, any accessible category—hence any AEC—is weakly
stable in many cardinalities:

Theorem (R)

Let C be a λ-accessible category, and µ a regular cardinal such
that λ E µ and |Presλ(C)mor | < µ. Then C is weakly µ<µ-stable.

Taken together, these yield new spectrum results for weakly tame
AECs.
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For example,

Proposition

If LS(K) = ℵ0, K is ℵ0-t.t. and weakly ℵ0-tame, then for any
µ > |Kmor

ℵ0 | with µ D ℵ1, K is µ<µ-stable.

Suffice to say, there are many (and arbitrarily large) cardinals µ
with ℵ1 E µ.
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For example,

Proposition

If LS(K) = ℵ0, K is ℵ0-t.t. and weakly ℵ0-tame, then for any
µ > |Kmor

ℵ0 | with µ D ℵ1, K is µ<µ-stable.

Suffice to say, there are many (and arbitrarily large) cardinals µ
with ℵ1 E µ.

For example, if K is ℵ0-categorical, |Kmor
ℵ0 | ≤ 2ℵ0 . Then K is

stable in

[(2ℵk )+(n+1)](2
ℵk )+n

for n < ω and 1 ≤ k < ω,

and so on.
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Unassume AP, JEP. Suppose K is λ-categorical, C is the unique
structure of size λ, and M is its monoid of endomorphisms.

Theorem (R,L)

If K is λ-categorical, the sub-AEC K≥λ consisting of models of size
at least λ is equivalent to (Mop, λ+)-Set, the full subcategory of
Mop-Set consisting of λ+-directed colimits of M.

The equivalence is induced by the composition

K≥λ
y−→ Set(K≥λ)

op r−→ SetM
op −→ Mop-Set

where y is the Yoneda embedding, the second map is restriction,
and the final map is the obvious equivalence SetM

op ∼−→ Mop-Set.
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The assignment is:

N ∈ K≥λ 7→ HomK(C ,N)

where M = HomK(C ,C ) acts by precomposition.

That this gives the desired equivalence is an exercise in definitions.

This amounts to an astonishing transformation of a very abstract
entity—an AEC—into a category of relatively simple algebraic
objects.
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Further Reading

Accessible Categories and AECs:

I Jǐŕı Adámek and Jǐŕı Rosický. Locally presentable and accessible
categories. No. 189 in London Math. Soc. Lecture Notes, 1994.

I Beke, Tibor and Jǐŕı Rosický. Abstract elementary classes and
accessible categories. Submitted, May 2010.

I Kirby, Jonathan. Abstract elementary categories. August 2008. See
http://people.maths.ox.ac.uk/~kirby/pdf/aecats.pdf.

I Lieberman, Michael. Category-theoretic aspects of AECs. Submitted,
May 2010.

I Makkai, Michael and Robert Paré. Accessible categories: the
foundations of categorical model theory, Vol. 104 of Contemporary
Mathematics. AMS, 1989.

I Rosický, Jǐŕı. Accessible categories, saturation and categoricity. JSL,
62:891–901, 1997.
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Further Reading II

AEC Context:

I Baldwin, John. Categoricity. No. 50 in University Lecture Series. AMS, 2009.

I Baldwin, John, David Kueker, and Monica VanDieren. Upward stability
transfer for tame abstract elementary classes. Notre Dame Journal of Formal
Logic, 47(2):291–298, 2006.

I Grossberg, Rami and Monica VanDieren. Galois-stability in tame abstract
elementary classes. Journal of Math. Logic, 6(1):25–49, 2006.

I Grossberg, Rami and Monica VanDieren. Shelah’s categoricity conjecture from
a successor for tame abstract elementary classes. JSL, 71(2):553–568, 2006.

I Lieberman, Michael. Rank functions and partial stability spectra for AECs.
Submitted. See http://arxiv.org/abs/1001.0624v1.

I Shelah, Saharon. Classification theory for abstract elementary classes, Vols 1
and 2. Math. Logic and Foundations, No. 20 (College Publishing, 2009).
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