ACCESSIBLE CATEGORIES AND ABSTRACT ELEMENTARY CLASSES

Michael Lieberman

Logic Colloquium 2010

November 14th, 2009

Overview

An outline of the content of this talk:

Model Theoretic Background:

- AECs
- Galois Types
- Partial Spectrum Results

Accessible Categories:

- Connections to AECs
- Implications for Stability
- A Structure Theorem for Categorical AECs

Definitions Partial Spectra

Definitions Partial Spectra

An Abstract Elementary Class (AEC) is a nonempty class of structures in a given signature, closed under isomorphism, equipped with a strong substructure relation, $\prec_{\mathcal{K}}$, that satisfies:

• $\prec_{\mathcal{K}}$ is a partial order.

Definitions Partial Spectra

- $\prec_{\mathcal{K}}$ is a partial order.
- ▶ Unions of chains: if $(M_i | i < \delta)$ is a $\prec_{\mathcal{K}}$ -increasing chain,
 - 1. $\bigcup_{i<\delta} M_i \in \mathcal{K}$
 - 2. for each $j < \delta$, $M_j \prec_{\mathcal{K}} \bigcup_{i < \delta} M_i$
 - 3. if each $M_j \prec_{\mathcal{K}} M \in \mathcal{K}, \bigcup_{i < \delta} M_i \prec_{\mathcal{K}} M$

Definitions Partial Spectra

- $\prec_{\mathcal{K}}$ is a partial order.
- ▶ Unions of chains: if $(M_i | i < \delta)$ is a $\prec_{\mathcal{K}}$ -increasing chain,
 - 1. $\bigcup_{i<\delta} M_i \in \mathcal{K}$
 - 2. for each $j < \delta$, $M_j \prec_{\mathcal{K}} \bigcup_{i < \delta} M_i$
 - 3. if each $M_j \prec_{\mathcal{K}} M \in \mathcal{K}$, $\bigcup_{i < \delta} M_i \prec_{\mathcal{K}} M$
- ▶ Coherence: If $M_0 \prec_{\mathcal{K}} M_2$, $M_0 \subseteq M_1 \prec_{\mathcal{K}} M_2$, then $M_0 \prec_{\mathcal{K}} M_1$

Definitions Partial Spectra

- $\prec_{\mathcal{K}}$ is a partial order.
- ▶ Unions of chains: if $(M_i | i < \delta)$ is a $\prec_{\mathcal{K}}$ -increasing chain,
 - 1. $\bigcup_{i<\delta} M_i \in \mathcal{K}$
 - 2. for each $j < \delta$, $M_j \prec_{\mathcal{K}} \bigcup_{i < \delta} M_i$
 - 3. if each $M_j \prec_{\mathcal{K}} M \in \mathcal{K}, \bigcup_{i < \delta} M_i \prec_{\mathcal{K}} M$
- ▶ Coherence: If $M_0 \prec_{\mathcal{K}} M_2$, $M_0 \subseteq M_1 \prec_{\mathcal{K}} M_2$, then $M_0 \prec_{\mathcal{K}} M_1$
- ▶ Löwenheim-Skolem: Exists cardinal LS(\mathcal{K}) such that for any $M \in \mathcal{K}$, subset $A \subseteq M$, there is an $M_0 \in \mathcal{K}$ with $A \subseteq M_0 \prec_{\mathcal{K}} M$ and $|M_0| \leq |A| + LS(\mathcal{K})$.

Definitions Partial Spectra

An Abstract Elementary Class (AEC) is a nonempty class of structures in a given signature, closed under isomorphism, equipped with a strong substructure relation, $\prec_{\mathcal{K}}$, that satisfies:

- $\prec_{\mathcal{K}}$ is a partial order.
- ▶ Unions of chains: if $(M_i | i < \delta)$ is a $\prec_{\mathcal{K}}$ -increasing chain,
 - 1. $\bigcup_{i<\delta} M_i \in \mathcal{K}$
 - 2. for each $j < \delta$, $M_j \prec_{\mathcal{K}} \bigcup_{i < \delta} M_i$
 - 3. if each $M_j \prec_{\mathcal{K}} M \in \mathcal{K}, \bigcup_{i < \delta} M_i \prec_{\mathcal{K}} M$
- ▶ Coherence: If $M_0 \prec_{\mathcal{K}} M_2$, $M_0 \subseteq M_1 \prec_{\mathcal{K}} M_2$, then $M_0 \prec_{\mathcal{K}} M_1$
- Löwenheim-Skolem: Exists cardinal LS(\mathcal{K}) such that for any $M \in \mathcal{K}$, subset $A \subseteq M$, there is an $M_0 \in \mathcal{K}$ with $A \subseteq M_0 \prec_{\mathcal{K}} M$ and $|M_0| \leq |A| + LS(\mathcal{K})$.

A strong embedding $f : M \hookrightarrow_{\mathcal{K}} N$ is an isomorphism from M to a strong submodel of N, $f : M \cong M' \prec_{\mathcal{K}} N$.

Example 1: Let \mathcal{K} be the class of models of a first order theory \mathcal{T} , and $\prec_{\mathcal{K}}$ the elementary submodel relation. Then \mathcal{K} is an AEC with $LS(\mathcal{K}) = \aleph_0 + |L(\mathcal{T})|$.

One can think of AECs as the category-theoretic hulls of elementary classes—abandoning syntax, but retaining certain basic properties of the elementary submodel relation.

Example 2: Let ϕ be a sentence of $L_{\infty,\omega}$, \mathcal{A} a fragment containing ϕ . The class $\mathcal{K} = Mod(\phi)$, with $\prec_{\mathcal{K}}$ elementary embedding with respect to \mathcal{A} , is an AEC (LS(\mathcal{K}) = $|\mathcal{A}|$). With suitable $\prec_{\mathcal{K}}$, can do the same with models of sentences in L(Q), $L_{\omega_1,\omega}(Q)$, etc.

We fix our context: \mathcal{K} is an AEC, with Löwenheim-Skolem number LS(\mathcal{K}). Unless otherwise indicated, \mathcal{K} satisfies both the amalgamation and joint embedding properties, hence contains a monster model \mathfrak{C} .

Definitions Partial Spectra

We fix our context: \mathcal{K} is an AEC, with Löwenheim-Skolem number $LS(\mathcal{K})$. Unless otherwise indicated, \mathcal{K} satisfies both the amalgamation and joint embedding properties, hence contains a monster model \mathfrak{C} . We identify Galois types with orbits in \mathfrak{C} , and make the usual definitions:

gories

We fix our context: \mathcal{K} is an AEC, with Löwenheim-Skolem number $LS(\mathcal{K})$. Unless otherwise indicated, \mathcal{K} satisfies both the amalgamation and joint embedding properties, hence contains a monster model \mathfrak{C} . We identify Galois types with orbits in \mathfrak{C} , and make the usual definitions:

 For any M, a ∈ 𝔅, and N ≺_KM, the restriction of ga-tp(a/M) to N, denoted ga-tp(a/M) ↾ N, is the orbit of a under Aut_N(𝔅).

We fix our context: \mathcal{K} is an AEC, with Löwenheim-Skolem number $LS(\mathcal{K})$. Unless otherwise indicated, \mathcal{K} satisfies both the amalgamation and joint embedding properties, hence contains a monster model \mathfrak{C} . We identify Galois types with orbits in \mathfrak{C} , and make the usual definitions:

- For any *M*, *a* ∈ 𝔅, and *N*≺_K*M*, the restriction of ga-tp(*a*/*M*) to *N*, denoted ga-tp(*a*/*M*) ↾ *N*, is the orbit of *a* under Aut_N(𝔅).
- 2. $M \in \mathcal{K}$ is λ -Galois saturated if for every type p over $N \prec_{\mathcal{K}} M$ with $|N| < \lambda$, p is realized in M, i.e. the orbit corresponding to p meets M.

Partial Spectra

We fix our context: \mathcal{K} is an AEC, with Löwenheim-Skolem number $LS(\mathcal{K})$. Unless otherwise indicated, \mathcal{K} satisfies both the amalgamation and joint embedding properties, hence contains a monster model \mathfrak{C} . We identify Galois types with orbits in \mathfrak{C} , and make the usual definitions:

- 1. For any M, $a \in \mathfrak{C}$, and $N \prec_{\mathcal{K}} M$, the restriction of ga-tp(a/M)to N, denoted ga-tp $(a/M) \upharpoonright N$, is the orbit of a under $\operatorname{Aut}_{N}(\mathfrak{C}).$
- 2. $M \in \mathcal{K}$ is λ -Galois saturated if for every type p over $N \prec_{\mathcal{K}} M$ with $|N| < \lambda$, p is realized in M, i.e. the orbit corresponding to p meets M.
- 3. \mathcal{K} is λ -Galois stable if for every $M \in \mathcal{K}_{\lambda}$, $|ga-S(M)| = \lambda$.

One virtue of this setup: λ -Galois saturation corresponds to λ -model-homogeneity—for any $N \prec_{\mathcal{K}} M$ with $|N| < \lambda$, if $N' \succ_{\mathcal{K}} N$ and $|N'| < \lambda$, there is an embedding $f : N' \hookrightarrow_{\mathcal{K}} M$ that fixes N. Final condition:

Definition

An AEC \mathcal{K} is said to be χ -tame if for any $M \in \mathcal{K}$, if $q, q' \in \text{ga-S}(M)$ are distinct, then there is submodel $N \prec_{\mathcal{K}} M$ with $|N| \leq \chi$ such that $q \upharpoonright N \neq q' \upharpoonright N$.

Intuition: if we regard types over small models as formulas, tameness means that types are determined entirely by their constituent formulas.

Categoricity: Story fragmentary, results only for tame classes.

Theorem (Grossberg-VanDieren)

If \mathcal{K} is categorical in λ and λ^+ , it is categorical in λ^{++} .

Theorem (G-V)

If \mathcal{K} is categorical in $\lambda^+ > H(\mathcal{K})$, it is categorical in all $\mu > H(\mathcal{K})$.

These results are obtained by resorting to syntax, EM-models, etc.

Question: Can a purely category-theoretic perspective reveal anything new about the structure of categorical AECs?

Stability: if anything, the picture is even less clear. For tame AECs, we have

Theorem (G-V) If \mathcal{K} is λ -stable, it is κ -stable for all κ such that $\kappa^{\lambda} = \kappa$.

Theorem (L)

Let \mathcal{K} be λ -stable, where $\lambda^{\aleph_0} > \lambda$. If $cf(\kappa) > \lambda$ and $|ga-S(M)| \le \kappa$ for every $M \in \mathcal{K}_{<\kappa}$, then \mathcal{K} is κ -stable.

As a particularly nice special case:

Corollary

If \mathcal{K} is \aleph_0 -stable, and κ is of uncountable cofinality, then if \mathcal{K} is stable in every cardinality below κ , it is κ -stable as well.

If \mathcal{K} is only weakly χ -tame (the defining condition of tameness holds only for Galois saturated models), less is known.

Theorem (Baldwin-Kueker-VanDieren)

If \mathcal{K} is λ -stable, it is stable in λ^{+n} for all $n < \omega$.

Theorem (L)

If \mathcal{K} is λ -t.t., and κ is such that $cf(\kappa) > \lambda$ and each M of size κ has a saturated extension also of size κ , then \mathcal{K} is κ -stable.

Can we guarantee the existence of saturated extensions without making the standard model-theoretic assumption: $|ga-S(M)| < \kappa$ for all $M \in \mathcal{K}_{<\kappa}$?

If \mathcal{K} is only weakly χ -tame (the defining condition of tameness holds only for Galois saturated models), less is known.

Theorem (Baldwin-Kueker-VanDieren)

If \mathcal{K} is λ -stable, it is stable in λ^{+n} for all $n < \omega$.

Theorem (L)

If \mathcal{K} is λ -t.t., and κ is such that $cf(\kappa) > \lambda$ and each M of size κ has a saturated extension also of size κ , then \mathcal{K} is κ -stable.

Can we guarantee the existence of saturated extensions without making the standard model-theoretic assumption: $|ga-S(M)| < \kappa$ for all $M \in \mathcal{K}_{<\kappa}$?

Yes: weak κ -stability, a purely category-theoretic (and weaker) notion, will suffice.

 (Lawvere, 1963) Functorial semantics for algebraic theories—theories as categories with finite products, models as product-preserving functors from the associated categories.

- (Lawvere, 1963) Functorial semantics for algebraic theories—theories as categories with finite products, models as product-preserving functors from the associated categories.
- (Lawvere/Tierney; Makkai/Reyes, 1977) Functorial semantics for general first order theories—theories as topoi, models as structure preserving functors.

- (Lawvere, 1963) Functorial semantics for algebraic theories—theories as categories with finite products, models as product-preserving functors from the associated categories.
- (Lawvere/Tierney; Makkai/Reyes, 1977) Functorial semantics for general first order theories—theories as topoi, models as structure preserving functors.
- (Makkai/Paré, 1989) Theories set aside, instead consider categories that have essential properties of categories of models—accessible categories.

- (Lawvere, 1963) Functorial semantics for algebraic theories—theories as categories with finite products, models as product-preserving functors from the associated categories.
- (Lawvere/Tierney; Makkai/Reyes, 1977) Functorial semantics for general first order theories—theories as topoi, models as structure preserving functors.
- (Makkai/Paré, 1989) Theories set aside, instead consider categories that have essential properties of categories of models—accessible categories.
- (Rosický, 1997) Accessible categories with directed colimits, considers exceedingly model-theoretic notions.

- (Lawvere, 1963) Functorial semantics for algebraic theories—theories as categories with finite products, models as product-preserving functors from the associated categories.
- (Lawvere/Tierney; Makkai/Reyes, 1977) Functorial semantics for general first order theories—theories as topoi, models as structure preserving functors.
- (Makkai/Paré, 1989) Theories set aside, instead consider categories that have essential properties of categories of models—accessible categories.
- (Rosický, 1997) Accessible categories with directed colimits, considers exceedingly model-theoretic notions.
- ► (Beke/Rosický; L) Accessible categories and AECs.

Roughly speaking, an accessible category is one that is generated by colimits of a set of small objects. Basic terminology:

Roughly speaking, an accessible category is one that is generated by colimits of a set of small objects. Basic terminology:

Definition

An object N in a category **C** is finitely presentable (ω -presentable) if the functor Hom_{**C**}(N, -) preserves directed colimits.

Roughly speaking, an accessible category is one that is generated by colimits of a set of small objects. Basic terminology:

Definition

An object N in a category **C** is finitely presentable (ω -presentable) if the functor Hom_C(N, -) preserves directed colimits.

Equivalently, N is finitely presentable if for any directed diagram $D: (I, \leq) \rightarrow \mathbf{C}$ with colimit cocone $(\phi_i : D(i) \rightarrow M)_{i \in I})$, any map $f: N \rightarrow M$ factors through one of the cocone maps: $f = \phi_i \circ g$ for some $i \in I$ and $g: N \rightarrow D(i)$, as below.

Roughly speaking, an accessible category is one that is generated by colimits of a set of small objects. Basic terminology:

Definition

An object N in a category **C** is finitely presentable (ω -presentable) if the functor Hom_C(N, -) preserves directed colimits.

Equivalently, N is finitely presentable if for any directed diagram $D: (I, \leq) \rightarrow \mathbf{C}$ with colimit cocone $(\phi_i : D(i) \rightarrow M)_{i \in I})$, any map $f: N \rightarrow M$ factors through one of the cocone maps: $f = \phi_i \circ g$ for some $i \in I$ and $g: N \rightarrow D(i)$, as below.

Example: In \mathbf{Grp} , the category of groups, an object G is finitely presentable iff G is finitely presented. Same for any finitary algebraic variety.

Example: In \mathbf{Grp} , the category of groups, an object G is finitely presentable iff G is finitely presented. Same for any finitary algebraic variety.

Definition

A category **C** is finitely accessible (ω -accessible) if

- it has at most a set of finitely presentable objects,
- it is closed under directed colimits, and
- every object is a directed colimit of finitely presentable objects.

Example: In \mathbf{Grp} , the category of groups, an object G is finitely presentable iff G is finitely presented. Same for any finitary algebraic variety.

Definition

A category **C** is finitely accessible (ω -accessible) if

- it has at most a set of finitely presentable objects,
- it is closed under directed colimits, and
- every object is a directed colimit of finitely presentable objects.

Example: **Grp**, or any other finitary algebraic variety, is finitely accessible.

For general regular cardinal λ :

Definition

An object N in a category **C** is λ -presentable if the functor $Hom_{\mathbf{C}}(N, -)$ preserves λ -directed colimits.

For general regular cardinal λ :

Definition

An object N in a category **C** is λ -presentable if the functor $Hom_{\mathbf{C}}(N, -)$ preserves λ -directed colimits.

Definition

A category **C** is λ -accessible if

- it has at most a set of λ-presentables
- it is closed under λ -directed colimits
- every object is a λ -directed colimit of λ -presentables

For general regular cardinal λ :

Definition

An object N in a category **C** is λ -presentable if the functor $Hom_{\mathbf{C}}(N, -)$ preserves λ -directed colimits.

Definition

A category ${\bf C}$ is $\lambda\text{-accessible}$ if

- it has at most a set of λ -presentables
- it is closed under λ -directed colimits
- every object is a λ -directed colimit of λ -presentables

Example: **Hilb**, the category of Hilbert spaces with linear contractions, lacks directed colimits, so is not finitely accessible. It is, however, \aleph_1 -accessible.

The Downward Löwenheim-Skolem Property ensures that models in an AEC are generated as directed unions of their submodels of size $LS(\mathcal{K})$. As it happens (no AP or JEP needed),

Theorem

As a category, an AEC \mathcal{K} is μ -accessible for all regular $\mu \geq LS(\mathcal{K})^+$, and the μ -presentable objects are precisely the models of size less than μ . Moreover, \mathcal{K} is closed under directed colimits.

Rosický/Beke consider categories of this form, in which context the former has defined a number of category-theoretic analogues of notions from model theory. Most notably: weak κ -stability.

Definition

An object N is λ -saturated if for any λ -presentable objects M, M'and morphisms $f : M \to N$ and $g : M \to M'$, there is a morphism $h : M' \to N$ such that $h \circ g = f$.

Definition

An object N is λ -saturated if for any λ -presentable objects M, M' and morphisms $f : M \to N$ and $g : M \to M'$, there is a morphism $h : M' \to N$ such that $h \circ g = f$.

In an AEC \mathcal{K} (with AP, JEP now),

 $\begin{array}{lll} N \text{ is } \lambda \text{-saturated} & \Leftrightarrow & N \text{ is } \lambda \text{-model-homogeneous} \\ \Leftrightarrow & & N \text{ is } \lambda \text{-Galois-saturated} \end{array}$

Definition

A morphism $f : M \to N$ in a category **C** is said to be λ -pure (λ regular) if for any commutative square

$$\begin{array}{cccc}
M & \stackrel{f}{\longrightarrow} & N \\
u \uparrow & & \uparrow v \\
C & \stackrel{g}{\longrightarrow} & D
\end{array}$$

in which C and D are λ -presentable, there is a morphism $h: D \rightarrow M$ such that $h \circ g = u$.

Definition

A morphism $f : M \to N$ in a category **C** is said to be λ -pure (λ regular) if for any commutative square

$$\begin{array}{ccccc}
M & \stackrel{f}{\longrightarrow} & N \\
u \uparrow & & \uparrow v \\
C & \stackrel{g}{\longrightarrow} & D
\end{array}$$

in which C and D are λ -presentable, there is a morphism $h: D \rightarrow M$ such that $h \circ g = u$.

In an AEC \mathcal{K} , $M \hookrightarrow_{\mathcal{K}} N$ is λ -pure iff M is λ -Galois-saturated relative to N. An inclusion $M \hookrightarrow_{\mathcal{K}} \mathfrak{C}$ is λ -pure iff M is λ -Galois-saturated.

Definition

A category **C** is weakly κ -stable if for every κ^+ -presentable M and morphism $f : M \to N$, f factors as

$$M \longrightarrow M' \longrightarrow N$$

where M' is κ^+ -presentable and the map $M' \to N$ is κ -pure.

Definition

A category **C** is weakly κ -stable if for every κ^+ -presentable M and morphism $f: M \to N$, f factors as

$$M \longrightarrow M' \longrightarrow N$$

where M' is κ^+ -presentable and the map $M' \to N$ is κ -pure.

If an AEC \mathcal{K} is weakly κ -stable, then for any $M \in \mathcal{K}_{\kappa}$, the inclusion $M \hookrightarrow_{\mathcal{K}} \mathfrak{C}$ factors through a κ^+ -presentable object M' (i.e. a model $M' \in \mathcal{K}_{\kappa}$) such that $M' \hookrightarrow_{\mathcal{K}} \mathfrak{C}$ is λ -pure, whence M' is saturated.

That is, every $M \in \mathcal{K}_{\kappa}$ has a saturated extension $M' \in \mathcal{K}_{\kappa}$.

The partial spectrum result for weakly tame AECs becomes:

Proposition

If \mathcal{K} is λ -t.t., and weakly κ -stable with $cf(\kappa) > \lambda$, \mathcal{K} is κ -stable.

As it happens, any accessible category—hence any AEC—is weakly stable in many cardinalities:

Theorem (R)

Let **C** be a λ -accessible category, and μ a regular cardinal such that $\lambda \leq \mu$ and $|\operatorname{Pres}_{\lambda}(\mathbf{C})^{mor}| < \mu$. Then **C** is weakly $\mu^{<\mu}$ -stable.

Taken together, these yield new spectrum results for weakly tame AECs.

For example,

Proposition

If $LS(\mathcal{K}) = \aleph_0$, \mathcal{K} is \aleph_0 -t.t. and weakly \aleph_0 -tame, then for any $\mu > |\mathcal{K}_{\aleph_0}^{mor}|$ with $\mu \succeq \aleph_1$, \mathcal{K} is $\mu^{<\mu}$ -stable.

Suffice to say, there are many (and arbitrarily large) cardinals μ with $\aleph_1 \trianglelefteq \mu$.

For example,

Proposition

If $LS(\mathcal{K}) = \aleph_0$, \mathcal{K} is \aleph_0 -t.t. and weakly \aleph_0 -tame, then for any $\mu > |\mathcal{K}_{\aleph_0}^{mor}|$ with $\mu \succeq \aleph_1$, \mathcal{K} is $\mu^{<\mu}$ -stable.

Suffice to say, there are many (and arbitrarily large) cardinals μ with $\aleph_1 \trianglelefteq \mu$.

For example, if \mathcal{K} is \aleph_0 -categorical, $|\mathcal{K}^{\mathsf{mor}}_{\aleph_0}| \leq 2^{\aleph_0}$. Then \mathcal{K} is stable in

$$[(2^{\aleph_k})^{+(n+1)}]^{(2^{\aleph_k})^{+n}}$$
 for $n < \omega$ and $1 \le k < \omega$,

and so on.

Unassume AP, JEP. Suppose \mathcal{K} is λ -categorical, C is the unique structure of size λ , and M is its monoid of endomorphisms.

Theorem (R,L)

If \mathcal{K} is λ -categorical, the sub-AEC $\mathcal{K}_{\geq \lambda}$ consisting of models of size at least λ is equivalent to (M^{op}, λ^+) -Set, the full subcategory of M^{op} -Set consisting of λ^+ -directed colimits of M.

The equivalence is induced by the composition

$$\mathcal{K}_{\geq \lambda} \stackrel{y}{\longrightarrow} \mathbf{Set}^{(\mathcal{K}_{\geq \lambda})^{op}} \stackrel{r}{\longrightarrow} \mathbf{Set}^{M^{op}} \longrightarrow M^{op}\text{-}\mathbf{Set}$$

where y is the Yoneda embedding, the second map is restriction, and the final map is the obvious equivalence $\mathbf{Set}^{M^{op}} \xrightarrow{\sim} M^{op}$ -Set.

The assignment is:

$$N \in \mathcal{K}_{\geq \lambda} \quad \mapsto \quad \operatorname{Hom}_{\mathcal{K}}(C, N)$$

where $M = \text{Hom}_{\mathcal{K}}(C, C)$ acts by precomposition.

That this gives the desired equivalence is an exercise in definitions.

This amounts to an astonishing transformation of a very abstract entity—an AEC—into a category of relatively simple algebraic objects.

Connections to AECs A Dictionary Stability Structure Theorem

Further Reading

Accessible Categories and AECs:

- Jiří Adámek and Jiří Rosický. Locally presentable and accessible categories. No. 189 in London Math. Soc. Lecture Notes, 1994.
- Beke, Tibor and Jiří Rosický. Abstract elementary classes and accessible categories. Submitted, May 2010.
- Kirby, Jonathan. Abstract elementary categories. August 2008. See http://people.maths.ox.ac.uk/~kirby/pdf/aecats.pdf.
- Lieberman, Michael. Category-theoretic aspects of AECs. Submitted, May 2010.
- Makkai, Michael and Robert Paré. Accessible categories: the foundations of categorical model theory, Vol. 104 of Contemporary Mathematics. AMS, 1989.
- Rosický, Jiří. Accessible categories, saturation and categoricity. JSL, 62:891–901, 1997.

Connections to AECs A Dictionary Stability Structure Theorem

Further Reading II

AEC Context:

- Baldwin, John. Categoricity. No. 50 in University Lecture Series. AMS, 2009.
- Baldwin, John, David Kueker, and Monica VanDieren. Upward stability transfer for tame abstract elementary classes. Notre Dame Journal of Formal Logic, 47(2):291–298, 2006.
- ▶ Grossberg, Rami and Monica VanDieren. Galois-stability in tame abstract elementary classes. *Journal of Math. Logic*, 6(1):25–49, 2006.
- Grossberg, Rami and Monica VanDieren. Shelah's categoricity conjecture from a successor for tame abstract elementary classes. JSL, 71(2):553–568, 2006.
- Lieberman, Michael. Rank functions and partial stability spectra for AECs. Submitted. See http://arxiv.org/abs/1001.0624v1.
- Shelah, Saharon. Classification theory for abstract elementary classes, Vols 1 and 2. Math. Logic and Foundations, No. 20 (College Publishing, 2009).