CATEGORIES IN ABSTRACT MODEL THEORY

Michael Lieberman
University of Pennsylvania

Infinity Conference
CRM Barcelona

July 21, 2011
Goals:

We highlight the category-theoretic bent of recent work in abstract model theory, particularly that involving abstract elementary classes, and make a connection with a subject of current research within category theory—accessible categories.
Goals:

We highlight the category-theoretic bent of recent work in abstract model theory, particularly that involving abstract elementary classes, and make a connection with a subject of current research within category theory—accessible categories.

We also address the following questions:
Goals:

We highlight the category-theoretic bent of recent work in abstract model theory, particularly that involving abstract elementary classes, and make a connection with a subject of current research within category theory—accessible categories.

We also address the following questions:

- Can we find meaningful analogues/translations of AEC notions in the category-theoretic framework? Categoricity? Stability?
Goals:

We highlight the category-theoretic bent of recent work in abstract model theory, particularly that involving abstract elementary classes, and make a connection with a subject of current research within category theory—accessible categories.

We also address the following questions:

- Can we find meaningful analogues/translations of AEC notions in the category-theoretic framework? Categoricity? Stability?
- Does the shift in perspective yield model-theoretic dividends?
Goals:

We highlight the category-theoretic bent of recent work in abstract model theory, particularly that involving abstract elementary classes, and make a connection with a subject of current research within category theory—accessible categories.

We also address the following questions:

- Can we find meaningful analogues/translations of AEC notions in the category-theoretic framework? Categoricity? Stability?
- Does the shift in perspective yield model-theoretic dividends?

Time permitting, we also examine an alternative category-theoretic framework for abstract model theory.
For the purposes of this talk, abstract model theory is the research program focused on sniffing out the fragment of classification theory that is common to naturally occurring logics: first order, $L_{\omega_1 \omega}$, $L(Q)$, $L_{\omega_1 \omega}(Q)$, etc.
For the purposes of this talk, abstract model theory is the research program focused on sniffing out the fragment of classification theory that is common to naturally occurring logics: first order, $L_{\omega_1\omega}$, $L(Q)$, $L_{\omega_1\omega}(Q)$, etc.

Strategy: abandon syntax and logic-dependent structure entirely, and simply work with abstract classes of structures equipped with a strong substructure relation that retains certain essential properties of elementary embedding.
For the purposes of this talk, abstract model theory is the research program focused on sniffing out the fragment of classification theory that is common to naturally occurring logics: first order, $L_{\omega_1\omega}$, $L(Q)$, $L_{\omega_1\omega}(Q)$, etc.

Strategy: abandon syntax and logic-dependent structure entirely, and simply work with abstract classes of structures equipped with a strong substructure relation that retains certain essential properties of elementary embedding.

Hence abstract elementary classes—which can (and perhaps should) be regarded as the category-theoretic hulls of elementary classes.
An *Abstract Elementary Class (AEC)* is a nonempty class \mathcal{K} of structures in a given signature, closed under isomorphism, equipped with a strong substructure relation, $\prec_{\mathcal{K}}$, that satisfies:
An *Abstract Elementary Class (AEC)* is a nonempty class \mathcal{K} of structures in a given signature, closed under isomorphism, equipped with a strong substructure relation, $\prec_{\mathcal{K}}$, that satisfies:

- $\prec_{\mathcal{K}}$ is a partial order.
- Unions of chains: if $(M_i \mid i < \delta)$ is a $\prec_{\mathcal{K}}$-increasing chain,
 1. $\bigcup_{i<\delta} M_i \in \mathcal{K}$
 2. for each $j < \delta$, $M_j \prec_{\mathcal{K}} \bigcup_{i<\delta} M_i$
 3. if each $M_j \prec_{\mathcal{K}} M \in \mathcal{K}$, $\bigcup_{i<\delta} M_i \prec_{\mathcal{K}} M$
- Coherence: If $M_0 \prec_{\mathcal{K}} M_2$, $M_0 \subseteq M_1 \prec_{\mathcal{K}} M_2$, then $M_0 \prec_{\mathcal{K}} M_1$
- Löwenheim-Skolem: Exists cardinal $\text{LS}(\mathcal{K})$ such that for any $M \in \mathcal{K}$, subset $A \subseteq M$, there is an $M_0 \in \mathcal{K}$ with $A \subseteq M_0 \prec_{\mathcal{K}} M$ and $|M_0| \leq |A| + \text{LS}(\mathcal{K})$.
An Abstract Elementary Class (AEC) is a nonempty class \mathcal{K} of structures in a given signature, closed under isomorphism, equipped with a strong substructure relation, $\prec_{\mathcal{K}}$, that satisfies:

- $\prec_{\mathcal{K}}$ is a partial order.
- Unions of chains: if $(M_i \mid i < \delta)$ is a $\prec_{\mathcal{K}}$-increasing chain,
 1. $\bigcup_{i<\delta} M_i \in \mathcal{K}$
 2. for each $j < \delta$, $M_j \prec_{\mathcal{K}} \bigcup_{i<\delta} M_i$
 3. if each $M_j \prec_{\mathcal{K}} M \in \mathcal{K}$, $\bigcup_{i<\delta} M_i \prec_{\mathcal{K}} M$
- Coherence: If $M_0 \prec_{\mathcal{K}} M_2$, $M_0 \subseteq M_1 \prec_{\mathcal{K}} M_2$, then $M_0 \prec_{\mathcal{K}} M_1$.
- Löwenheim-Skolem: Exists cardinal LS(\mathcal{K}) such that for any $M \in \mathcal{K}$, subset $A \subseteq M$, there is an $M_0 \in \mathcal{K}$ with $A \subseteq M_0 \prec_{\mathcal{K}} M$ and $|M_0| \leq |A| + \text{LS}(\mathcal{K})$.

A strong embedding $f : M \to N$ is an isomorphism from M to a strong submodel of N, $f : M \cong M' \prec_{\mathcal{K}} N$.
An Abstract Elementary Class (AEC) is a nonempty class \(\mathcal{K} \) of structures in a given signature, closed under isomorphism, equipped with a family of strong embeddings \(\mathcal{M} \), that satisfies:

- \(\prec_{\mathcal{K}} \) is a partial order.
- Unions of chains: if \((M_i \mid i < \delta) \) is a \(\prec_{\mathcal{K}} \)-increasing chain,
 1. \(\bigcup_{i<\delta} M_i \in \mathcal{K} \)
 2. for each \(j < \delta \), \(M_j \prec_{\mathcal{K}} \bigcup_{i<\delta} M_i \)
 3. if each \(M_j \prec_{\mathcal{K}} M \in \mathcal{K}, \bigcup_{i<\delta} M_i \prec_{\mathcal{K}} M \)
- Coherence: If \(M_0 \prec_{\mathcal{K}} M_2, M_0 \subseteq M_1 \prec_{\mathcal{K}} M_2 \), then \(M_0 \prec_{\mathcal{K}} M_1 \)
- Löwenheim-Skolem: Exists cardinal \(\text{LS}(\mathcal{K}) \) such that for any \(M \in \mathcal{K} \), subset \(A \subseteq M \), there is an \(M_0 \in \mathcal{K} \) with \(A \subseteq M_0 \prec_{\mathcal{K}} M \) and \(|M_0| \leq |A| + \text{LS}(\mathcal{K}) \).
An *Abstract Elementary Class (AEC)* is a nonempty class \mathcal{K} of structures in a given signature, closed under isomorphism, equipped with a family of strong embeddings \mathcal{M}, that satisfies:

- \mathcal{K}, with the maps in \mathcal{M}, forms a subcategory of $\text{Str}(L(\mathcal{K}))$
- Unions of chains: if $(M_i \mid i < \delta)$ is a $\prec_{\mathcal{K}}$-increasing chain,
 1. $\bigcup_{i<\delta} M_i \in \mathcal{K}$
 2. for each $j < \delta$, $M_j \prec_{\mathcal{K}} \bigcup_{i<\delta} M_i$
 3. if each $M_j \prec_{\mathcal{K}} M \in \mathcal{K}$, $\bigcup_{i<\delta} M_i \prec_{\mathcal{K}} M$
- Coherence: If $M_0 \prec_{\mathcal{K}} M_2$, $M_0 \subseteq M_1 \prec_{\mathcal{K}} M_2$, then $M_0 \prec_{\mathcal{K}} M_1$
- Löwenheim-Skolem: Exists cardinal $\text{LS}(\mathcal{K})$ such that for any $M \in \mathcal{K}$, subset $A \subseteq M$, there is an $M_0 \in \mathcal{K}$ with $A \subseteq M_0 \prec_{\mathcal{K}} M$ and $|M_0| \leq |A| + \text{LS}(\mathcal{K})$.
An Abstract Elementary Class (AEC) is a nonempty class \(\mathcal{K} \) of structures in a given signature, closed under isomorphism, equipped with a family of strong embeddings \(\mathcal{M} \), that satisfies:

- \(\mathcal{K} \), with the maps in \(\mathcal{M} \), forms a subcategory of \(\text{Str}(\mathcal{L}((\mathcal{K}))) \)
- which is closed under directed colimits (i.e. direct limits).

- Coherence: If \(M_0 \prec_{\mathcal{K}} M_2, M_0 \subseteq M_1 \prec_{\mathcal{K}} M_2 \), then \(M_0 \prec_{\mathcal{K}} M_1 \)
- Löwenheim-Skolem: Exists cardinal \(\text{LS}(\mathcal{K}) \) such that for any \(M \in \mathcal{K} \), subset \(A \subseteq M \), there is an \(M_0 \in \mathcal{K} \) with \(A \subseteq M_0 \prec_{\mathcal{K}} M \) and \(|M_0| \leq |A| + \text{LS}(\mathcal{K}) \).
An Abstract Elementary Class (AEC) is a nonempty class \mathcal{K} of structures in a given signature, closed under isomorphism, equipped with a family of strong embeddings \mathcal{M}, that satisfies:

- \mathcal{K}, with the maps in \mathcal{M}, forms a subcategory of $\text{Str}(L(\mathcal{K}))$.
- which is closed under directed colimits (i.e. direct limits).
- Coherence: Given any $L(\mathcal{K})$-structure embedding $f : M \to N$ and any map $g : N \to N'$ in \mathcal{M}, if $gf \in \mathcal{M}$, then $f \in \mathcal{M}$.
- Löwenheim-Skolem: Exists cardinal $\text{LS}(\mathcal{K})$ such that for any $M \in \mathcal{K}$, subset $A \subseteq M$, there is an $M_0 \in \mathcal{K}$ with $A \subseteq M_0 \preceq M$ and $|M_0| \leq |A| + \text{LS}(\mathcal{K})$.

Michael Lieberman University of Pennsylvania Categories in abstract model theory
An *Abstract Elementary Class (AEC)* is a nonempty class \mathcal{K} of structures in a given signature, closed under isomorphism, equipped with a family of strong embeddings \mathcal{M}, that satisfies:

- \mathcal{K}, with the maps in \mathcal{M}, forms a subcategory of $\text{Str}(L(\mathcal{K}))$
- which is closed under directed colimits (i.e. direct limits).

- Coherence: Given any $L(\mathcal{K})$-structure embedding $f : M \to N$ and any map $g : N \to N'$ in \mathcal{M}, if $gf \in \mathcal{M}$, then $f \in \mathcal{M}$.
- Löwenheim-Skolem: Exists cardinal $\text{LS}(\mathcal{K})$ such that for any $M \in \mathcal{K}$ and $L(\mathcal{K})$-structure embedding $f : A \to M$, f factors through some $h : N \to M$ in \mathcal{M}, where $|N| \leq |A| + \text{LS}(\mathcal{K})$.
Side note: when considering Galois types, saturation, and stability in the sequel, we will assume AP. We therefore have a large Galois-saturated, strongly model homogeneous model \mathcal{C}—the monster model—and may identify Galois types with orbits in \mathcal{C}.
Categorical model theory timeline:
Categorical model theory timeline:

- (Lawvere, 1963) Functorial semantics for algebraic theories— theories as categories with finite products, models as product-preserving functors from the associated categories.
Categorical model theory timeline:

- (Lawvere, 1963) Functorial semantics for algebraic theories—theories as categories with finite products, models as product-preserving functors from the associated categories.
- (Lawvere/Tierney; Makkai/Reyes, 1977) Functorial semantics for general first order theories—theories as topoi, models as structure preserving functors.
Categorical model theory timeline:

- (Lawvere, 1963) Functorial semantics for algebraic theories—thories as categories with finite products, models as product-preserving functors from the associated categories.
- (Lawvere/Tierney; Makkai/Reyes, 1977) Functorial semantics for general first order theories—thories as topoi, models as structure preserving functors.
- (Makkai/Paré, 1989) Theories set aside, instead consider categories that have essential properties of categories of models—accessible categories.
Categorical model theory timeline:

- (Lawvere, 1963) Functorial semantics for algebraic theories—theories as categories with finite products, models as product-preserving functors from the associated categories.
- (Lawvere/Tierney; Makkai/Reyes, 1977) Functorial semantics for general first order theories—theories as topoi, models as structure preserving functors.
- (Makkai/Paré, 1989) Theories set aside, instead consider categories that have essential properties of categories of models—accessible categories.
- (Rosický, 1997) Accessible categories with directed colimits, considers exceedingly model-theoretic notions.
Categorical model theory timeline:

- (Lawvere, 1963) Functorial semantics for algebraic theories—theories as categories with finite products, models as product-preserving functors from the associated categories.
- (Lawvere/Tierney; Makkai/Reyes, 1977) Functorial semantics for general first order theories—theories as topoi, models as structure preserving functors.
- (Makkai/Paré, 1989) Theories set aside, instead consider categories that have essential properties of categories of models—accessible categories.
- (Rosický, 1997) Accessible categories with directed colimits, considers exceedingly model-theoretic notions.
- (Beke/Rosický; L) Accessible categories and AECs.
First, we need a notion of size that makes sense in arbitrary categories, and hopefully coincides with cardinality in familiar cases. To begin:
First, we need a notion of size that makes sense in arbitrary categories, and hopefully coincides with cardinality in familiar cases. To begin:

Definition

An object N in a category \mathcal{C} is *finitely presentable* (ω-presentable) if the functor $\text{Hom}_\mathcal{C}(N, -)$ preserves directed colimits.
First, we need a notion of size that makes sense in arbitrary categories, and hopefully coincides with cardinality in familiar cases. To begin:

Definition

An object N in a category \mathbb{C} is *finitely presentable* (ω-presentable) if the functor $\text{Hom}_{\mathbb{C}}(N, -)$ preserves directed colimits.

Equivalently, N is finitely presentable if for any directed diagram $D : (I, \leq) \to \mathbb{C}$ with colimit cocone $(\phi_i : D(i) \to M)_{i \in I}$, any map $f : N \to M$ factors through one of the cocone maps: $f = \phi_i \circ g$ for some $i \in I$ and $g : N \to D(i)$.

First, we need a notion of size that makes sense in arbitrary categories, and hopefully coincides with cardinality in familiar cases. To begin:

Definition

An object N in a category \mathbf{C} is *finitely presentable* (ω-presentable) if the functor $\text{Hom}_\mathbf{C}(N, -)$ preserves directed colimits.

Equivalently, N is finitely presentable if for any directed diagram $D : (I, \leq) \to \mathbf{C}$ with colimit cocone $(\phi_i : D(i) \to M)_{i \in I}$, any map $f : N \to M$ factors through one of the cocone maps: $f = \phi_i \circ g$ for some $i \in I$ and $g : N \to D(i)$.

Example: In \mathbf{Grp}, the category of groups, an object G is finitely presentable iff G is finitely presented. Same for any finitary algebraic variety.
For general regular cardinal λ:

Definition

An object N in a category \mathcal{C} is λ-presentable if the functor $\text{Hom}_\mathcal{C}(N, -)$ preserves λ-directed colimits.
For general regular cardinal λ:

Definition

An object N in a category \mathbf{C} is λ-presentable if the functor $\text{Hom}_\mathbf{C}(N, -)$ preserves λ-directed colimits.

Definition

The presentation rank of an object N, denoted $\pi(N)$, is the least cardinal λ such that N is λ-presentable.
For general regular cardinal λ:

Definition

An object N in a category \mathcal{C} is λ-presentable if the functor $\text{Hom}_{\mathcal{C}}(N, -)$ preserves λ-directed colimits.

Definition

The presentation rank of an object N, denoted $\pi(N)$, is the least cardinal λ such that N is λ-presentable.

This is our analogue of cardinality, and allows a straightforward translation of categoricity questions into the context of abstract categories...
With AECs in mind, we are interested in categories generated from a family of objects which are small in this sense. Accessible categories are waiting in the wings...
With AECs in mind, we are interested in categories generated from a family of objects which are small in this sense. Accessible categories are waiting in the wings...

Definition

A category \mathbf{C} is λ-accessible if

- it has at most a set of λ-presentables
- it is closed under λ-directed colimits
- every object is a λ-directed colimit of λ-presentables
With AECs in mind, we are interested in categories generated from a family of objects which are small in this sense. Accessible categories are waiting in the wings...

Definition
A category \mathbf{C} is λ-accessible if

- it has at most a set of λ-presentables
- it is closed under λ-directed colimits
- every object is a λ-directed colimit of λ-presentables

Example: Hilb, the category of Hilbert spaces with linear contractions, lacks directed colimits, so is not finitely accessible. It is, however, \aleph_1-accessible.
The Downward Löwenheim-Skolem Property ensures that models in an AEC are generated as directed unions of their submodels of size $\text{LS}(\mathcal{K})$. As it happens (no AP or JEP needed),
The Downward Löwenheim-Skolem Property ensures that models in an AEC are generated as directed unions of their submodels of size $\text{LS}(\mathcal{K})$. As it happens (no AP or JEP needed),

Theorem (L, Beke/Rosický)

As a category, an AEC \mathcal{K} is μ-accessible for all regular $\mu \geq \text{LS}(\mathcal{K})^+$, and, for $\lambda \geq \text{LS}(\mathcal{K})$, a model $M \in \mathcal{K}$ has $\pi(M) = \lambda^+$ if and only if $|M| = \lambda$. Moreover, \mathcal{K} is closed under directed colimits.
The Downward Löwenheim-Skolem Property ensures that models in an AEC are generated as directed unions of their submodels of size $\text{LS}(\mathcal{K})$. As it happens (no AP or JEP needed),

Theorem (L, Beke/Rosický)

As a category, an AEC \mathcal{K} is μ-accessible for all regular $\mu \geq \text{LS}(\mathcal{K})^+$, and, for $\lambda \geq \text{LS}(\mathcal{K})$, a model $M \in \mathcal{K}$ has $\pi(M) = \lambda^+$ if and only if $|M| = \lambda$. Moreover, \mathcal{K} is closed under directed colimits.

With a few more clauses, we can completely axiomatize subcategories of categories of structures that are essentially AECs. Rosický considers categories of this form, defines a number of category-theoretic analogues of notions from model theory. Most notably: weak κ-stability.
Definition

A morphism \(f : M \to N \) in a category \(\mathcal{C} \) is said to be \(\kappa \)-pure if for any commutative square

\[
\begin{array}{ccc}
M & \xrightarrow{f} & N \\
& \uparrow u & \\
C & \xrightarrow{g} & D
\end{array}
\]

in which \(C \) and \(D \) are \(\kappa \)-presentable, there is a morphism \(h : D \to M \) such that \(h \circ g = u \).
Definition

A morphism $f : M \rightarrow N$ in a category \mathbf{C} is said to be κ-pure if for any commutative square

$$
\begin{array}{ccc}
M & \xrightarrow{f} & N \\
\uparrow u & & \uparrow v \\
C & \xrightarrow{g} & D
\end{array}
$$

in which C and D are κ-presentable, there is a morphism $h : D \rightarrow M$ such that $h \circ g = u$.

In an EC, an elementary embedding $M \rightarrow N$ is κ-pure iff M is κ-saturated relative to N.
Definition

A morphism $f : M \to N$ in a category \mathcal{C} is said to be κ-pure if for any commutative square

\[
\begin{array}{ccc}
M & \xrightarrow{f} & N \\
\uparrow u & & \uparrow v \\
C & \xrightarrow{g} & D
\end{array}
\]

in which C and D are κ-presentable, there is a morphism $h : D \to M$ such that $h \circ g = u$.

In an EC, an elementary embedding $M \to N$ is κ-pure iff M is κ-saturated relative to N. In an AEC, a strong embedding $M \to N$ is κ-pure only if M is κ-Galois-saturated relative to N.
Definition

A morphism $f : M \to N$ in a category \mathcal{C} is said to be κ-pure if for any commutative square

$$
\begin{array}{ccc}
M & \xrightarrow{f} & N \\
\uparrow u & & \uparrow v \\
C & \xrightarrow{g} & D
\end{array}
$$

in which C and D are κ-presentable, there is a morphism $h : D \to M$ such that $h \circ g = u$.

In an EC, an elementary embedding $M \to N$ is κ-pure iff M is κ-saturated relative to N. In an AEC, a strong embedding $M \to N$ is κ-pure only if M is κ-Galois-saturated relative to N. In particular, an inclusion $M \to \mathcal{C}$ is κ-pure iff M is κ-Galois-saturated.
Definition

A category \mathbf{C} is weakly κ-stable if for every κ^+-presentable M and morphism $f : M \to N$, f factors as

$$M \longrightarrow M' \longrightarrow N$$

where M' is κ^+-presentable and the map $M' \to N$ is κ-pure.
Definition
A category \mathcal{C} is weakly κ-stable if for every κ^+-presentable M and morphism $f : M \to N$, f factors as

\[M \longrightarrow M' \longrightarrow N \]

where M' is κ^+-presentable and the map $M' \to N$ is κ-pure.

Easy: if a first order theory T is κ-stable, its category of models is weakly κ-stable.
Definition
A category \mathbf{C} is weakly κ-stable if for every κ^+-presentable M and morphism $f : M \rightarrow N$, f factors as

$$M \rightarrowtail M' \twoheadrightarrow N$$

where M' is κ^+-presentable and the map $M' \rightarrow N$ is κ-pure.

Easy: if a first order theory T is κ-stable, its category of models is weakly κ-stable.

Things are more complicated in AECs, but the connection is still close...
Unknown whether κ-Galois-stability implies weak κ-stability. A sufficient condition:
Unknown whether \(\kappa \)-Galois-stability implies weak \(\kappa \)-stability. A sufficient condition:

Proposition (L)

If every \(M \in \mathcal{K}_\kappa \) has at most \(\kappa \) many strong extensions of size \(\kappa \), \(\mathcal{K} \) is weakly \(\kappa \)-stable.
Unknown whether κ-Galois-stability implies weak κ-stability. A sufficient condition:

Proposition (L)

If every $M \in \mathcal{K}_\kappa$ has at most κ many strong extensions of size κ, \mathcal{K} is weakly κ-stable.

Proposition (L)

If an AEC \mathcal{K} is weakly κ-stable, every $M \in \mathcal{K}_\kappa$ has a Galois-saturated extension $M' \in \mathcal{K}_\kappa$.
Unknown whether κ-Galois-stability implies weak κ-stability. A sufficient condition:

Proposition (L)

If every $M \in \mathcal{K}_\kappa$ has at most κ many strong extensions of size κ, \mathcal{K} is weakly κ-stable.

Proposition (L)

If an AEC \mathcal{K} is weakly κ-stable, every $M \in \mathcal{K}_\kappa$ has a Galois-saturated extension $M' \in \mathcal{K}_\kappa$.

Proof: Let $M \in \mathcal{K}_\kappa$, hence κ^+-presentable. The inclusion $M \to \mathfrak{C}$ factors through a κ^+-presentable object M' (i.e. a model $M' \in \mathcal{K}_\kappa$) such that $M' \to \mathfrak{C}$ is κ-pure, whence M' is Galois-saturated.
Unknown whether κ-Galois-stability implies weak κ-stability. A sufficient condition:

Proposition (L)

If every $M \in \mathcal{K}_\kappa$ has at most κ many strong extensions of size κ, \mathcal{K} is weakly κ-stable.

Proposition (L)

If an AEC \mathcal{K} is weakly κ-stable, every $M \in \mathcal{K}_\kappa$ has a Galois-saturated extension $M' \in \mathcal{K}_\kappa$.

Proof: Let $M \in \mathcal{K}_\kappa$, hence κ^+-presentable. The inclusion $M \rightarrow \mathcal{C}$ factors through a κ^+-presentable object M' (i.e. a model $M' \in \mathcal{K}_\kappa$) such that $M' \rightarrow \mathcal{C}$ is κ-pure, whence M' is Galois-saturated.

In certain contexts, weak κ-stability implies κ-Galois-stability, which is interesting because every accessible category is weakly stable in many cardinalities...
Suppose \mathcal{K} is λ-categorical (no assumption of AP, JEP), C is the unique structure of size λ, and M is its monoid of endomorphisms.

Theorem (R,L)

If \mathcal{K} is λ-categorical, the sub-AEC $\mathcal{K}_{\geq \lambda}$ consisting of models of size at least λ is equivalent to $(M^{\text{op}}, \lambda^+)-\text{Set}$, the full subcategory of $M^{\text{op}}\text{-Set}$ consisting of λ^+-directed colimits of M.

The equivalence is induced by the composition

$$
\mathcal{K}_{\geq \lambda} \xrightarrow{y} \text{Set}(\mathcal{K}_{\geq \lambda})^{\text{op}} \xrightarrow{r} \text{Set}^{M^{\text{op}}} \longrightarrow M^{\text{op}}\text{-Set}
$$

where y is the Yoneda embedding, the second map is restriction, and the final map is the obvious equivalence $\text{Set}^{M^{\text{op}}} \xrightarrow{\sim} M^{\text{op}}\text{-Set}$.
The assignment is:

\[N \in \mathcal{K}_{\geq \lambda} \mapsto \text{Hom}_\mathcal{K}(C, N) \]

where \(M = \text{Hom}_\mathcal{K}(C, C) \) acts by precomposition.

That this gives the desired equivalence is an exercise in definitions.

This amounts to an astonishing transformation of a very abstract entity—an AEC—into a category of relatively simple algebraic objects. How useful this might be is less clear...
A wildly different approach to the same problems arose in specification theory. Faced with an impossible proliferation of logics, Tarlecki and others took a surprising tack:
A wildly different approach to the same problems arose in specification theory. Faced with an impossible proliferation of logics, Tarlecki and others took a surprising tack:

- Individual logics themselves, signatures, satisfaction and all, are captured/generalized by a single category-theoretic structure—the “institution.”
A wildly different approach to the same problems arose in specification theory. Faced with an impossible proliferation of logics, Tarlecki and others took a surprising tack:

- Individual logics themselves, signatures, satisfaction and all, are captured/generalized by a single category-theoretic structure—the “institution.”
- Model-theoretic methods and notions are developed within an abstract institution, hence are ”institution-independent” and pass to all of the particular logics falling under this umbrella.
A wildly different approach to the same problems arose in specification theory. Faced with an impossible proliferation of logics, Tarlecki and others took a surprising tack:

- Individual logics themselves, signatures, satisfaction and all, are captured/generalized by a single category-theoretic structure—the “institution.”
- Model-theoretic methods and notions are developed within an abstract institution, hence are ”institution-independent” and pass to all of the particular logics falling under this umbrella. This covers an awful lot of logics: FOL, L_{ω}, HOL, IPL, MFOL, MPL, temporal and behavioral logics, and so on.
An institution is a quadruple $\mathcal{I} = (\text{Sig}^\mathcal{I}, \text{Sen}^\mathcal{I}, \text{Mod}^\mathcal{I}, \models^\mathcal{I})$, where
An institution is a quadruple $\mathcal{I} = (\text{Sig}^\mathcal{I}, \text{Sen}^\mathcal{I}, \text{Mod}^\mathcal{I}, \models^\mathcal{I})$, where

- $\text{Sig}^\mathcal{I}$ is a category whose objects are called “signatures.”
An institution is a quadruple $\mathcal{I} = (\text{Sig}^\mathcal{I}, \text{Sen}^\mathcal{I}, \text{Mod}^\mathcal{I}, \models^\mathcal{I})$, where

- $\text{Sig}^\mathcal{I}$ is a category whose objects are called “signatures.”

- $\text{Sen}^\mathcal{I}$ is a functor from $\text{Sig}^\mathcal{I}$ to Set that assigns
 (a) to each Σ in $\text{Sig}^\mathcal{I}$ a set of “sentences” $\text{Sen}^\mathcal{I}(\Sigma)$, and
 (b) to each signature map $\phi : \Sigma \to \Sigma'$ a “translation” $\text{Sen}^\mathcal{I}(\phi) : \text{Sen}^\mathcal{I}(\Sigma) \to \text{Sen}^\mathcal{I}(\Sigma')$.

$\mathit{Mod}^\mathcal{I}$ is a functor from $(\mathbf{Sig}^\mathcal{I})^{\text{op}}$ to \mathbf{CAT} that assigns
(a) to each Σ a category of “Σ-models,” $\mathit{Mod}^\mathcal{I}(\Sigma)$, and
(b) to each signature map $\phi : \Sigma \rightarrow \Sigma'$ a functor
$\mathit{Mod}^\mathcal{I}(\phi) : \mathit{Mod}^\mathcal{I}(\Sigma') \rightarrow \mathit{Mod}^\mathcal{I}(\Sigma)$.
- $\text{Mod}^\mathcal{I}$ is a functor from $(\text{Sig}^\mathcal{I})^{\text{op}}$ to CAT that assigns
 (a) to each Σ a category of "Σ-models," $\text{Mod}^\mathcal{I}(\Sigma)$, and
 (b) to each signature map $\phi : \Sigma \to \Sigma'$ a functor
 $\text{Mod}^\mathcal{I}(\phi) : \text{Mod}^\mathcal{I}(\Sigma') \to \text{Mod}^\mathcal{I}(\Sigma)$.

Motivation: if $\phi : \Sigma \to \Sigma'$ is an inclusion of signatures, and
$\text{Mod}^\mathcal{I}(\Sigma)$ and $\text{Mod}^\mathcal{I}(\Sigma')$ the corresponding categories of
structures, we have the reduct

$$\mid_\Sigma : \text{Mod}^\mathcal{I}(\Sigma') \to \text{Mod}^\mathcal{I}(\Sigma)$$
ModI is a functor from (SigI)op to CAT that assigns
(a) to each Σ a category of “Σ-models,” ModI(Σ), and
(b) to each signature map φ : Σ → Σ′ a functor
ModI(φ) : ModI(Σ′) → ModI(Σ).

Motivation: if φ : Σ → Σ′ is an inclusion of signatures, and
ModI(Σ) and ModI(Σ′) the corresponding categories of
structures, we have the reduct

\[\mid_Σ : ModI(Σ′) \to ModI(Σ) \]

This is the template for ModI(φ)…
for each Σ in Sig^I,

$$\models^I_\Sigma \subseteq |\text{Mod}^I(\Sigma)| \times \text{Sen}^I(\Sigma)$$

is a relation, “Σ-satisfaction,” which ensures the ingredients behave as in any concrete logic: for each map $\phi : \Sigma \to \Sigma'$,

$$M' \models^I_\Sigma, \text{Sen}^I(\phi)(s) \text{ iff } \text{Mod}^I(\phi)(M') \models^I_\Sigma s$$

for any sentence $s \in \text{Sen}^I(\Sigma)$ and $M' \in |\text{Mod}^I(\Sigma')|$.
A fundamental difference with this approach is that we are not tied to a fixed signature, and can pass freely to reducts and expansions, making available many essential tricks from classical model theory:
A fundamental difference with this approach is that we are not tied to a fixed signature, and can pass freely to reducts and expansions, making available many essential tricks from classical model theory:

- Method of diagrams
A fundamental difference with this approach is that we are not tied to a fixed signature, and can pass freely to reducts and expansions, making available many essential tricks from classical model theory:

- Method of diagrams
- Realizing types
A fundamental difference with this approach is that we are not tied to a fixed signature, and can pass freely to reducts and expansions, making available many essential tricks from classical model theory:

- Method of diagrams
- Realizing types
- Saturated models
A fundamental difference with this approach is that we are not tied to a fixed signature, and can pass freely to reducts and expansions, making available many essential tricks from classical model theory:

- Method of diagrams
- Realizing types
- Saturated models
- Ultraproducts
A fundamental difference with this approach is that we are not tied to a fixed signature, and can pass freely to reducts and expansions, making available many essential tricks from classical model theory:

- Method of diagrams
- Realizing types
- Saturated models
- Ultraproducts
- ...

Michael Lieberman University of Pennsylvania
Categories in abstract model theory
A fundamental difference with this approach is that we are not tied to a fixed signature, and can pass freely to reducts and expansions, making available many essential tricks from classical model theory:

- Method of diagrams
- Realizing types
- Saturated models
- Ultraproducts
- ...

See, in particular, recent work of Diaconescu, who has a (mostly) institution-independent analog of the Keisler-Shelah theorem from first order: any two elementarily equivalent models have isomorphic ultrapowers.
This seems promising...
Accessible Categories and AECs:

- Lieberman, Michael. Category-theoretic aspects of AECs. To appear in APAL.
Further Reading II

AEC Context:

