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24 November, 2014

Michael Lieberman Masaryk University Toward A New Model Theory



Introduction
Classical model theory
Abstract model theory

Basics
Compactness
Heftier applications
Limitations

What is classical model theory?

Model theory is an area of mathematical logic that seeks to use
the tools of logic to solve concrete mathematical problems. Given
a class of interesting objects, we:

I isolate the basic vocabulary needed to describe them, and

I identify the rules (expressed in this vocabulary) that
characterize precisely the objects of interest.

Based on the size and complexity of this set of rules—and a little
bit of first-order logic—we can often draw new and surprising
conclusions...
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Begin with the real numbers, R. Lots of ways we might think
about them, with corresponding basic vocabularies:

I Additive reals: 〈 〉
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Begin with the real numbers, R. Lots of ways we might think
about them, with corresponding basic vocabularies:

I Additive reals: 〈0, 〉
Binary function symbol + : R× R→ R

+ : (x , y) 7→ x + y
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Begin with the real numbers, R. Lots of ways we might think
about them, with corresponding basic vocabularies:

I Additive reals: 〈0,+〉

I Multiplicative reals: 〈1, 〉
Binary function symbol × : R× R→ R

× : (x , y) 7→ x · y
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Begin with the real numbers, R. Lots of ways we might think
about them, with corresponding basic vocabularies:

I Additive reals: 〈0,+〉

I Multiplicative reals: 〈1,×〉

I Combined: 〈0, 1,+,×〉

I Ordered reals: 〈0, 1,+,×, 〉
Binary relation ≤ on R× R

≤ (x , y) if and only if x ≤ y
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about them, with corresponding basic vocabularies:
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I Multiplicative reals: 〈1,×〉

I Combined: 〈0, 1,+,×〉

I Ordered reals: 〈0, 1,+,×,≤〉
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Begin with the real numbers, R. Lots of ways we might think
about them, with corresponding basic vocabularies:

I Additive reals: 〈0,+〉

I Multiplicative reals: 〈1,×〉

I Combined: 〈0, 1,+,×〉

I Ordered reals: 〈0, 1,+,×,≤〉

Another example we’ll return to:

I Natural numbers: 〈0,S〉
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What other objects are we used to talking about using the
vocabulary of ordered reals? Among others: Z, the integers. If we
take R and Z with the standard interpretations of symbols in
〈0, 1,+,−,≤〉, though, there are serious differences between the
two...

Michael Lieberman Masaryk University Toward A New Model Theory



Introduction
Classical model theory
Abstract model theory

Basics
Compactness
Heftier applications
Limitations

What other objects are we used to talking about using the
vocabulary of ordered reals? Among others: Z, the integers. If we
take R and Z with the standard interpretations of symbols in
〈0, 1,+,−,≤〉, though, there are serious differences between the
two...

Example:
In R, for any distinct x and y , say x < y , there is a real number z
with x < z < y (the ordering is dense).
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What other objects are we used to talking about using the
vocabulary of ordered reals? Among others: Z, the integers. If we
take R and Z with the standard interpretations of symbols in
〈0, 1,+,−,≤〉, though, there are serious differences between the
two...

Example:
In R, for any distinct x and y , say x < y , there is a real number z
with x < z < y (the ordering is dense).

In Z, distinct elements are separated by chasms: there is no integer
z such that 0 < z < 1.
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What other objects are we used to talking about using the
vocabulary of ordered reals? Among others: Z, the integers. If we
take R and Z with the standard interpretations of symbols in
〈0, 1,+,−,≤〉, though, there are serious differences between the
two...

Example:
In R, for any distinct x and y , say x < y , there is a real number z
with x < z < y (the ordering is dense).

In Z, distinct elements are separated by chasms: there is no integer
z such that 0 < z < 1.

To make this distinction clear, we need a precise and unambiguous
language.
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Given a vocabulary V, we form a first-order language through finite
combinations of symbols from V, the equals sign, parentheses,
variable symbols, and an array of logical symbols:

∧ “and”
∨ “or”
¬ “not”
→ “implies”
∀x “for all x”
∃x “there exists an x”

Examples: ¬∃z(0 < z ∧ z < 1) (φ1)

∀x∀y [(x < y)→ ∃z(x < z ∧ z < y)] (φ2)
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To ensure that we consider only objects that behave like R, then,
we should restrict our attention to those that satisfy the density
condition.

In fact, to eliminate as much bad behavior as possible, we consider

Th(〈R, 0, 1,+,−,≤〉),

the theory of R, the set of all first-order sentences in this
vocabulary that are true in R.

If we restrict to objects with interpretations of 0, 1, +, −, and ≤
satisfying all of these sentences, we’ve gone a long way toward
characterizing R.
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In fact, we might refer to this theory as TRCF , as what it really
captures are the real closed fields, i.e. those densely ordered fields
satisfying the following added conditions:

I ∀x [x > 0→ ∃y(y2 = x)]

I ∀a0a1a2a3∃x [a0 + a1x + a2x
2 + a3x

3 = 0)]
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In fact, we might refer to this theory as TRCF , as what it really
captures are the real closed fields, i.e. those densely ordered fields
satisfying the following added conditions:

I ∀x [x > 0→ ∃y(y2 = x)]

I ∀a0a1a2a3∃x [a0 + a1x + a2x
2 + a3x

3 = 0)]

Thinking back to N, let TS be the set of all first order sentences it
satisfies in the vocabulary 〈0, S〉. Chief among them:

I ∀x [x > 0→ ∃y(Sy = x)]

I ¬∃x [Sx = 0]
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One of the most fundamental (and awesome) properties of first
order logic: it’s “compact.”

Theorem (Compactness Theorem)

Version 1: Let Γ be an infinite set of first order sentences. If Γ is
inconsistent, then there is a finite set of sentences Γ′ ⊂ Γ that is
itself inconsistent.

Version 2: Let Γ be an infinite set of first order sentences. If for any
finite Γ′ ⊂ Γ there is an object XΓ′ obeying all of the sentences in
Γ′, then there is a single object that obeys the entire infinite list Γ.
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Nonstandard reals (Robinson, 1966)

To the basic vocabulary of the ordered reals, 〈0, 1,+,×,≤〉, we
add a new constant symbol α. Let Γ be the set of sentences

TRCF ∪ {α < 1, α < 1/2, α < 1/3, . . . }

Any finite subset Γ′ of Γ will consist of sentences from T (rules
concerning the behavior of the reals) and finitely many of the
α-sentences, say α < 1, . . . , α < 1/k.

Is there an object that behaves like the reals and contains an
element α < 1/k? Of course: the reals! Take α = 1/(2k).
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Since every finite subset of the rules contained in Γ can be
satisfied, there is an object R that obeys all of them
simultaneously: both the rules guaranteeing R-like behavior, and
those ensuring the existence of an infinitesimal.
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Since every finite subset of the rules contained in Γ can be
satisfied, there is an object R that obeys all of them
simultaneously: both the rules guaranteeing R-like behavior, and
those ensuring the existence of an infinitesimal.

By construction, then, elements of this R can be added,
multiplied, and inverted just like real numbers, but there is a new,
impossibly small element.
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Since every finite subset of the rules contained in Γ can be
satisfied, there is an object R that obeys all of them
simultaneously: both the rules guaranteeing R-like behavior, and
those ensuring the existence of an infinitesimal.

By construction, then, elements of this R can be added,
multiplied, and inverted just like real numbers, but there is a new,
impossibly small element.

This represents a kind of vindication of Leibniz’s vision of
infinitesimals, although it was a very long time (almost 300 years)
coming...

Michael Lieberman Masaryk University Toward A New Model Theory



Introduction
Classical model theory
Abstract model theory

Basics
Compactness
Heftier applications
Limitations

Starting from TS , add a new constant c0, and consider the set of
sentences

Γ = TS ∪ {c0 6= 0, c0 6= S0, c0 6= SS0, c0 6= SSS0, . . . }

This is finitely satisfiable, by N itself...
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Starting from TS , add a new constant c0, and consider the set of
sentences

Γ = {c0 6= 0, c0 6= S0, c0 6= SS0, c0 6= SSS0, . . . }

This is finitely satisfiable, by N itself...

So, by compactness, there is a model of Γ: a natural numbers-like
object with an element, named by c0, way out at infinity.
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Starting from TS , add a new constant c0, and consider the set of
sentences

Γ = {c0 6= 0, c0 6= S0, c0 6= SS0, c0 6= SSS0, . . . }

This is finitely satisfiable, by N itself...

So, by compactness, there is a model of Γ: a natural numbers-like
object with an element, named by c0, way out at infinity.

What does this tell us about the number of nonisomorphic objects
logically equivalent to the natural numbers?
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Starting from TS , add a new constant c0, and consider the set of
sentences

Γ = {c0 6= 0, c0 6= S0, c0 6= SS0, c0 6= SSS0, . . . }

This is finitely satisfiable, by N itself...

So, by compactness, there is a model of Γ: a natural numbers-like
object with an element, named by c0, way out at infinity.

What does this tell us about the number of nonisomorphic objects
logically equivalent to the natural numbers?

Explosion! Also need to worry about theories encoding the natural
numbers...
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TRCF admits quantifier elimination (q.e.): given any formula φ(x),
no matter how complex, there is an equivalent formula ψ(x)
without any quantifiers. That is,

R |= ∀x [φ(x) = ψ(x)]

in any model R.

Notes

I The quantifier-free formulas are Boolean combinations of
polynomial equalities and inequalities.

I In real algebraic geometry, the semialgebraic sets are those
defined by Boolean combinations of polynomial equalities and
inequalities.
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Theorem
The projection of any semialgebraic set is semialgebraic.

Proof: All projection does is introduce an existential quantifier,
which we can eliminate!

Michael Lieberman Masaryk University Toward A New Model Theory



Introduction
Classical model theory
Abstract model theory

Basics
Compactness
Heftier applications
Limitations

What about algebraically closed fields of fixed characteristic? The
first order theory, TACFp , also admits q.e. (Tarski, 1951).

Notes

I The quantifier-free formulas are Boolean combinations of
polynomial equalities and inequalities.

I In algebraic geometry, the constructible sets are those defined
by Boolean combinations of polynomial equalities and
inequalities.
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By the same token,

Theorem
The projection of any constructible set is constructible.

So a little bit of (admittedly old) model theory gives us, essentially,
Chevalley’s Theorem.

Lots more to say (TRCF is o-minimal, TACFp is model complete),
but no time. So, what could possibly be the downside of first order
model theory?
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We’ve already noticed that first order logic can’t help us
distinguish between standard and nonstandard copies of R and N,
which is troubling. Here’s something much worse:

Suppose we want to move on to complex analysis. We would need
to expand our vocabulary:

〈0, 1,+,−,×, exp( )〉

But if we interpret exp( ) as we must, we can define a copy of the
integers in any model, using the formula:

exp(x) = 1
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This means any model of the first order theory must contain a
copy of Z, hence also N with successor.
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This means any model of the first order theory must contain a
copy of Z, hence also N with successor.

Explosion! Nightmare fuel.
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This means any model of the first order theory must contain a
copy of Z, hence also N with successor.

Explosion! Nightmare fuel.

What we need is a way to cut away all of the weird models, say by
forcing the integers to behave. Per Hrushovki, we should add an
axiom:

∀x [exp(x) = 1→
∨
n∈Z

(x = n)]
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This means any model of the first order theory must contain a
copy of Z, hence also N with successor.

Explosion! Nightmare fuel.

What we need is a way to cut away all of the weird models, say by
forcing the integers to behave. Per Hrushovki, we should add an
axiom:

∀x [exp(x) = 1→
∨
n∈Z

(x = n)]

This prevents the explosion, but at a cost...
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This disjunction goes beyond first order: it involves countably
infinitely many formulas, not finitely many. That is, we have
passed from first order logic to

Lω1ω

(< ω1 conjuncts/disjuncts, quantification over < ω variables)
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This disjunction goes beyond first order: it involves countably
infinitely many formulas, not finitely many. That is, we have
passed from first order logic to

Lω1ω

(< ω1 conjuncts/disjuncts, quantification over < ω variables)

This is a fact of life—when the natural numbers are giving you
trouble, you pass to Lω1ω. In other cases, more flexibility is needed:

Lκλ

(< κ conjuncts/disjuncts, quantification over < λ variables)
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There are problems, now. In general, infinitary logics are not
compact, so that’s one tool lost. In fact, these (and other)
generalized logics vary wildly in all their properties, and in the
techniques that apply in each case.
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There are problems, now. In general, infinitary logics are not
compact, so that’s one tool lost. In fact, these (and other)
generalized logics vary wildly in all their properties, and in the
techniques that apply in each case.

Solution: abstract the essential properties that are common to
classes of models of as many of these logics as possible, then
forget about syntax entirely...
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category of Σ-structures and embeddings. That is, we take
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Given a vocabulary Σ, we take a model-like subcategory of the
category of Σ-structures and embeddings. That is, we take

I a class of Σ-structures K, and

I a binary relation ≺K, strong substructure, between
K-structures that refines the usual substructure relation,
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Given a vocabulary Σ, we take a model-like subcategory of the
category of Σ-structures and embeddings. That is, we take

I a class of Σ-structures K, and

I a binary relation ≺K, strong substructure, between
K-structures that refines the usual substructure relation,

with lots of very nice, but also very general properties:
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Given a vocabulary Σ, we take a model-like subcategory of the
category of Σ-structures and embeddings. That is, we take

I a class of Σ-structures K, and

I a binary relation ≺K, strong substructure, between
K-structures that refines the usual substructure relation,

with lots of very nice, but also very general properties:

I Closure under unions of ≺K-chains

I Approximation by small strong substructures

I “Coherence”
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Given a vocabulary Σ, we take a model-like subcategory of the
category of Σ-structures and embeddings. That is, we take

I a class of Σ-structures K, and

I a binary relation ≺K, strong substructure, between
K-structures that refines the usual substructure relation,

with lots of very nice, but also very general properties:

I Closure under unions of ≺K-chains

I Approximation by small strong substructures

I “Coherence”

Example: K is the abelian groups, ≺K is pure subgroup.
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These turn up in surprising places, and in surprisingly significant
ways:

I Abelian groups (Baldwin/Calvert/Goodrick/...)

I Ext-orthogonality classes of modules (Baldwin/Eklof/Trlifaj)

One can do a lot of almost-classical model theory here.

Model-theorist’s consensus: AECs strike the optimal balance
between generality and structure.
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There’s a very large body of existing knowledge not so far away,
though. With a little generalization, you find yourself in the realm
of accessible categories (Lieberman, Beke/Rosický).

It is possible (Lieberman/Rosický) to completely nail down what
AECs are in category theoretic terms: they consist of an accessible
category K with directed colimits, i.e. an abstract category K such
that

I K is closed under directed colimits, and

I objects in K can be approximated from below by small
subobjects,

together with a faithful, iso-full functor U : K → Sets that
preserves directed colimits, and is “coherent.”
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In a forthcoming paper, we show that several significant recent
results on AECs hold even if the coherence assumption is dropped,
often yielding cleaner arguments. So there’s something for the
model theorists.

As we develop more and more of the tools of AECs in this context,
there is also the very real prospect of learning more about the
structure of accessible categories themselves—results that should
filter more readily into the world of categorical algebra...
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