Hanf numbers for amalgamation and joint embedding in accessible categories (Joint with Jiří Rosický)

Michael Lieberman

Masaryk University, Department of Mathematics and Statistics http://www.math.muni.cz/~lieberman

ECI Workshop 2016, Telč

We consider a pair of (refreshingly simple) consequences of the accessibility of powerful images of accessible functors assuming large cardinals, namely:

We consider a pair of (refreshingly simple) consequences of the accessibility of powerful images of accessible functors assuming large cardinals, namely:

Theorem

Let \mathcal{K} be a λ -accessible category. If \mathcal{K} has the $< \kappa$ -joint embedding property ($< \kappa$ -JEP) for κ a $\mu_{\mathcal{K}}$ -strongly compact cardinal, it has the JEP.

We consider a pair of (refreshingly simple) consequences of the accessibility of powerful images of accessible functors assuming large cardinals, namely:

Theorem

Let \mathcal{K} be a λ -accessible category. If \mathcal{K} has the $< \kappa$ -joint embedding property ($< \kappa$ -JEP) for κ a $\mu_{\mathcal{K}}$ -strongly compact cardinal, it has the JEP.

Theorem

Let \mathcal{K} be a λ -accessible category. If \mathcal{K} has the $< \kappa$ -amalgamation property ($< \kappa$ -AP) for κ a $\mu_{\mathcal{K}}$ -strongly compact cardinal, it has the AP.

We consider a pair of (refreshingly simple) consequences of the accessibility of powerful images of accessible functors assuming large cardinals, namely:

Theorem

Let \mathcal{K} be a λ -accessible category. If \mathcal{K} has the $< \kappa$ -joint embedding property ($< \kappa$ -JEP) for κ a $\mu_{\mathcal{K}}$ -strongly compact cardinal, it has the JEP.

Theorem

Let \mathcal{K} be a λ -accessible category. If \mathcal{K} has the $< \kappa$ -amalgamation property ($< \kappa$ -AP) for κ a $\mu_{\mathcal{K}}$ -strongly compact cardinal, it has the AP.

The beauty of this is that, with the exception of some gruesome details we suppress, everything is clean and clear.

Let \boldsymbol{Ab} denote the category of abelian groups, and $\mathcal F$ the full subcategory of free abelian groups.

Let **Ab** denote the category of abelian groups, and \mathcal{F} the full subcategory of free abelian groups.

Question: Ab is beautifully accessible, but is \mathcal{F} ?

Let Ab denote the category of abelian groups, and \mathcal{F} the full subcategory of free abelian groups.

Question: Ab is beautifully accessible, but is \mathcal{F} ?

Theorem (Eklof/Mekler, '77)

Assume V=L. For every successor κ , there is a nonfree abelian group A of size κ , all of whose subgroups of size less than κ are free.

Let Ab denote the category of abelian groups, and \mathcal{F} the full subcategory of free abelian groups.

Question: Ab is beautifully accessible, but is \mathcal{F} ?

Theorem (Eklof/Mekler, '77)

Assume V=L. For every successor κ , there is a nonfree abelian group A of size κ , all of whose subgroups of size less than κ are free.

Corollary

Assuming V = L, \mathcal{F} is not accessible.

Let \boldsymbol{Ab} denote the category of abelian groups, and $\mathcal F$ the full category of free abelian groups.

Ab is beautifully accessible, but is \mathcal{F} ?

Let \boldsymbol{Ab} denote the category of abelian groups, and $\mathcal F$ the full category of free abelian groups.

Ab is beautifully accessible, but is \mathcal{F} ?

Theorem (Eklof/Mekler, '90)

Assume there is a proper class of strongly compact cardinals. Then ${\cal F}$ is accessible.

Let \boldsymbol{Ab} denote the category of abelian groups, and $\mathcal F$ the full category of free abelian groups.

Ab is beautifully accessible, but is \mathcal{F} ?

Theorem (Eklof/Mekler, '90)

Assume there is a proper class of strongly compact cardinals. Then ${\cal F}$ is accessible.

Notes

► The free abelian group functor F : Sets → Ab is accessible, and F is its image.

Let \boldsymbol{Ab} denote the category of abelian groups, and $\mathcal F$ the full category of free abelian groups.

Ab is beautifully accessible, but is \mathcal{F} ?

Theorem (Eklof/Mekler, '90)

Assume there is a proper class of strongly compact cardinals. Then ${\cal F}$ is accessible.

- ► The free abelian group functor F : Sets → Ab is accessible, and F is its image.
- ▶ *F* is closed under subobjects, hence the powerful image of *F*.

Motivation Key theorem

Theorem (Makkai/Paré)

Assume there is a proper class of strongly compact cardinals. Then the powerful image of any accessible functor is accessible.

Motivation Key theorem

Theorem (Makkai/Paré)

Assume there is a proper class of strongly compact cardinals. Then the powerful image of any accessible functor is accessible.

Definition

A cardinal κ is *strongly compact* if any κ -complete filter can be extended to a κ -complete ultrafilter. We say κ is μ -strongly *compact* if the ultrafilter need only be μ -complete.

Motivation Key theorem

Theorem (Makkai/Paré)

Assume there is a proper class of strongly compact cardinals. Then the powerful image of any accessible functor is accessible.

Definition

A cardinal κ is *strongly compact* if any κ -complete filter can be extended to a κ -complete ultrafilter. We say κ is μ -strongly compact if the ultrafilter need only be μ -complete.

Theorem (Brooke-Taylor/Rosický)

Let \mathcal{L} be λ -accessible, such that there exists a $\mu_{\mathcal{L}}$ -strongly compact cardinal κ , $\kappa \geq \lambda$. The powerful image of any λ -accessible functor to \mathcal{L} that preserves $\mu_{\mathcal{L}}$ -presentable objects is κ -accessible.

Motivation Key theorem

Theorem (Makkai/Paré)

Assume there is a proper class of strongly compact cardinals. Then the powerful image of any accessible functor is accessible.

Definition

A cardinal κ is *strongly compact* if any κ -complete filter can be extended to a κ -complete ultrafilter. We say κ is μ -strongly *compact* if the ultrafilter need only be μ -complete.

Theorem (Brooke-Taylor/Rosický)

Let \mathcal{L} be λ -accessible, such that there exists a $\mu_{\mathcal{L}}$ -strongly compact cardinal κ , $\kappa \geq \lambda$. The powerful image of any λ -accessible functor to \mathcal{L} that preserves $\mu_{\mathcal{L}}$ -presentable objects is κ -accessible.

Note

If \mathcal{L} is well λ -accessible, we can remove the \succeq condition.

Given an abstract class of structures \mathcal{K} , we often ask: can every diagram of shape \mathcal{A} be completed to a diagram of shape \mathcal{A}' ?

Given an abstract class of structures \mathcal{K} , we often ask: can every diagram of shape \mathcal{A} be completed to a diagram of shape \mathcal{A}' ?

For our purposes, \mathcal{A} and \mathcal{A}' will be finite categories, and we can identify the categories of diagrams with $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$. The forgetful functor

$$F:\mathcal{K}^{\mathcal{A}'}\to\mathcal{K}^{\mathcal{A}}$$

picks out precisely the completable diagrams.

Given an abstract class of structures \mathcal{K} , we often ask: can every diagram of shape \mathcal{A} be completed to a diagram of shape \mathcal{A}' ?

For our purposes, \mathcal{A} and \mathcal{A}' will be finite categories, and we can identify the categories of diagrams with $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$. The forgetful functor

$$F:\mathcal{K}^{\mathcal{A}'}\to\mathcal{K}^{\mathcal{A}}$$

picks out precisely the completable diagrams.

If the (powerful) image of F is accessible, completability of an A-diagram is determined by its small sub-A-diagrams, hence we can bootstrap full completability from completability in the small...

Accessible Images Joint Embedding Amalgamation Definitions The functor F_J Hanf numbers

Definition

We say that an accessible category \mathcal{K} has the $< \kappa$ -*JEP* if for any κ -presentable $M_0, M_1 \in \mathcal{K}$, there are $f_i : M_i \to N$ for i = 1, 2. We say that \mathcal{K} has the *JEP* if this holds for arbitrary $M_0, M_1 \in \mathcal{K}$.

Accessible Images Joint Embedding Amalgamation Hanf numbers

Definition

We say that an accessible category \mathcal{K} has the $< \kappa$ -JEP if for any κ -presentable $M_0, M_1 \in \mathcal{K}$, there are $f_i : M_i \to N$ for i = 1, 2. We say that \mathcal{K} has the JEP if this holds for arbitrary $M_0, M_1 \in \mathcal{K}$. In terms of diagrams:

 Accessible Images
 Definitions

 Joint Embedding
 The functor F_J

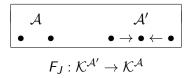
 Amalgamation
 Hanf numbers

Definition

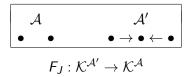
We say that an accessible category \mathcal{K} has the $< \kappa$ -JEP if for any κ -presentable $M_0, M_1 \in \mathcal{K}$, there are $f_i : M_i \to N$ for i = 1, 2. We say that \mathcal{K} has the JEP if this holds for arbitrary $M_0, M_1 \in \mathcal{K}$. In terms of diagrams:

Let $F_J : \mathcal{K}^{\mathcal{A}'} \to \mathcal{K}^{\mathcal{A}}$ be the forgetful functor that retains only the outermost objects.

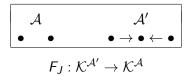
Accessible Images Joint Embedding Amalgamation Definitions The functor F_J Hanf numbers



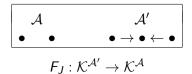
1. \mathcal{K} has the $< \kappa$ -JEP just in case $\operatorname{Pres}_{\kappa}(\mathcal{K})^{\mathcal{A}}$ is contained in the image of F_J .



- 1. \mathcal{K} has the $< \kappa$ -JEP just in case $\operatorname{Pres}_{\kappa}(\mathcal{K})^{\mathcal{A}}$ is contained in the image of F_J .
- 2. \mathcal{K} has the JEP just in case F_J is surjective.



- 1. \mathcal{K} has the $< \kappa$ -JEP just in case $\operatorname{Pres}_{\kappa}(\mathcal{K})^{\mathcal{A}}$ is contained in the image of F_J .
- 2. \mathcal{K} has the JEP just in case F_J is surjective.
- 3. The image of F_J is closed under subobjects, hence powerful.



- 1. \mathcal{K} has the $< \kappa$ -JEP just in case $\operatorname{Pres}_{\kappa}(\mathcal{K})^{\mathcal{A}}$ is contained in the image of F_{J} .
- 2. \mathcal{K} has the JEP just in case F_J is surjective.
- 3. The image of F_J is closed under subobjects, hence powerful.
- As colimits are computed componentwise in K^A, K^{A'}, F_J preserves everything. Hence F_J is as accessible as K^A and K^{A'} are.

Accessible Images Joint Embedding Amalgamation Definitions The functor F_J Hanf numbers

Proposition

If \mathcal{K} is λ -accessible, so are $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$. In either case, the λ -presentables are precisely the diagrams in which all objects are λ -presentable. If \mathcal{K} is well λ -accessible, so are $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$.

Proposition

If \mathcal{K} is λ -accessible, so are $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$. In either case, the λ -presentables are precisely the diagrams in which all objects are λ -presentable. If \mathcal{K} is well λ -accessible, so are $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$.

Hence if \mathcal{K} is λ -accessible, the functor F_J , which we know preserves colimits, has λ -accessible domain and codomain; that is, it is λ -accessible. Moreover:

Proposition

If \mathcal{K} is λ -accessible, so are $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$. In either case, the λ -presentables are precisely the diagrams in which all objects are λ -presentable. If \mathcal{K} is well λ -accessible, so are $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$.

Hence if \mathcal{K} is λ -accessible, the functor F_J , which we know preserves colimits, has λ -accessible domain and codomain; that is, it is λ -accessible. Moreover:

Proposition

The functor F_J preserves μ -presentable objects for all $\mu \geq \lambda$.

Proposition

If \mathcal{K} is λ -accessible, so are $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$. In either case, the λ -presentables are precisely the diagrams in which all objects are λ -presentable. If \mathcal{K} is well λ -accessible, so are $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$.

Hence if \mathcal{K} is λ -accessible, the functor F_J , which we know preserves colimits, has λ -accessible domain and codomain; that is, it is λ -accessible. Moreover:

Proposition

The functor F_J preserves μ -presentable objects for all $\mu \geq \lambda$.

So F_J satisfies the conditions of B-T/R, and thus we are ready to prove the main theorem.

Accessible Images Joint Embedding Amalgamation Definitions The functor F_J Hanf numbers

Theorem

Let \mathcal{K} be λ -accessible. If κ is a $\mu_{\mathcal{K}}$ -strongly compact cardinal and $\kappa \supseteq \lambda$, then if \mathcal{K} has the $< \kappa$ -JEP, it has the JEP.

Accessible Images Joint Embedding Amalgamation Hanf numbers

Theorem

Let \mathcal{K} be λ -accessible. If κ is a $\mu_{\mathcal{K}}$ -strongly compact cardinal and $\kappa \supseteq \lambda$, then if \mathcal{K} has the $< \kappa$ -JEP, it has the JEP.

Proof.

Accessible Images Joint Embedding Amalgamation Definitions The functor F_J Hanf numbers

Theorem

Let \mathcal{K} be λ -accessible. If κ is a $\mu_{\mathcal{K}}$ -strongly compact cardinal and $\kappa \supseteq \lambda$, then if \mathcal{K} has the $< \kappa$ -JEP, it has the JEP.

Proof.

By B-T/R, the powerful image of F_J is κ -accessible—as noted, the image itself is powerful.

Theorem

Let \mathcal{K} be λ -accessible. If κ is a $\mu_{\mathcal{K}}$ -strongly compact cardinal and $\kappa \supseteq \lambda$, then if \mathcal{K} has the $< \kappa$ -JEP, it has the JEP.

Proof.

By B-T/R, the powerful image of F_J is κ -accessible—as noted, the image itself is powerful.

Consider a pair $(M_0, M_1) \in \mathcal{K}$. Since $\mathcal{K}^{\mathcal{A}}$ is λ -accessible, it is also κ -accessible, meaning that (M_0, M_1) is a κ -directed colimit of pairs of κ -presentables. If \mathcal{K} has the $< \kappa$ -JEP, all pairs of κ -presentables are in the image of F_J . As the image of F_J is κ -accessible, it is closed under κ -directed colimits. That is, (M_0, M_1) is in the image of F_J .

Theorem

Let \mathcal{K} be λ -accessible. If κ is a $\mu_{\mathcal{K}}$ -strongly compact cardinal and $\kappa \supseteq \lambda$, then if \mathcal{K} has the $< \kappa$ -JEP, it has the JEP.

Proof.

By B-T/R, the powerful image of F_J is κ -accessible—as noted, the image itself is powerful.

Consider a pair $(M_0, M_1) \in \mathcal{K}$. Since $\mathcal{K}^{\mathcal{A}}$ is λ -accessible, it is also κ -accessible, meaning that (M_0, M_1) is a κ -directed colimit of pairs of κ -presentables. If \mathcal{K} has the $< \kappa$ -JEP, all pairs of κ -presentables are in the image of F_J . As the image of F_J is κ -accessible, it is closed under κ -directed colimits. That is, (M_0, M_1) is in the image of F_J .

Thus every pair of objects in \mathcal{K} is jointly embeddable.

In case $\ensuremath{\mathcal{K}}$ is well accessible, we can dispense with the sharp inequality:

Theorem

Let \mathcal{K} be well λ -accessible. If κ is a $\mu_{\mathcal{K}}$ -strongly compact cardinal, then if \mathcal{K} has the $< \kappa$ -JEP, it has the JEP.

Baldwin/Boney give a syntax-heavy argument for an analogue of this result for AECs.

The theorem above is a two-fold improvement, encompassing metric AECs and generalizations, and offering a tighter characterization of the compactness required of κ .

 Accessible Images
 Definitions

 Joint Embedding
 The functor F_A

 Amalgamation
 Hanf numbers

Definition

We say that \mathcal{K} has the $< \kappa$ -AP if for all cospans $M_0 \stackrel{f_0}{\leftarrow} M \stackrel{f_1}{\rightarrow} M_1$, there are $g_i : M_i \to N$ such that

$$g_0f_0=g_1f_1.$$

We say \mathcal{K} has the AP if the above holds for all κ .

 Accessible Images
 Definitions

 Joint Embedding
 The functor F_A

 Amalgamation
 Hanf numbers

Definition

We say that \mathcal{K} has the $\langle \kappa - AP$ if for all cospans $M_0 \stackrel{f_0}{\leftarrow} M \stackrel{f_1}{\rightarrow} M_1$, there are $g_i : M_i \to N$ such that

$$g_0f_0=g_1f_1.$$

We say \mathcal{K} has the AP if the above holds for all κ . Diagramatically, again:

 Accessible Images
 Definitions

 Joint Embedding
 The functor F_A

 Amalgamation
 Hanf numbers

Definition

We say that \mathcal{K} has the $\langle \kappa - AP$ if for all cospans $M_0 \stackrel{f_0}{\leftarrow} M \stackrel{f_1}{\rightarrow} M_1$, there are $g_i : M_i \to N$ such that

$$g_0f_0=g_1f_1.$$

We say \mathcal{K} has the AP if the above holds for all κ . Diagramatically, again:

Let $F_A : \mathcal{K}^{\mathcal{A}'} \to \mathcal{K}^{\mathcal{A}}$ be the obvious forgetful functor.

Notes

- 1. \mathcal{K} has the $< \kappa$ -AP just in case $\mathbf{Pres}_{\kappa}(\mathcal{K})^{\mathcal{A}}$ is contained in the image of $F_{\mathcal{A}}$.
- 2. \mathcal{K} has the JEP just in case F_A is surjective.
- 3. The image of F_A is closed under subobjects, hence powerful.
- 4. As colimits are computed componentwise in $\mathcal{K}^{\mathcal{A}}$, $\mathcal{K}^{\mathcal{A}'}$, F_A preserves everything. Hence F_A is as accessible as $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$ are.

Notes

- 1. \mathcal{K} has the $< \kappa$ -AP just in case $\mathbf{Pres}_{\kappa}(\mathcal{K})^{\mathcal{A}}$ is contained in the image of $F_{\mathcal{A}}$.
- 2. \mathcal{K} has the JEP just in case F_A is surjective.
- 3. The image of F_A is closed under subobjects, hence powerful.
- 4. As colimits are computed componentwise in $\mathcal{K}^{\mathcal{A}}$, $\mathcal{K}^{\mathcal{A}'}$, F_A preserves everything. Hence F_A is as accessible as $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$ are.

Proposition

If \mathcal{K} is λ -accessible, so are $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$. In either case, the λ -presentables are precisely the diagrams in which all objects are λ -presentable. If \mathcal{K} is well λ -accessible, so are $\mathcal{K}^{\mathcal{A}}$ and $\mathcal{K}^{\mathcal{A}'}$.

 Accessible Images
 Definitions

 Joint Embedding
 The functor F_A

 Amalgamation
 Hanf numbers

In fact, the argument runs exactly as before, giving:

Theorem

Let \mathcal{K} be λ -accessible. If κ is a $\mu_{\mathcal{K}}$ -strongly compact cardinal and $\kappa \supseteq \lambda$, then if \mathcal{K} has the $< \kappa$ -JEP, it has the JEP.

Theorem

Let \mathcal{K} be well λ -accessible. If κ is a $\mu_{\mathcal{K}}$ -strongly compact cardinal, then if \mathcal{K} has the $< \kappa$ -JEP, it has the JEP.

This again generalizes the analogue for AECs in Baldwin/Boney.

Definitions The functor F_A Hanf numbers

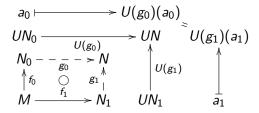
Other applications:

In an AEC \mathcal{K} , $U : \mathcal{K} \to \mathbf{Sets}$, pairs $(f_i : M \to N_i, a_i \in U(N_i))$ for i = 0, 1 determine the same *Galois type* if there is an amalgam $g_i : N_i \to N$ of the form:

Definitions The functor F_A Hanf numbers

Other applications:

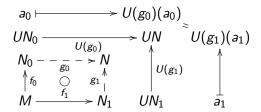
In an AEC \mathcal{K} , $U : \mathcal{K} \to \mathbf{Sets}$, pairs $(f_i : M \to N_i, a_i \in U(N_i))$ for i = 0, 1 determine the same *Galois type* if there is an amalgam $g_i : N_i \to N$ of the form:



Definitions The functor F_A Hanf numbers

Other applications:

In an AEC \mathcal{K} , $U : \mathcal{K} \to \mathbf{Sets}$, pairs $(f_i : M \to N_i, a_i \in U(N_i))$ for i = 0, 1 determine the same *Galois type* if there is an amalgam $g_i : N_i \to N$ of the form:



 κ -tameness follows from κ -accessibility (in sufficiently compact κ) of the image of the forgetful functor to category of "pointed spans."

Definitions The functor F_A Hanf numbers

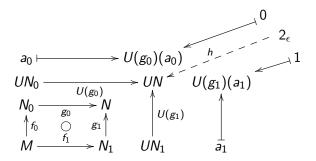
Other applications:

In an mAEC \mathcal{K} , $U : \mathcal{K} \to \mathbf{Met}$, the Galois types of pairs $(f_i : M \to N_i, a_i \in U(N_i))$, i = 0, 1 are within ϵ if there is an amalgam $g_i : N_i \to N$ with:

Definitions The functor F_A Hanf numbers

Other applications:

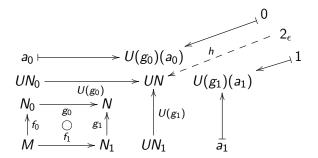
In an mAEC \mathcal{K} , $U : \mathcal{K} \to \mathbf{Met}$, the Galois types of pairs $(f_i : M \to N_i, a_i \in U(N_i))$, i = 0, 1 are within ϵ if there is an amalgam $g_i : N_i \to N$ with:



Definitions The functor F_A Hanf numbers

Other applications:

In an mAEC \mathcal{K} , $U : \mathcal{K} \to \mathbf{Met}$, the Galois types of pairs $(f_i : M \to N_i, a_i \in U(N_i))$, i = 0, 1 are within ϵ if there is an amalgam $g_i : N_i \to N$ with:



 κ -d-tameness: determined (for all $\epsilon > 0$) over κ -sized structures...