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Introduction
Chain closure

Locality
Future directions

Large cardinal notions...
and their equivalents

We work in a familiar interval in the large cardinal hierarchy:

[ weakly compact . . . strongly compact ]

Strongly compact: Any κ-satisfiable Lκκ-theory T is satisfiable.

Weakly compact: As above, provided |T | ≤ κ.
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Large cardinal notions...
and their equivalents

We work in a familiar interval in the large cardinal hierarchy:

[ weakly compact . . . strongly compact ]

Strongly compact: Any κ-complete filter on a set of size κ can be
extended to a κ-complete ultrafilter.

Definition (e.g. [BM14])

A cardinal κ is µ-strongly compact if any κ-complete filter on a set
of size κ can be extended to a µ-complete ultrafilter. We say κ is
almost strongly compact if it is µ-strongly compact for all µ < κ.
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Large cardinal notions...
and their equivalents

We work in a familiar interval in the large cardinal hierarchy:

[ weakly compact . . . strongly compact ]

Strongly compact: Any κ-complete filter on a set of size κ can be
extended to a κ-complete ultrafilter.

Definition ([BM14])

A cardinal κ is µ-strongly compact if any κ-complete filter on a set
of size κ can be extended to a µ-complete ultrafilter. We say κ is
almost strongly compact if it is µ-strongly compact for all µ < κ.

In terms of consistency strength, there isn’t much daylight between
almost strongly compact and strongly compact. We won’t dwell on
this, but µ-strong compactness may not offer the best grading.
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Large cardinal notions...
and their equivalents

Theorem (Boney/Unger)

Let κ satisfy µω < κ for all µ < κ. The following are equivalent:

(1) κ is almost strongly compact.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-accessible and accessibly embedded in L.

(3) Every AEC below κ is < κ-tame.

Proof.
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Theorem (Boney/Unger)

Let κ satisfy µω < κ for all µ < κ. The following are equivalent:

(1) κ is almost strongly compact.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-accessible and accessibly embedded in L.

(3) Every AEC below κ is < κ-tame.

Proof.
(1) ⇒ (2): Makkai and Paré, [MP89, 5.5.1], refined by
Brooke-Taylor and Rosický, [BTR16, 3.2].
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Theorem (Boney/Unger)

Let κ satisfy µω < κ for all µ < κ. The following are equivalent:

(1) κ is almost strongly compact.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-accessible and accessibly embedded in L.

(3) Every AEC below κ is < κ-tame.

Proof.
(1) ⇒ (2): Makkai and Paré, [MP89, 5.5.1], refined by
Brooke-Taylor and Rosický, [BTR16, 3.2].

Here κ-preaccessibility is basically free; that κ-directed colimits
exist and are computed as in L follows from the large cardinal
assumption.
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Theorem (Boney/Unger)

Let κ satisfy µω < κ for all µ < κ. The following are equivalent:

(1) κ is almost strongly compact.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-accessible and accessibly embedded in L.

(3) Every AEC below κ is < κ-tame.

Proof.
(1) ⇒ (2): Makkai and Paré, [MP89, 5.5.1], refined by
Brooke-Taylor and Rosický, [BTR16, 3.2].

(2) ⇒ (3): Lieberman and Rosický, [LR14].
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Theorem (Boney/Unger)

Let κ satisfy µω < κ for all µ < κ. The following are equivalent:

(1) κ is almost strongly compact.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-accessible and accessibly embedded in L.

(3) Every AEC below κ is < κ-tame.

Proof.
(1) ⇒ (2): Makkai and Paré, [MP89, 5.5.1], refined by
Brooke-Taylor and Rosický, [BTR16, 3.2].

(2) ⇒ (3): Lieberman and Rosický, [LR14].

Here < κ-tameness is reformulated as κ-accessibility of the
powerful image of a particular forgetful functor.
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Theorem (Boney/Unger)

Let κ satisfy µω < κ for all µ < κ. The following are equivalent:

(1) κ is almost strongly compact.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-accessible and accessibly embedded in L.

(3) Every AEC below κ is < κ-tame.

Proof.
(1) ⇒ (2): Makkai and Paré, [MP89, 5.5.1], refined by
Brooke-Taylor and Rosický, [BTR16, 3.2].

(2) ⇒ (3): Lieberman and Rosický, [LR14].

(3) ⇒ (1): Boney and Unger, [BU17].
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Theorem (Boney/Unger)

Let κ satisfy µω < κ for all µ < κ. The following are equivalent:

(1) κ is almost strongly compact.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-accessible and accessibly embedded in L.

(3) Every AEC below κ is < κ-tame.

Proof.
(1) ⇒ (2): Makkai and Paré, [MP89, 5.5.1], refined by
Brooke-Taylor and Rosický, [BTR16, 3.2].

(2) ⇒ (3): Lieberman and Rosický, [LR14].

(3) ⇒ (1): Boney and Unger, [BU17].

They make use of a combinatorial construction which produces
results for a broad range of other large cardinals...
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We say κ is measurable if the following equivalent conditions hold:

1. For any Lκκ-theory T , if T is the union of an increasing chain
of satisfiable theories, T is satisfiable ([CK12]/[Bon]).

2. There is a nonprincipal κ-complete ultrafilter on κ.

Definition ([BU17])

We say that a cardinal κ is µ-measurable if there is a uniform
µ-complete ultrafilter on κ, i.e. one in which all sets are of size κ.
We say κ is almost measurable if it is µ-measurable for all µ < κ.

Facts

1. Any almost measurable cardinal is measurable or a regular
limit of measurables.

2. Any almost measurable cardinal is strongly inaccessible, and
sharply greater than any smaller cardinal.
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The emerging picture is of measurability as a kind of chain
completeness/compactness condition. We further this with:

Theorem ([Lie18])

Let κ be a strong limit cardinal. The following are equivalent:

(1) κ is almost measurable.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-preaccessible and closed under colimits of
κ-chains in L.

(3) Every AEC K below κ is < κ-local: if M ∈ K is a union of an
increasing κ-chain 〈Mi |i ∈ κ〉 and types p, q over M satisfy
p ↿Mi = q ↿Mi for all i , p = q.

The equivalence of (1) and (3) is (at least implicitly) in [BU17].
We focus on (1)⇒(2) and (2)⇒(3), which repurpose arguments of
[BTR16], [LR14].
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We will prove the following:

Theorem
If κ is almost measurable, then the powerful image of any (suitably
size-preserving) accessible functor F : K → L below κ has powerful
image closed under colimits of κ-chains.

Proof.
Three steps, almost exactly as in [BTR16]:
Step 1: Realize the powerful image of F as the full image of

H : P → L

where P is the category of monos L → FK , K ∈ K. Everything is
still nicely accessible...
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We will prove the following:

Theorem
If κ is almost measurable, then the powerful image of any (suitably
size-preserving) accessible functor F : K → L below κ has powerful
image closed under colimits of κ-chains.

Proof.
Three steps, almost exactly as in [BTR16]:
Step 2: Embed P and L into categories of structures, and realize
P as the category of models of an infinitary theory T—in this way,
one realizes the full image of F , ultimately, as

RedL(T )

the category of reducts of models of T to the signature of L.
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Crucially, careful reading reveals that RedL(T ) is κ-preaccessible.

Step 3: We wish to show that RedL(T ) is closed under colimits
of κ-chains—take a κ-chain 〈Mi : i < κ〉 in RedL(T ), and consider
its colimit M in Str(L). It suffices to show there is a mono
M → N, N ∈ RedL(T ). Take

TM : atomic/negated atomic diagram of M, names cm for m ∈ M

It suffices to exhibit a model N |= T ∪ TM .
Take a uniform, sufficiently-complete ultrafilter U on the index set
κ, and set

N =


U
Mi .

One can expand the Mi to interpret the cm so that φ is in TM just
in case φ holds on a U -large set of Mi . By Loś, then, N works.
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We work in an AEC K, although an arbitrary concrete accessible
category will do.

Definition
A Galois type over M ∈ K is an equivalence class of pairs (f , a),
f : M → N and a ∈ UN. We say (f0, a0) ∼ (f1, a1) if there is an
object N and morphisms gi : Ni → N such that the following
diagram commutes

N0
g0  N

M

f0


f1
 N1

g1


with U(g0)(a0) = U(g1)(a1).

Assuming the amalgamation property, which we do, this is in fact
an equivalence relation.
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Definition
We say that Galois types in K are κ-local if for any object M, any
continuous κ-chain

M0 → M1 → · · · → Mi → . . .

with colimit M and colimit coprojections (φi : Mi → M), and any
pair (f0 : M → N0, a0) and (f1 : M → N1, a1), if

(φi f0, a0) ∼ (φi f1, a1)

for all i < κ, then
(f0, a0) ∼ (f1, a1).

We turn this into a question about powerful images in precisely the
same way as in [LR14].
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1. L1: Category of diagrams witnessing equivalence of pairs:

N0
g0  N

M

f0


f1
 N1

g1


with selected elements ai ∈ UNi , U(g0)(a0) = U(g1)(a1).

2. L2: Category of pairs:

N0

M

f0


f1
 N1

with selected elements ai ∈ UNi .

3. Let F : L1 → L2 be the obvious forgetful functor.
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In [LR14], it is shown that κ-accessibility of the powerful image of
F implies < κ-tameness. We proceed similarly, but assuming only
closure under colimits of κ-chains.

Proposition

If κ is such that any accessible functor below κ has powerful image
closed under colimits of κ-chains, every AEC below κ is κ-local.

We note:

Facts

1. The functor F is accessible. If K is below κ, so is F .

2. The powerful image of F consists of precisely the equivalent
pairs of (representatives of) types.

With these facts, there is essentially nothing to do.
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Proof.
Suppose M is the colimit of a κ-chain

M0 → M1 → · · · → Mi → . . .

with colimit maps φi : Mi → M. Suppose types (fj , aj), j = 0, 1,
are equivalent over any Mi , i.e.

N0

Mi

f0φi



f1φi

 N1

is always in the powerful image of F . Since the original pair is the
colimit of this κ-chain, and the powerful image is closed under
such colimits, they are equivalent as well.
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That completes the promised proof of:

Theorem ([Lie18])

Let κ be a strong limit cardinal. The following are equivalent:

(1) κ is almost measurable.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-preaccessible and closed under colimits of
κ-chains in L.

(3) Every AEC K below κ is < κ-local.

This points in many new directions:

1. Some technical details (omitted here) may be simplified if we
restrict to nice accessible categories...

2. This analysis of [BTR16] provides an engine for generating
more equivalences...
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M. Lieberman and J. Rosický, Classification theory for accessible categories,
arXiv:1404.2528, 2014.
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