A category-theoretic characterization of almost measurable cardinals

Michael Lieberman

Masaryk University, Department of Mathematics and Statistics http://www.math.muni.cz/~lieberman

> ECI Workshop, Třešť October 13, 2018

Large cardinal notions... and their equivalents

We work in a familiar interval in the large cardinal hierarchy:

[weakly compact ... strongly compact]

Strongly compact: Any κ -satisfiable $L_{\kappa\kappa}$ -theory T is satisfiable. Weakly compact: As above, provided $|T| \leq \kappa$.

Large cardinal notions... and their equivalents

We work in a familiar interval in the large cardinal hierarchy:

[weakly compact

strongly compact]

Strongly compact: Any κ -satisfiable $L_{\kappa\kappa}$ -theory T is satisfiable.

. . .

Large cardinal notions... and their equivalents

We work in a familiar interval in the large cardinal hierarchy:

[weakly compact ... strongly compact]

Strongly compact: Any κ -complete filter on a set of size κ can be extended to a κ -complete ultrafilter.

Large cardinal notions... and their equivalents

We work in a familiar interval in the large cardinal hierarchy:

[weakly compact ... strongly compact]

Strongly compact: Any κ -complete filter on a set of size κ can be extended to a κ -complete ultrafilter.

Definition (e.g. [BM14])

A cardinal κ is μ -strongly compact if any κ -complete filter on a set of size κ can be extended to a μ -complete ultrafilter. We say κ is almost strongly compact if it is μ -strongly compact for all $\mu < \kappa$.

Large cardinal notions... and their equivalents

We work in a familiar interval in the large cardinal hierarchy:

[weakly compact ... strongly compact]

Strongly compact: Any κ -complete filter on a set of size κ can be extended to a κ -complete ultrafilter.

Definition ([BM14])

A cardinal κ is μ -strongly compact if any κ -complete filter on a set of size κ can be extended to a μ -complete ultrafilter. We say κ is almost strongly compact if it is μ -strongly compact for all $\mu < \kappa$.

In terms of consistency strength, there isn't much daylight between almost strongly compact and strongly compact. We won't dwell on this, but μ -strong compactness may not offer the best grading.

Large cardinal notions.. and their equivalents

Theorem (Boney/Unger)

Let κ satisfy $\mu^{\omega} < \kappa$ for all $\mu < \kappa$. The following are equivalent:

- (1) κ is almost strongly compact.
- (2) The powerful image of any accessible functor F : K → L below κ is κ-accessible and accessibly embedded in L.
- (3) Every AEC below κ is $< \kappa$ -tame.

Proof.

Large cardinal notions... and their equivalents

Theorem (Boney/Unger)

Let κ satisfy $\mu^{\omega} < \kappa$ for all $\mu < \kappa$. The following are equivalent:

- (1) κ is almost strongly compact.
- (2) The powerful image of any accessible functor F : K → L below κ is κ-accessible and accessibly embedded in L.
- (3) Every AEC below κ is $< \kappa$ -tame.

Proof.

 $(1) \Rightarrow (2)$: Makkai and Paré, [MP89, 5.5.1], refined by Brooke-Taylor and Rosický, [BTR16, 3.2].

Large cardinal notions... and their equivalents

Theorem (Boney/Unger)

Let κ satisfy $\mu^{\omega} < \kappa$ for all $\mu < \kappa$. The following are equivalent:

- (1) κ is almost strongly compact.
- (2) The powerful image of any accessible functor F : K → L below κ is κ-accessible and accessibly embedded in L.
- (3) Every AEC below κ is $< \kappa$ -tame.

Proof.

(1) \Rightarrow (2): Makkai and Paré, [MP89, 5.5.1], refined by Brooke-Taylor and Rosický, [BTR16, 3.2].

Here κ -preaccessibility is basically free; that κ -directed colimits exist and are computed as in \mathcal{L} follows from the large cardinal assumption.

Large cardinal notions... and their equivalents

Theorem (Boney/Unger)

Let κ satisfy $\mu^{\omega} < \kappa$ for all $\mu < \kappa$. The following are equivalent:

- (1) κ is almost strongly compact.
- (2) The powerful image of any accessible functor F : K → L below κ is κ-accessible and accessibly embedded in L.
- (3) Every AEC below κ is $< \kappa$ -tame.

Proof.

(1) \Rightarrow (2): Makkai and Paré, [MP89, 5.5.1], refined by Brooke-Taylor and Rosický, [BTR16, 3.2].

(2) \Rightarrow (3): Lieberman and Rosický, [LR14].

Large cardinal notions... and their equivalents

Theorem (Boney/Unger)

Let κ satisfy $\mu^{\omega} < \kappa$ for all $\mu < \kappa$. The following are equivalent:

- (1) κ is almost strongly compact.
- (2) The powerful image of any accessible functor F : K → L below κ is κ-accessible and accessibly embedded in L.
- (3) Every AEC below κ is $< \kappa$ -tame.

Proof.

(1) \Rightarrow (2): Makkai and Paré, [MP89, 5.5.1], refined by Brooke-Taylor and Rosický, [BTR16, 3.2].

(2) \Rightarrow (3): Lieberman and Rosický, [LR14].

Here $< \kappa$ -tameness is reformulated as κ -accessibility of the powerful image of a particular forgetful functor.

Large cardinal notions... and their equivalents

Theorem (Boney/Unger)

Let κ satisfy $\mu^{\omega} < \kappa$ for all $\mu < \kappa$. The following are equivalent:

- (1) κ is almost strongly compact.
- (2) The powerful image of any accessible functor F : K → L below κ is κ-accessible and accessibly embedded in L.
- (3) Every AEC below κ is $< \kappa$ -tame.

Proof.

 $(1) \Rightarrow (2)$: Makkai and Paré, [MP89, 5.5.1], refined by Brooke-Taylor and Rosický, [BTR16, 3.2]. $(2) \Rightarrow (3)$: Lieberman and Rosický, [LR14]. $(3) \Rightarrow (1)$: Boney and Unger, [BU17].

Large cardinal notions... and their equivalents

Theorem (Boney/Unger)

Let κ satisfy $\mu^{\omega} < \kappa$ for all $\mu < \kappa$. The following are equivalent:

- (1) κ is almost strongly compact.
- (2) The powerful image of any accessible functor F : K → L below κ is κ-accessible and accessibly embedded in L.
- (3) Every AEC below κ is $< \kappa$ -tame.

Proof.

(1) \Rightarrow (2): Makkai and Paré, [MP89, 5.5.1], refined by Brooke-Taylor and Rosický, [BTR16, 3.2].

(2)
$$\Rightarrow$$
 (3): Lieberman and Rosický, [LR14].

 $(3) \Rightarrow (1)$: Boney and Unger, [BU17].

They make use of a combinatorial construction which produces results for a broad range of other large cardinals...

Large cardinal notions... and their equivalents

We say κ is *measurable* if the following equivalent conditions hold:

- 1. For any $L_{\kappa\kappa}$ -theory T, if T is the union of an increasing chain of satisfiable theories, T is satisfiable ([CK12]/[Bon]).
- 2. There is a nonprincipal κ -complete ultrafilter on κ .

Definition ([BU17])

We say that a cardinal κ is μ -measurable if there is a uniform μ -complete ultrafilter on κ , i.e. one in which all sets are of size κ . We say κ is almost measurable if it is μ -measurable for all $\mu < \kappa$.

Facts

- 1. Any almost measurable cardinal is measurable or a regular limit of measurables.
- 2. Any almost measurable cardinal is strongly inaccessible, and sharply greater than any smaller cardinal.

Large cardinal notions... and their equivalents

The emerging picture is of measurability as a kind of chain completeness/compactness condition. We further this with:

Theorem ([Lie18])

Let κ be a strong limit cardinal. The following are equivalent:

- (1) κ is almost measurable.
- (2) The powerful image of any accessible functor F : K → L below κ is κ-preaccessible and closed under colimits of κ-chains in L.
- (3) Every AEC K below κ is < κ-local: if M ∈ K is a union of an increasing κ-chain ⟨M_i|i ∈ κ⟩ and types p, q over M satisfy p1 M_i = q1 M_i for all i, p = q.

The equivalence of (1) and (3) is (at least implicitly) in [BU17]. We focus on $(1)\Rightarrow(2)$ and $(2)\Rightarrow(3)$, which repurpose arguments of [BTR16], [LR14].

We will prove the following:

Theorem

If κ is almost measurable, then the powerful image of any (suitably size-preserving) accessible functor $F : \mathcal{K} \to \mathcal{L}$ below κ has powerful image closed under colimits of κ -chains.

Proof.

Three steps, almost exactly as in [BTR16]:

Step 1: Realize the powerful image of F as the full image of

$$H:\mathcal{P}\to\mathcal{L}$$

where \mathcal{P} is the category of monos $L \to FK$, $K \in \mathcal{K}$. Everything is still nicely accessible...

We will prove the following:

Theorem

If κ is almost measurable, then the powerful image of any (suitably size-preserving) accessible functor $F : \mathcal{K} \to \mathcal{L}$ below κ has powerful image closed under colimits of κ -chains.

Proof.

Three steps, almost exactly as in [BTR16]:

Step 2: Embed \mathcal{P} and \mathcal{L} into categories of structures, and realize \mathcal{P} as the category of models of an infinitary theory T—in this way, one realizes the full image of F, ultimately, as

$\operatorname{Red}_{\mathcal{L}}(T)$

the category of reducts of models of T to the signature of \mathcal{L} .

Crucially, careful reading reveals that $\operatorname{Red}_{\mathcal{L}}(T)$ is κ -preaccessible. **Step 3:** We wish to show that $\operatorname{Red}_{\mathcal{L}}(T)$ is closed under colimits of κ -chains—take a κ -chain $\langle M_i : i < \kappa \rangle$ in $\operatorname{Red}_{\mathcal{L}}(T)$, and consider its colimit M in $\operatorname{Str}(\mathcal{L})$. It suffices to show there is a mono $M \to N, N \in \operatorname{Red}_{\mathcal{L}}(T)$. Take

 T_M : atomic/negated atomic diagram of M, names c_m for $m \in M$

It suffices to exhibit a model $N \models T \cup T_M$.

Take a uniform, sufficiently-complete ultrafilter ${\mathcal U}$ on the index set $\kappa,$ and set

$$N=\prod_{\mathcal{U}}M_i.$$

One can expand the M_i to interpret the c_m so that ϕ is in T_M just in case ϕ holds on a \mathcal{U} -large set of M_i . By Łoś, then, N works.

We work in an AEC $\mathcal{K},$ although an arbitrary concrete accessible category will do.

Definition

A Galois type over $M \in \mathcal{K}$ is an equivalence class of pairs (f, a), $f: M \to N$ and $a \in UN$. We say $(f_0, a_0) \sim (f_1, a_1)$ if there is an object N and morphisms $g_i : N_i \to N$ such that the following diagram commutes

$$\begin{array}{c} N_0 \xrightarrow{g_0} N \\ f_0 \uparrow & \uparrow g_1 \\ M \xrightarrow{f_1} N_1 \end{array}$$

with $U(g_0)(a_0) = U(g_1)(a_1)$.

Assuming the amalgamation property, which we do, this is in fact an equivalence relation.

Definition

We say that Galois types in \mathcal{K} are κ -local if for any object M, any continuous κ -chain

$$M_0 \rightarrow M_1 \rightarrow \cdots \rightarrow M_i \rightarrow \ldots$$

with colimit M and colimit coprojections $(\phi_i : M_i \to M)$, and any pair $(f_0 : M \to N_0, a_0)$ and $(f_1 : M \to N_1, a_1)$, if

$$(\phi_i f_0, a_0) \sim (\phi_i f_1, a_1)$$

for all $i < \kappa$, then

$$(f_0, a_0) \sim (f_1, a_1).$$

We turn this into a question about powerful images in precisely the same way as in [LR14].

1. \mathcal{L}_1 : Category of diagrams witnessing equivalence of pairs:

$$\begin{array}{c} N_0 \xrightarrow{g_0} N \\ f_0 \uparrow & \uparrow g_1 \\ M \xrightarrow{f_1} N_1 \end{array}$$

with selected elements $a_i \in UN_i$, $U(g_0)(a_0) = U(g_1)(a_1)$. 2. \mathcal{L}_2 : Category of pairs:

$$\begin{array}{c} N_0 \\ {}_{f_0} \uparrow \\ M \xrightarrow[f_1]{} N_1 \end{array}$$

with selected elements $a_i \in UN_i$.

3. Let $F: \mathcal{L}_1 \to \mathcal{L}_2$ be the obvious forgetful functor.

In [LR14], it is shown that κ -accessibility of the powerful image of F implies $< \kappa$ -tameness. We proceed similarly, but assuming only closure under colimits of κ -chains.

Proposition

If κ is such that any accessible functor below κ has powerful image closed under colimits of κ -chains, every AEC below κ is κ -local. We note:

Facts

- 1. The functor F is accessible. If \mathcal{K} is below κ , so is F.
- 2. The powerful image of F consists of precisely the equivalent pairs of (representatives of) types.

With these facts, there is essentially nothing to do.

Proof.

Suppose M is the colimit of a κ -chain

$$M_0 \rightarrow M_1 \rightarrow \cdots \rightarrow M_i \rightarrow \ldots$$

with colimit maps $\phi_i : M_i \to M$. Suppose types $(f_j, a_j), j = 0, 1$, are equivalent over any M_i , i.e.

$$\begin{array}{c} N_0 \\ \delta \phi_i \uparrow \\ M_i \xrightarrow[f_1 \phi_i]{} N_1 \end{array}$$

is always in the powerful image of F. Since the original pair is the colimit of this κ -chain, and the powerful image is closed under such colimits, they are equivalent as well.

That completes the promised proof of:

Theorem ([Lie18])

Let κ be a strong limit cardinal. The following are equivalent:

- (1) κ is almost measurable.
- (2) The powerful image of any accessible functor F : K → L below κ is κ-preaccessible and closed under colimits of κ-chains in L.
- (3) Every AEC \mathcal{K} below κ is $< \kappa$ -local.

This points in many new directions:

- 1. Some technical details (omitted here) may be simplified if we restrict to nice accessible categories...
- 2. This analysis of [BTR16] provides an engine for generating more equivalences...

References I

- J. Bagaria and M. Magidor, *Group radicals and strongly compact cardinals*, Trans. Amer. Math. Soc. **366** (2014), no. 4, 1857–1877.

W. Boney, *Model-theoretic characterization of large cardinals*, Submitted. arXiv:1708.07561.

- A. Brooke-Taylor and J. Rosický, Accessible images revisited, Proc. AMS 145 (2016), no. 3, 1317–1327.

W. Boney and S. Unger, *Large cardinal axioms from tameness in aecs*, Proc. AMS **145** (2017), no. 10, 4517–4532.

C. C. Chang and H. Jerome Keisler, *Model theory*, 3rd ed., Dover Books in Mathematics, Dover Publications, 2012.

M. Lieberman, A category-theoretic characterization of almost measurable cardinals, Submitted. arXiv:1809.05953v3, 2018.

M. Lieberman and J. Rosický, *Classification theory for accessible categories*, arXiv:1404.2528, 2014.

M. Makkai and R. Paré, Accessible categories: The foundations of categorical model theory, Contemporary Mathematics, vol. 104, AMS, 1989.