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Chain closure

Tameness

Large cardinal notions...
and their equivalents

We work in a familiar interval in the large cardinal hierarchy:

[ weakly compact . . . strongly compact ]

Recall that finitary first-order logic is compact: if a theory T in
Lωω is finitely satisfiable, it is satisfiable.
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◮ Strongly compact: κ uncountable and in the infinitary
language Lκκ, if a theory T is < κ-satisfiable, T is satisfiable.
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We work in a familiar interval in the large cardinal hierarchy:

[ weakly compact . . . strongly compact ]

Recall that finitary first-order logic is compact: if a theory T in
Lωω is finitely satisfiable, it is satisfiable.

◮ Strongly compact: κ uncountable and in Lκκ, if a theory T is
< κ-satisfiable, T is satisfiable.

◮ Weakly compact: κ inaccessible and in Lκκ, if a theory T with
|T | ≤ κ is < κ-satisfiable, T is satisfiable.

Definition
We say that a cardinal κ is (δ, θ)-compact, δ ≤ κ ≤ θ, if whenever
a theory T of size θ in Lδδ is < κ-satisfiable, it is satisfiable.
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We work in a familiar interval in the large cardinal hierarchy:

[ weakly compact . . . strongly compact ]

Definition
We say that a cardinal κ is (δ, θ)-compact, δ ≤ κ ≤ θ, if whenever
a theory T of size θ in Lδδ is < κ-satisfiable, it is satisfiable.

This gets pretty much everything:

◮ κ (κ,κ)-compact: weakly compact.

◮ κ (δ,∞)-compact: δ-strongly compact.

◮ κ (< κ,∞)-compact: almost strongly compact. . .

◮ κ (κ,∞)-compact: strongly compact.
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Large cardinal notions...
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Theorem (Boney/Unger)

Let κ satisfy µω < κ for all µ < κ. The following are equivalent:

(1) κ is almost strongly compact.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-accessible and κ-accessibly embedded in L.

(3) Every AEC below κ is < κ-tame.

Proof.
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Let κ satisfy µω < κ for all µ < κ. The following are equivalent:

(1) κ is almost strongly compact.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-accessible and κ-accessibly embedded in L.

(3) Every AEC below κ is < κ-tame.

Proof.
(1) ⇒ (2): Makkai and Paré, refined by Brooke-Taylor and
Rosický.
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Theorem (Boney/Unger)

Let κ satisfy µω < κ for all µ < κ. The following are equivalent:

(1) κ is almost strongly compact.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-accessible and κ-accessibly embedded in L.

(3) Every AEC below κ is < κ-tame.

Proof.
(1) ⇒ (2): Makkai and Paré, refined by Brooke-Taylor and
Rosický.

Here κ-accessibility is basically free; κ-accessible embeddability, i.e.
closure under κ-directed colimits, follows from the large cardinal
assumption.
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Theorem (Boney/Unger)

Let κ satisfy µω < κ for all µ < κ. The following are equivalent:

(1) κ is almost strongly compact.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-accessible and κ-accessibly embedded in L.

(3) Every AEC below κ is < κ-tame.

Proof.
(1) ⇒ (2): Makkai and Paré, refined by Brooke-Taylor and
Rosický.

(2) ⇒ (3): Lieberman and Rosický.

Here < κ-tameness is reformulated as κ-accessibility of the
powerful image of a particular forgetful functor.
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Theorem (Boney/Unger)

Let κ satisfy µω < κ for all µ < κ. The following are equivalent:

(1) κ is almost strongly compact.

(2) The powerful image of any accessible functor F : K → L
below κ is κ-accessible and accessibly embedded in L.

(3) Every AEC below κ is < κ-tame.

Proof.
(1) ⇒ (2): Makkai and Paré, refined by Brooke-Taylor and
Rosický.

(2) ⇒ (3): Lieberman and Rosický.

(3) ⇒ (1): Boney and Unger.

They make use of a combinatorial construction which produces
results for, e.g. (δ, θ)-compact cardinals.
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A careful reworking of these arguments gives:

Theorem (Boney/L)

Let δ be an inaccessible cardinal, and θ a κ-closed strong limit
cardinal. The following are equivalent:

1. κ is logically (δ, < θ)-strong compact.

2. If F : K → L is below δ and preserves µL-presentable objects,
then the powerful image of F is κ-accessible and closed in L
under θ+-small κ-directed colimits of κ-presentables.

3. Any AEC K with LS(K) < δ is (< κ, < θ)-tame.

We will not focus too much on the details—κ-closed, µL,
etc.—and instead try to get the flavor of the correspondence.
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We will prove the following:

Theorem
If κ is (δ, θ)-compact, the powerful image of any (suitably
size-preserving) accessible functor F : K → L below δ has powerful
image closed under θ+-small κ-directed colimits of κ-presentable
objects.

Proof.
Three steps, almost exactly as in Brooke-Taylor/Rosický:
Step 1: Realize the powerful image of F as the full image of

H : P → L

where P is the category of monos L → FK , K ∈ K. Everything is
still nicely accessible...
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We will prove the following:

Theorem
If κ is (δ, θ)-compact, the powerful image of any (suitably
size-preserving) accessible functor F : K → L below δ has powerful
image closed under θ+-small κ-directed colimits of κ-presentable
objects.

Proof.
Three steps, almost exactly as in Brooke-Taylor/Rosický:
Step 2: Embed P and L into categories of structures, and realize
P as the category of models of an infinitary theory T in some
Lδδ(Σ)—in this way, one realizes the full image of F , ultimately, as

RedL(T )

the category of reducts of models of T to the signature of L.
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Crucially, careful reading reveals that RedL(T ) is κ-preaccessible.

Step 3: We wish to show that RedL(T ) is closed under θ+-small
κ-directed colimits of κ-presentable objects—take such a diagram
〈Mi : i ∈ I 〉 in RedL(T ), and consider its colimit M in Str(L). It
suffices to show there is a mono M → N, N ∈ RedL(T ). M is
θ+-presentable, so |U(M)| = θ. Take

TM : atomic/negated atomic diagram of M, names cm for m ∈ M

It suffices to exhibit a model N |= T ∪ TM .
Any Γ ⊆ T of size < κ is included in T plus a piece TM,Γ of TM

involving < κ of the cm. We may take Mi with U(Mi ) containing
their realizations, cMm , by κ-directedness: so Mi |= T ∪ TM,Γ. By
(δ, θ)-compactness, we are done.

Lieberman Compactness and powerful images



Introduction
Chain closure

Tameness

We work in an AEC K, although an arbitrary concrete accessible
category will do.

Definition
A Galois type over M ∈ K is an equivalence class of pairs (f , a),
f : M → N and a ∈ UN. We say (f0, a0) ∼ (f1, a1) if there is an
object N and morphisms gi : Ni → N such that the following
diagram commutes

N0
g0 󰈣󰈣 N

M

f0
󰉃󰉃

f1
󰈣󰈣 N1

g1
󰉃󰉃

with U(g0)(a0) = U(g1)(a1).

Assuming the amalgamation property, which we do, this is in fact
an equivalence relation.
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Definition
We say that Galois types in K are (< κ, < θ)-tame if for every
M ∈ K<θ and types p ∕= q over M, there is M0≺KM of size less
than κ such that p ↾ M0 ∕= q ↾ M0.

We turn this into a question about powerful images in precisely the
same way as in L/Rosický.

◮ L1: Category of diagrams witnessing equivalence of pairs:

N0
g0 󰈣󰈣 N

M

f0
󰉃󰉃

f1
󰈣󰈣 N1

g1
󰉃󰉃

with selected elements ai ∈ UNi , U(g0)(a0) = U(g1)(a1).
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◮ L2: Category of pairs:

N0

M

f0
󰉃󰉃

f1
󰈣󰈣 N1

with selected elements ai ∈ UNi .

◮ Let F : L1 → L2 be the obvious forgetful functor.

Facts

1. The functor F is accessible. If K is below κ, so is F .

2. The powerful image of F consists of precisely the equivalent
pairs of (representatives of) types.

With these facts, there is essentially nothing to do.

Lieberman Compactness and powerful images



Introduction
Chain closure

Tameness

In L/Rosický, it is shown that κ-accessibility of the powerful image
of F implies < κ-tameness. We proceed similarly, but assuming
only closure under θ-small κ-directed colimits of κ-presentable
objects.

Proof.
Suppose M is the κ-directed colimit of θ-presentable objects

M = colimi∈IMi

with colimit maps φi : Mi → M. Suppose types (fj , aj), j = 0, 1,
are equivalent over any Mi , i.e.

N0 Mi
f0φi

󰉣󰉣
f1φi

󰈣󰈣 N1

is always in the powerful image of F . Since the original pair is the
colimit of this system—of the permitted form—and the powerful
image is closed under such colimits, they are equivalent as well.
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We have nearly proven:

Theorem (Boney/L)

Let δ be an inaccessible cardinal, and θ a κ-closed strong limit
cardinal. The following are equivalent:

1. κ is logically (δ, < θ)-strong compact.

2. If F : K → L is below δ and preserves µL-presentable objects,
then the powerful image of F is κ-accessible and closed in L
under < θ-small κ-directed colimits of κ-presentables.

3. Any AEC K with LS(K) < δ is (< κ, < θ)-tame.

The final link, (3) ⇒ (1), is by Boney/Unger, whence cometh all
the technical conditions in the preamble. . .
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