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My goal is to give a resolutely nontechnical talk: a (hopefully)
compelling story leading from classical model theory to the
category-theoretic analysis of abstract model theory.

1. Classical (first-order) model theory.

2. First-order problems, infinitary solutions: generalized logics.

3. Logic-independence: abstract elementary classes (AECs).

4. From discrete to continuous: metric AECs.

5. A unifying category-theoretic framework.

Each step in this progression is driven, as we will see, by concrete,
genuinely mathematical considerations.
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Modus Operandi

Given a category of interesting mathematical structures K, we:

I Identify the vocabulary L needed to capture their structure.

I Find a set of (first-order) sentences that characterize the
objects in K—its theory T .

I Restrict to suitably structure-preserving mappings—ideally
characterized by preservation of a class of logical formulas.

Successive refinements:

Elem(T ) ↪→ Mod(T ) ↪→ Str(L)

If we’ve done our job well, and our luck is good, we will obtain
Elem(T ) = K.
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One of the most fundamental (and awesome) properties of first
order logic: it’s “compact.”

Theorem (Compactness Theorem)

Version 1: Let Γ be an infinite set of first order sentences. If Γ is
inconsistent, then there is a finite set of sentences Γ′ ⊂ Γ that is
itself inconsistent.

Version 2: Let Γ be an infinite set of first order sentences. If for any
finite Γ′ ⊂ Γ there is an object XΓ′ obeying all of the sentences in
Γ′, then there is a single object that obeys the entire infinite list Γ.

The second version makes clear: compactness is a magic trick,
which allows us to produce structures to exact specifications.
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There’s a price to pay, though.

Consider the natural numbers with successor: 〈N, 0, S〉.

Here L = 〈0,S〉, and T contains, e.g.

¬∃x(0 = Sx) and ∀x(x 6= 0→ ∃y [x = Sy ])

In fact we take T to be the complete theory of 〈N, 0, S〉, the set of
all first-order sentences in 0 and S that it obeys.

Surely there is only one object that satisfies T , namely N itself. At
the very least, N must be the only countable object, right?
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Strange models: Expand the vocabulary by a new constant
symbol c, and consider the set of sentences

Γ = T ∪ {c 6= 0, c 6= S0, c 6= SS0, c 6= SSS0, . . . }.

By compactness, there is some N that obeys all of the sentences
simultaneously: it contains some element named by c that is
neither 0 nor a successor. That is, N contains a nonstandard
natural number! It gets worse, too...

Punchline: there are lots and lots of nonisomorphic countable
versions of the natural numbers with successor, and first-order
logic is incapable of distinguishing between them.

Lieberman Generalizing abstract model theory



Classical model theory
Abstract model theory

Categorical abstract model theory

Basics
Warning signs
Generalized logics

Consider the good old-fashioned real numbers:

〈R, 0, 1,×,+,≤〉

Its complete first-order theory is TRCF, which is incredibly
nice—o-minimal, among other things.

There’s a great deal of research on expansions by new functions:

〈R, 0, 1,×,+,≤, f 〉

Under what assumptions on the interpretation of f is the structure
still nice, e.g. o-minimal?
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Some expansions are definitely a problem, though:

〈R, 0, 1,×,+,≤, sin(π−)〉

Here the natural numbers are definable, by the formula

sin(πx) = 0 ∧ x ≥ 0

Thus our models may conceal terrifying monsters. The prevailing
solution here is to simply restrict the domain.
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A more telling example:

〈C, 0, 1,×,+〉

Its complete first-order theory is TACF0
, which is even

nicer—strongly minimal!

And yet you would also want the exponential function:

〈C, 0, 1,×,+, exp(−)〉

There’s the same terrible price to pay. But what if we could force
the natural numbers or, say, the integers, to be exactly what they
should be?
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Hrushovski: ∀x(exp(x) = 1↔
∨
n∈Z

x = 2nπi)
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Hrushovski: ∀x(exp(x) = 1↔
∨
n∈Z

x = 2nπi)

This lives not in first-order, but in the infinitary logic Lω1,ω: we
need the disjunction of a countably infinite set of formulas...
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Hrushovski: ∀x(exp(x) = 1↔
∨
n∈Z

x = 2nπi)

This lives not in first-order, but in the infinitary logic Lω1,ω: we
need the disjunction of a countably infinite set of formulas...

So we are forced to more general, more expressive logics.
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Hrushovski: ∀x(exp(x) = 1↔
∨
n∈Z

x = 2nπi)

This lives not in first-order, but in the infinitary logic Lω1,ω: we
need the disjunction of a countably infinite set of formulas...

So we are forced to more general, more expressive logics.

I Lκ,λ, where we are permitted

1. conjunctions/disjunctions of < κ formulas, and
2. quantification over < λ variables.

I L(Q), where Q is the counting quantifier “there exist
uncountable many.”

I Lκ,λ(Q).
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Hrushovski: ∀x(exp(x) = 1↔
∨
n∈Z

x = 2nπi)

This lives not in first-order, but in the infinitary logic Lω1,ω: we
need the disjunction of a countably infinite set of formulas...

So we are forced to more general, more expressive logics.

I Lκ,λ, where we are permitted

1. conjunctions/disjunctions of < κ formulas, and
2. quantification over < λ variables.

I L(Q), where Q is the counting quantifier “there exist
uncountable many.”

I Lκ,λ(Q).

These strenuously resist any uniform treatment.
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So we may need to work more generally in the first step of the
process of refinement described at the start:

Elem(T ) ↪→ Mod(T ) ↪→ Str(L)

Whether or not a first-order T is suitable, we still need to think
about the morphisms. Sometimes these are essentially syntactic...

Example

Let TAb be the first order theory of Abelian groups.

I Injective homomorphisms: preserve quantifier free formulas.

I Pure embeddings: preserve positive primitive formulas.

I Elementary embeddings: preserve all first-order formulas.
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Example (Baldwin/Eklof/Trlifaj)

For N an Abelian group, define

⊥N = {A |Exti (A,N) = 0 for 1 ≤ i < ω}

with morphisms the injective maps f : A→ B with B/f (A) ∈ ⊥N.

This is a mathematically natural category, but the morphisms are
grotesquely nonlogical. So we need to be more flexible with those
as well.

Something magical happens if N is cotorsion, by the way...
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Modus Operandi

Avoid any reliance on an ambient logic, and find a purely semantic
characterization of subcategories of structures

K ↪→ Str(L)

that are—morally speaking—generalized categories of models,
simultaneously

I general enough to subsume the kinds of examples already
considered,

I but with enough structure to support a robust array of old
and new model-theoretic techniques.

This approach is due to Shelah, as is the next concept in our
progression.
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Definition
Let L be a finitary vocabulary. An abstract elementary class (or
AEC) in L consists of a class K of L-structures together with a
strong substructure relation ≺K with properties that include:

I Tarski-Vaught: K is closed under unions of ≺K-chains.

I Coherence: If M ⊆ N≺KM
′ and M≺KM

′, then M≺KN.

I Löwenheim-Skolem: There is an infinite cardinal LS(K) such
that for any M ∈ K and subset A of M, there is N ∈ K with
A ⊆ N≺KM, and |N| ≤ |A|+ LS(K).

The K-morphisms are injective maps f : M → N with f [M]≺KN.
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Coherence tells us about the way K sits inside Str(L). The other
two axioms tell us about K as an abstract category:

I Tarski-Vaught: K has directed colimits (i.e. direct limits), and
these colimits are concrete.

I Löwenheim-Skolem: Any M in K can be built as a highly
directed colimit of structures of size LS(K).

This will be significant later.
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Examples

1. Abelian groups and pure embeddings form an AEC.

2. The Ext-orthogonality class of Abelian groups ⊥N forms an
AEC when N is cotorsion (Baldwin/Eklof/Trlifaj).

3. Elementary classes of models are AECs.

4. Classes of models in the generalized logics above form AECs
under suitable assumptions on ≺K.

So they are in fact very general, but not too general: there is a
vast—and constantly expanding—literature on their classification
theory.
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The question of stability has a little added mathematical resonance
in AECs.

As there is no ambient logic, types are not syntactic but algebraic:
we speak of Galois types over models M ∈ K, which we identify
with orbits in a large “monster” model under automorphisms that
fix M.

Baldwin/Eklof/Trlifaj offer a very pleasant characterization of
Galois types in ⊥N, and a discussion of stability in that setting.
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Metric abstract elementary classes (mAECs) are a recent
development (due to Hirvonen/Hyttinen) in the project to develop
a model theory relevant to structures arising in analysis, e.g.
Banach spaces.

Slogan

Metric AECs represent an amalgam of AECs and the program of
continuous logic.

Roughly, an mAEC is an AEC whose structures are built on
complete metric spaces, rather than discrete sets.
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A few crucial changes to the axioms for an mAEC K:
(1) In the Löwenheim-Skolem axiom, cardinality is replaced by
density character,

dc(M) = min{|X | |X is a dense subset of M}

Upshot: the crucial notion of size in an mAEC is density character,
not cardinality:

I K is λ-d-categorical if it contains one model of density
character λ up to iso.

I K is λ-d-stable if any model of density character λ has Galois
type space of density character at most λ.

Lieberman Generalizing abstract model theory



Classical model theory
Abstract model theory

Categorical abstract model theory

AECs
mAECs

(2) While the union of an increasing chain may not belong to an
mAEC K, the completion of the union must. Upshot:

I K is closed under colimits of chains, hence under arbitrary
directed colimits.

I These colimits need not be concrete: if U : K → Sets is the
forgetful functor, in general we may have

U(colimi∈IMi ) ) colimi∈IUMi

That is, U will not preserve directed colimits...

Fact
ℵ1-directed colimits are concrete!
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Examples

I Any AEC is an mAEC.

I Hilbert spaces with a unitary operator (Argoty/Berenstein).

I Probability spaces with an automorphism
(Berenstein/Henson).

I Gelfand triples (Zambrano).

Whether K is an AEC or an mAEC, it can be built via colimits of a
set of small objects—it’s an accessible category—with arbitrary
directed colimits.

What differs is the level of concreteness of the colimits involved:
directed colimits are concrete in AECs, ℵ1-directed are concrete in
mAECs...
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Big picture:

We give a uniform treatment of AECs and mAECs as pairs

K,U : K → Sets

with K an accessible category with all directed colimits and all
morphisms monomorphisms, and U a functor whose properties can
be tuned to the desired model theoretic frequency.

Analysis of K as an abstract category allows uniform treatment of

I Presentation theorems

I Ehrenfeucht-Mostowski functors, E : Lin→ K
Adjusting U allows us to capture subtle differences in
concreteness/discreteness...
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Theorem (L/Rosický)

Abstract elementary classes are precisely the pairs (K,U), with U a
functor from K to Sets, where

I K is accessible, has all directed colimits, and all morphisms
are monomorphisms.

I U is faithful, coherent, and preserves monomorphisms and
directed colimits.

I (K,U) is replete and iso-full. . .
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Theorem (L/Rosický)

Let K be an mAEC, with U : K → Sets the forgetful functor.

I K is accessible, has all directed colimits, and all morphisms
are monomorphisms.

I U is faithful, coherent, and preserves monomorphisms and
directed colimits.
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Theorem (L/Rosický)

Let K be an mAEC, with U : K → Sets the forgetful functor.

I K is accessible, has all directed colimits, and all morphisms
are monomorphisms.

I U is faithful, coherent, and preserves monomorphisms and
ℵ1-directed colimits.
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Theorem (L/Rosický)

Let K be an mAEC, with U : K → Sets the forgetful functor.

I K is accessible, has all directed colimits, and all morphisms
are monomorphisms.

I U is faithful, coherent, and preserves monomorphisms and
ℵ1-directed colimits.

So at the beating heart of each is an accessible category with
directed colimits—this allows the promised uniform treatment of
AECs and mAECs.
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Proposition (Beke/Rosický)

In any accessible category K that has all directed colimits, each
object M has a well-defined internal size in K, denoted |M|K.

This size ends up meaning precisely what we would like:

Note

I If K is an AEC then for any M ∈ K, |M|K = |M|.
I If K is an mAEC then for any M ∈ K, |M|K = dc(M).

So, in fact, we end up with the appropriate notions of size by
default.
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Among the most essential tools in model theory are
Ehrenfeucht-Mostowski models: for a linear order I , EM(I ) is a
special model built along a spine given by I .
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Among the most essential tools in model theory are
Ehrenfeucht-Mostowski models: for a linear order I , EM(I ) is a
special model built along a spine given by I .

More precisely, the Ehrenfeucht-Mostowski construction gives a
very special functor

E : Lin→ K

that is faithful and preserves directed colimits.
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Among the most essential tools in model theory are
Ehrenfeucht-Mostowski models: for a linear order I , EM(I ) is a
special model built along a spine given by I .

More precisely, the Ehrenfeucht-Mostowski construction gives a
very special functor

E : Lin→ K

that is faithful and preserves directed colimits.

Classical construction: inflate a set of indiscernibles indexed by I ,
closing it under Skolem functions—a wildly syntactic affair. In the
abstract context, this first requires a reintroduction of syntax, then
painful checking, e.g. whether Skolem functions are continuous.
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Among the most essential tools in model theory are
Ehrenfeucht-Mostowski models: for a linear order I , EM(I ) is a
special model built along a spine given by I .

More precisely, the Ehrenfeucht-Mostowski construction gives a
very special functor

E : Lin→ K

that is faithful and preserves directed colimits.

Classical construction: inflate a set of indiscernibles indexed by I ,
closing it under Skolem functions—a wildly syntactic affair. In the
abstract context, this first requires a reintroduction of syntax, then
painful checking, e.g. whether Skolem functions are continuous.

We escape this completely...
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Theorem (L/Rosický)

If K is a large accessible category with directed colimits and all
morphisms mono, it admits an EM-functor

E : Lin→ K

that is faithful and preserves directed colimits.
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Theorem (L/Rosický)

If K is a large accessible category with directed colimits and all
morphisms mono, it admits an EM-functor

E : Lin→ K

that is faithful and preserves directed colimits.

Because E preserves directed colimits, it eventually preserves
(internal) sizes: for sufficiently large I in Lin,

|EI |K = |I |

This, and simple functoriality of E , are surprisingly powerful, and
lead to dramatic new results on stability in mAECs.

Lieberman Generalizing abstract model theory



Classical model theory
Abstract model theory

Categorical abstract model theory

Revisiting abstract classes
Category-theoretic freebies
Future directions

Definition (L/Rosický)

A µ-concrete AEC, or µ-CAEC, consists of a pair (K,U), where
U : K → Sets and

I K is accessible, has all directed colimits, and all morphisms
are monomorphisms.

I U is faithful, coherent, and preserves monomorphisms and
µ-directed colimits.

I K is iso-full.

This is one of many possible generalized frameworks for abstract
model theory that have popped up recently.
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Another possible route, µ-AECs, drops the assumption of closure
under directed colimits (Boney/Grossberg/L/Rosický/Vasey). This
is costly, but encompasses:

I AECs and mAECs, of course.

I µ-complete boolean algebras.

I Classes of µ-saturated objects.

As it happens,

Theorem
The µ-AECs are, up to equivalence of categories, precisely the
accessible categories with all morphisms mono.
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Coda

We’ve done something slightly funny in our analysis of mAECs: an
extra act of forgetting.

K →Met→ Sets

This “discretization” loses us structure, clearly, and the ability to
analyze, e.g. µ-d-tameness.
Perhaps we could (should?) have stuck with

K U→Met

Question: How much meaningful theory can we develop in this
way?
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Coda

A bigger question: Let K be accessible with directed colimits,
monomorphisms.

I AECs: abstract model theory in sense of Sets,

K U→ Sets

I mAECs: abstract model theory in sense of Met,

K U→Met

I Abstract model theory in sense of a general accessible
category with directed colimits, A,

K U→ A?
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