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Abstract

This thesis deals with the problem of deciding the existence of codings (injective
morphisms) between trace monoids. We introduce the notion of weak morphisms of
trace monoids and show that the problem of existence of weak codings is even more
complex than the original problem for general morphisms. Further we investigate
properties of weak morphisms and use them to prove the decidability of this problem
for some classes of instances, which entails positive answers for the corresponding
cases of the original problem. In particular, we show the decidability for instances
whose domain monoids are defined by acyclic dependence graphs. We also partially
answer the question of Diekert from 1990 about the number of free monoids needed
for encoding a given trace monoid into their direct product. On the other hand, we
prove that in general the problem of existence of codings from any given family of
trace morphisms containing all weak codings is not recursively enumerable, which
answers the question raised by Oclisid in 1988.
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Introduction

Trace Theory

One of the central topics in contemporary computer science is the specification and
automatic verification of parallel and concurrent programs. As such a work has to be
based on a rigorous mathematical model, several algebraic formalisms for describing
concurrent computations (often called process algebras) have been introduced, among
others Milner’s Calculus of Communicating Systems (CCS),[Bergstra and Klop’s
Algebra of Communicating Processes (ACH) Hoare’s Communicating Sequential
Processes (CSPY1] or the ISO standard Formal Description Technique LOTOS.
There were also proposed many different representations of behavioural semantics
for these models of various levels of coarseness, e.g. labeled transition systems, Petri
nets or event structures.

In 1977 Mazurkiewicz 9] used free partially commutative monoids (often called
trace monoids) for an intuitive and elegant coarse description of the behaviour of
concurrent systems, and he showed that in this way the behaviour of elementary net
systems (1-safe Petri nets) can be captured faithfully. In this approach one represents
elementary actions with letters of a given alphabet; then an observation of a finite
run of a system is nothing but a word over the alphabet. Two words are regarded as
describing the same behaviour if and only if they can be obtained from each other by
commuting adjacent occurrences of letters representing concurrent (or independent)
actions. The mathematical formalization for this concept is provided by considering
finitely presented monoids with their defining relations expressing commutativity of
some of their generators. Possible behaviours of a system then correspond to the
congruence classes modulo the defining relations, which are called traces. In this way
causal order of actions is distinguished from the order arising from sequentiality of
observations.

Recently trace monoids were also successfully applied in the theoretical analysis
of Message Sequence Charts (MSC), which is a standardized formalism for graphical
specification of message exchange scenarios used in the design of communication
protocols. Many basic decision problems concerning MSCs appeared to be closely
related to some problems for semi-commutations and were settled by direct reductions
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2 INTRODUCTION

to results from trace theory (see e.gl]).

From the mathematical point of view, trace monoids are a common generalization
of finitely generated free and free commutative monoids. They are usually defined
using symmetric binary relations on the sets of generators (so-called independence
relations), which contain just the pairs of commuting letters.

The most important class of trace monoids are direct products of free monoids;
already in the beginnings of computability theory, certain subsets of these monoids
(such as rational and enumerable relations) were studi¢d’[]. General partial
commutations were probably first employed in 1969 by Cartier and Faateap
a tool for the study of Mbius functions. In the following decades trace monoids
appeared in connection with different research fields and a self-contained theory of
traces has also gradually developed. Finally, in 1995 the first monograph on trace
theory [L&] was published, presenting an overview of various directions of research
on partial commutativity, and two years later one chapter of the Handbook of Formal
Languages5] was devoted exclusively to trace monoids.

Topics considered in the framework of trace theory belong to many areas of both
mathematics and theoretical computer science: algebraic structure of trace monoids
as well as their combinatorial properties are studied, the theory of formal languages
over partially commutative alphabets and logics corresponding to partially commuting
variables were developed, solutions of unification and rewriting decision problems
under partial commutativity are sought etc. Methods employed within the theory also
have various origins, ranging from combinatorics on words to automata theory, logic
or graph theory. In several branches of trace theory the research produced interesting
results and challenging problems, many of which are still open.

Rational Trace Languages and Trace Codings

Since all behaviours of a concurrent system can be represented as a subset of some
trace monoid, i.e. alanguage over a partially commutative alphabet, it is not surprising
that a significant part of the research on trace monoids has been done in the framework
of formal language theory. Attention of researchers focused mainly on the concepts
of recognizable (i.e. recognized by finite automata) and rational (i.e. defined by means
of rational expressions) trace languages, which led to the development of a common
generalization of the classical theories of regular languages, (semi-)linear sets and
rational relations4]. Similarly to the theory of regular languages, the relationships
between descriptions of languages using finite monoids, rational operations, standard
automata, asynchronous automata and logic were established thee [

It is well known that for regular word languages all basic problems are decidable.
But this nice property is not shared by the class of rational trace languages, which
contains also non-recognizable languages and where many problems — like deciding
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universality or recognizability of a language or equality of two languages — become
non-recursive. This results in undecidability of some questions about trace monoids
expressible in terms of rational expressions. One of such questions is the problem
of determining whether a given morphism of trace monoids is injective, which was
proved undecidable already ifi4]. The interest in such morphisms stems from the
fact that injective trace morphisms (often called codings) are a natural generalization
of the classical notion of codes (s€8)[to partially commutative alphabets. Another
motivation for studying properties of morphisms of trace monoids comes from the
theory of concurrent systems since they arise when simulations of these systems are
considered.

For most of the fundamental decision problems about rational trace languages
a characterization of the monoids where these problems are decidable was already
establishedi5, 2, 6, 21, 35, 1, 36] (for an overview see e.g.lf]). A lot of work
has been done also in the study of trace codings, but the status of decision problems
of trace codings turned out to be more complicated. The first task concerning trace
codings is to give an effective procedure for deciding whether a given morphism is
injective. A decision procedure for injectivity of word morphisms is well knowr [
and for free commutative monoids the injectivity of a morphism coincides with the
linear independence of images of letters, which is easily decidable using elementary
results from linear algebra. As the injectivity problem can be easily reduced to the
disjointness problem for rational languages in the codomain monoid, by means of the
theorem of Aalbersberg and Hoogeboonh these classical positive results can be
directly extended to the case of codomain monoids whose independence graph forms
a transitive forest (for free domain monoids this was proved.ij)[ Further work
towards classification of monoids having the injectivity problem decidable has been
done in [L6, 23, 28, 37]; several examples of classes of monoids with decidable and
undecidable injectivity problems have been found. It also turned out that for some
trace monoids the problem of deciding the freeness of their submonoids is equivalent
to the reachability problem for certain naturally arising classes of abstract machines,
for instance Matiyasevich'®-machines, where the decidability of the reachability
problem is still unknown. In3”] complexity issues of deciding injectivity of trace
morphisms were considered.

In 1988 Ochmaski [33] formulated several problems about trace codings. One of
his conjectures was proved true in 1996 by Bitegyand De Felice: as trace monoids
are defined by means of presentations, all their morphisms are determined by word
morphisms of the corresponding free monoids; andjiHey demonstrated that it is
possible to obtain an injective morphism of trace monoids only if one starts with an
injective word morphism. Another Ochnnski’'s question asked to give an algorithm
deciding for any given pair of trace monoids whether there exists a coding between
them, i.e. whether the first of the given monoids is a submonoid of the second one.
It is usually referred to as the trace coding problem. This problem appears to be rather
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intractable since there is no obvious enumeration procedure either for all submonoids
of trace monoids being itself trace monoids (due to the undecidability of the injectivity
of morphisms) or for the pairs of monoids where no coding exists (as there are usually
infinitely many candidates for being codings). The two classical cases of the problem
are simple: all finitely generated free monoids can be embedded into the one with
two generators and for embedding a free commutative monoid into another one we
need at least the same number of generators. These characterizations were generalized
in [7] to all instances of the trace coding problem where the domain monoid is a direct
product of free monoids. In[/] the existence problem was solved for so-called strong
codings of trace monoids (defined in’]) and several approximations for encoding of
trace monoids into direct products of free monoids were proved. Some partial results
about the case of domain monoids being free products of free commutative monoids
were obtained ing]. But in the full generality the problem remained completely open.

Overview

Most of the material presented in this thesis (except for Seéignis contained in
the paper 77] currently submitted for publication; main ideas of these results were
briefly described in the extended abstraai] |

In order to deal with the problem of deciding the existence of codings between
trace monoids, we consider a particular family of trace morphisms, whose members
we call weak morphisms. We show that the analogous problem of existence of weak
codings is even more complex than the original one for general morphisms and we
prove its decidability for some classes of instances, which entails positive answers for
the corresponding cases of the original question. On the other hand, we prove that in
general the existence of codings from any given family of trace morphisms containing
all weak codings is undecidable.

The thesis is organized as follows.

Basic definitions and results are recalled in Chapitere refer the reader td p, 37]
for a more comprehensive overview of the theory. In Sectidnwe deal with general
notions of trace theory and in Sectidn2 we present elementary facts and known
results about trace morphisms and codings and introduce the notions of strong and
weak morphisms.

Chapter2 is devoted to the study of certain natural classes of trace morphisms
and codings. In Sectioh.1 we demonstrate several characteristic properties of weak
morphisms significant for our purposes. The aim of Secti@ns to describe how the
original trace coding problem is connected with its equivalent for weak morphisms.
And in the following Sectior?.3we use the same technique to find such a connection
for another class of trace morphisms, so-called co-strong morphisms.

In Chapter3 we consider certain restrictions on pairs of input monoids for the
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problem of existence of weak codings which are sufficient to obtain its decidability.
The main tool employed there is the notion of wit-mappings. These mappings are used
to describe those choices of contents of images of generators of the domain monoid
which allow to construct a weak coding. In Secti®i wlt-mappings are introduced

and their basic properties are studied. Then they are utilized in Seétdasd3.3to

solve the trace coding problem for domain monoids with acyclic dependence graphs
and for codomain monoids which are direct products of free monoids provided the
dependence graph of the domain monoid does not contain cycles of length 3 or 4.
Finally, Section3.4 demonstrates that once the above assumptions on instances are
weakened, the claims presented there are no longer valid.

The undecidability result for the general case of the trace coding problem is proved
in Chapter4. First we show that when properly restricted, the problem of existence
of weak codings with partially prescribed contents of images of generators can be
reduced to the trace coding problem; this is the aim of Sectidn In the rest of
the chapter we prove the undecidability of this problem by constructing a reduction
of the Post’s correspondence problem (PCP). The actual construction is performed
in Section4.2, then Sectiont.3 describes its main ideas on a particular instance of
the PCP and in Sectioh4 we demonstrate that the construction really produces the
desired outcome.

The final Chapteb is devoted to summarizing the main results.

General Notation

We mean byZ, Ny, N andQj the sets of all integers, non-negative integers, positive
integers and non-negative rational numbers respectivelyNKolN, IcmN stands for
the least common multiple of all numbershh The cardinality of an arbitrary sét
is written as|A|. For setsA; andA,, we denote by, : A; x A, — A, fori € {1,2},
the projection mappings. For seétsandB, a mappingp : A— B and a subsef C A,
the notationg |~ stands for the restriction ap to C. The symmetric closure of any
binary relationp is denoted by sym. For an(mx n)-matrixK, M C {1,...,m} and
N C {1,...,n}, we mean byK(M,N) the submatrix oK consisting of the rows with
indices in the seM and columns with indices in the sEt For a decision problem P,
coP is thecomplemenof P, i.e. the problem for which the answer to every instance is
the negation of the original answer.

The neutral element of any monoid is written as 1. A monoid morplgisitd — M’
is termednon-erasingwhen ¢(x) # 1 for everyx € M\ {1}. We denote by=* the
monoid ofwords(free monoid over a finite sef. In this contextX is often called
analphabetand its elementietters Many times in our constructions, we enrich some
alphabet with additional letters; in these situations we always implicitly assume that
all new letters are different from the old ones. Let algh :— 2* denote thecontent
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mapping assigning to every worde X* the set of all letters occurring in. The
symbol= is used for therefixordering onX*. Letu € X* be any word. We refer to
the first letter ofu as firstu), to its last letter as la@t), to the length oy as|u| and
to its mirror image asu. ForX C X, let m, : £* — X* be the projection morphism
defined byr, (x) = xfor x e X and byry (x) =1 forxe X\ X. Finally, let|u|, denote
|y (u)|. In the above notation, we often write instead¥od list of its elements.

By an(undirected) graptwe mean a paifV, E), whereV is a finite set of vertices
andE CV xV is a symmetric adjacency relation ® For X CV, the subgraph
of (V,E) inducedby X is the graph(X,EN (X x X)) and we denote it byX,E).
A cliquein the graph(V,E) is a subseK C V such thaX x X C E. A pathin (V,E)
of lengthn > 0 between vertices y € V is a sequence= z,,2,,...,Z, =y of vertices
satisfying (z_,,z) € E for everyi € {1,...,n}. It is calledsimpleif the vertices
z,,...,Zy are pairwise distinct. Theistancebetween two vertices of the graph is the
length of the shortest paths between them. A graph is catbedectedf every pair
of its vertices is connected by a path.cgcleof lengthn > 1 in (V,E) is a sequence
X0, %1, - - -»%n = X Of vertices satisfyingx,_,,%) € E for everyi € {1,...,n}. Itis
calledsimpleif n > 3 and the vertices,,..., X, ; are pairwise distinct. Areeis
a non-empty acyclic and connected graph.

Forne N, n> 3, letC, be a graph which forms a chordless cycleorertices and
let P, be a graph forming a simple path arvertices. We say that a graphGg-free
if it contains no induced subgraph isomorphicip



Chapter 1

Traces and Codes

This chapter contains the preliminary material. Secfichis devoted to the basic
notions and results of trace theory used in this thesis and in Seictiave deal with
elementary properties of trace morphisms and codings and recall fundamental facts
about their decision problems. In the second section we also introduce the key notion
of our considerations — weak trace morphisms.

1.1 Basic Notions and Properties

Definition 1.1.1. Let X be a finite set and ldtbe a symmetric and reflexive binary
relation onx. We calll anindependence relatioon X and the undirected gragl, I )
anindependence alphabethe complement of this relatidd = (X x X) \ | is called
adependence relatioand the grapliX,D) adependence alphabet

Remarkl.1.2 Usually independence relations are defined as irreflexive, but we adopt
this notation since it faithfully corresponds to the behaviour of weak morphisms.
In fact, the difference between the key notions of strong and weak morphisms lies
exactly in this modification.

For a letterx € £, we mean byD(x) the set of all letters front dependent o,
l.e.D(x) ={ye X | (x,y) € D}. ForX C X, we defineD(X) = U{D(x) | x € X}.

For the rest of this chapter, I1€E,1), (X’,1") be a pair of independence alphabets.
The corresponding dependence relations will be denoteB apd D’ and we will
derive their names in this way also further on.

Now we can define the notion of trace monoids, which is a common generalization
of the classical concepts of free and free commutative monoids.

Definition 1.1.3. Let ~, be the congruence of the free monaid generated by the
relation {(xy,yx) | (x,y) € 1}. The quotient monoid*/ ~, is denoted byM(Z,I)

7



8 CHAPTER 1. TRACES AND CODES

and called dree partially commutative monoior atrace monoid Elements of this
monoid are calledraces

Remarkl.1.4 Observe that the above construction establishes (up to isomorphisms)
a one-to-one correspondence between independence alphabets and trace monoids.

For X C X, the submonoid oM(X,1) generated b is clearly the trace monoid
with independence grafiX,|) and we denote it simply b¥I(X,1).

Example 1.1.5.Finite direct products of finitely generated free monoids are exactly
trace monoidsVI(X,1) which have the grapfX,DuUidy) transitive. Dually, finite

free products of finitely generated free commutative monoids are just trace monoids
defined by transitive independence alphabets.

A solution of the word problem for trace monoids is provided by the following
so-calledProjection Lemma

Lemma 1.1.6 ([L5]). Letuve Z*. Then u~, vifand only if

VXeXZ: jux=1Vx & VY(xyeD: m(u)=m(v).

X7y X7
In particular, trace monoids are cancellative.

As the content and the length of a word and the number of occurrences of a letter
in a word are preserved by the congruengg it makes sense to consider all these
notions also for traces. The same can be deduced for projection morphisms since
U~ vimpliesy (u) ~, my(v) for anyX C X by Lemmal.1.G

Tracess,t € M(X,1) are calledindependentf alph(s) x alph(t) C I \ id,, holds.
Notice that in such a case they satisfy= ts.

Definition 1.1.7. Fors € M(XZ, 1) we define itgnitial alphabetand itsfinal alphabet
asinit(s) = {first(u) | u € s}, fin(s) = {last(u) | u € s} if s# 1 and ini{1) =fin(1) = 0.

Observe that two occurrences of a letter X in a traces € M(X,l) can be put
together using the allowed commutations if and only if no letter dependecborurs
between them. Thus occurrencesxaih s are partitioned into blocks of mutually
interchangeable occurrences, which can be formally defined as follows.

Definition 1.1.8. Letse M(X,|) be atrace and € N. For a lettex € X, anx-blockof
lengthnin sis a triple(t,x",t"), where the tracest’ € M(X, 1) are such that =tx"t’,
fin(t) C D(x) andx & init(t’).

Example 1.1.9.Consider the dependence grgghD) = x—y— z— pisomorphic
to the graptP,. Then the tracgxzyxzpxz-,) € M(X,1) contains three-blocks but
only two x-blocks.
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Clearly each occurrence of a lettein a traces belongs to exactly ong-block.
In the case of free monoids, let us denote,dar X* andm < N, by u(m) the word
consisting of the firsin blocks ofu.

Using Lemmal.1.6it is easy to see that the following definition is correct.

Definition 1.1.10.Letse M(X,1). We denote by re@) the trace ifVI(X, | ) obtained
from s by removing, for everx € X, from eachx-block all but one occurrence af
We call reds) thereductof s. If s=red(s), we say thatis reduced

Example 1.1.11.For the trace introduced in Examplel.9the definition spells:
redXzyxzpxz-,) = Xzyzpxzv, .

Remarkl.1.12 Notice that every reduct is a reduced trace.

The central construction of the paper is based on appending additional letters to
two traces in order to achieve their equality. This can be done if the parts of these
traces which do not belong to their common prefix are independent. Let us state this
well-known fact in more detail. All claims of the next lemma can be easily verified
using Lemmal.1.6

Lemma 1.1.13.Let uv € X* satisfy

V(xy) €D: x(u) = x(v)or m(v)3 T (u). (1.1)

Letu andVv be the words resulting from u and v respectively when we take just the
first min{|ulx, |V|x} occurrences of each letterxX and denote the words consisting
of the remaining occurrences of letters in u and v hy and u\v respectively. Then

U~y T-(V\U), Vv~ V-(U\V), U~V alph(V\u) xalph(u\v) C1\idy
and consequently-{u\v) ~, v- (V\u). O

Remarkl.1.14 Foru,v,w,r € * satisfyingu ~, vandw ~, r, due to Lemmad..1.6
one can see that\w ~, V\r.

From Lemmasl.1.6and 1.1.13we immediately obtain the following fact which
will be used implicitly throughout the paper.

Lemma 1.1.15.Let uv € X*. Then there exist w € £* such that uw~, vr if and
only if (1.1) is satisfied. ]

To reveal connections between weak morphisms and general ones we will employ
in Section2.2 the standard decomposition of traces into primitive roots. Let us now
recall basic facts about this construction.
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Definition 1.1.16. A traces € M(Z,1) \ {1} is calledconnectedvhenever the graph
(alph(s),D) is connected. It is calledrimitive if it is connected and for every trace
t € M(X,1) andn € N, the equalitys=t" impliesn = 1.

Proposition 1.1.17 (I.9]). Any connected trace is a power of a unique primitive trace.

If a connected tracec M(X, 1) is a power of a primitive tracg thent is referred
to as theprimitive rootof s. It is clear that every tracec M(XZ,1) can be uniquely
decomposed as a product of independent connected traces, which are referred to as
connected componerathe traces. Let us denote by Z(s) the set of all primitive
roots of connected componentssof

Example 1.1.18 Let the dependence graph, D) be isomorphic to the pat?, and let

us callx, thei-th letter on this path, for £i <7. Then the decomposition of the trace
S= Xy XoX5XgX7X1 XaX7 X X5 Xa X5 ~| iNto primitive roots of its connected components can
be written as = (X;X,X3)% - (XsXsXaXXs) ~, and therefore

PR(S) = { X XoXg ~| , XsXe XXX~ } -

The fundamental property of primitive roots is that primitive roots of commuting
traces are always either equal or independent:

Proposition 1.1.19 ([.9]). Lettraces g,s, € M(ZX,I) satisfy $s, = s,s,. Then for all
t, € ZZ%(s)) andt, € ZZ(s,) eithert =t, or alph(t;) x alph(t,) C 1\ idy.

1.2 Trace Morphisms and Codings

Since trace monoids are defined by presentations, every morphism of trace monoids
(briefly calledtrace morphis ¢ : M(Z,1) — M(Z’,1") is uniquely determined by

an arbitrary mapping, : £ — (X')* such thatp,(x) € ¢(x) for each letterx € X.

Such a mapping always satisfies

V(X,y) €11 @o(X)@o(Y) ~r @o(Y)@p(X) - (1.2)

Conversely, any mapping, : £ — (X’)* satisfying (..2) extends to a trace morphism.
Often, when considering a morphispn M(X,1) — M(X’,1"), we actually work with
a morphismy : £* — (Z')* defined by a fixed mapping,, i.e. such a morphisry
that the diagram
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commutes, where the mappingsv’ are the natural morphisms to quotient monoids.
The morphismy is called alifting of ¢ and we will denote it byp too. That is,
we allow ¢ to be applied also to words, the image of any word unples always
considered to be a word and the equality sign between words always means their
equality in a free monoid. We adopt this convention in order to strictly differentiate
algebraic considerations from combinatorics on words.

Let us recall that @odeis a finite set of words satisfying no non-trivial relation.
In other words, a finite subs€tC X* is a code if and only if the submonoid generated
by C in X* is free overC, i.e. the morphismp : C* — X* defined for allu € C by
the rulep(u) = u is injective. Therefore an injective morphism of free monoids is
sometimes called a coding.

As a natural generalization of the notion of codes to trace monoids we obtain the
notion of trace codes.

Definition 1.2.1. If a submonoidVl of M(X, ) is isomorphic to a trace monoid, then
its minimal set of generatof® \ 1)\ (M \ 1)? is called arace code

Because trace codes are exactly images of sets of generators under injective trace
morphisms, the terminology of the classical theory of codes can be adopted.

Definition 1.2.2. We say that a trace morphisgn: M(Z,1) — M(Z’,1") is acoding
if it is injective.
The following theorem, which was proved by Barng and De Felice, shows that in

order to obtain by the above construction a trace coding we have to start with a word
coding on the corresponding free monoids.

Proposition 1.2.3 (E]). For an arbitrary trace codingg, every lifting of¢ to the
corresponding free monoids is a coding.

But in essence this interesting result says a lot about morphisms of free monoids
rather than about trace morphisms, so we do not have to be conscious of it in our
considerations. In fact, the result is deeply based on the defect effect of non-injective
morphisms, which is a specific property of free monoids.

In connection with decision problems of trace codings, two particular classes of
trace morphisms were already considered:

e strong morphisms, introduced in(],

e cp-morphisms, which were introduced in/] as morphisms associated with
clique-preserving morphisms of independence alphabets.

In order to deal with the general case, we have generalized the latter notion and we
refer to the arising morphisms as weak. This approach also suggests us to use an
alternative definition of cp-morphisms.
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Definition 1.2.4. A morphisme¢ : M(X,1) — M(X’1") is calledstrongif

v(xy) € I'\idy : alph(e(x)) Nalph(e(y)) = 0.

It is calledweakif

vxe X : alph(o(x)) x alph(p(x)) C 1.

It is called acp-morphismif it is weak and satisfiesx € £, ac X' : [@(X)|a < 1,
I.e. every letter is mapped to a reduced trace.

To obtain for strong and weak morphisms descriptions analogous to the above one
for general morphisms, it is enough to replace the conditlo?) (vith respectively

V(x,y) €1\idy, : alph(go(x)) x alph(gy(y)) € 1\ idy,

and

V(x,y) €1 alph(gy(x)) x alph(gy(y)) C 1"

Some useful properties of strong and weak morphisms are satisfied also by their
common generalization naturally arising from these characterizations.

Definition 1.2.5. A morphisme : M(Z,1) — M(X’,1") is termed arsw-morphisnif

Y(x,y) € 1'\idy : alph(e(x)) x alph(e(y)) € 1"

Remarkl1.2.6 Notice that every trace morphism from a free monoid is strong and
dually every trace morphism to a free commutative monoid is weak. Further, itis clear
that a composition of strong (weak) morphisms is always strong (weak respectively);
but this is far from being true for sw-morphisms (see Proposii@¥below).

The following simple observation suggests how rich the class of strong codings is.

Definition 1.2.7. We say that a morphism : M[(Z,1) — M(X’,1") is connectedf for
everyx € X the tracep(x ~, ) is connected.

Lemma 1.2.8 ([L(]). Every connected trace coding is strong.

Proof. Let ¢ : M(X,l) — M(X’,1") be a connected coding and lety) € I \ idy.
Then we have ZZ(p(x~,))| = |2Z(¢(y ~,))| = 1. Due to the injectivity ofp,
Propositionl.1.19implies alpi{¢(x)) x alph(¢(y)) C 1"\ id,,. Therefore the coding
Is strong. m

Let us denote the classes of all strong and weak morphisnig,bB¥” respectively.
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Definition 1.2.9. Thetrace code problenasks to decide for a given trace morphism
@ :M(Z,1) — M(X',l") whether it is a coding.

Let € be an arbitrary class of trace morphisms. Tita&e coding problenfor the
class% (in short#’-TCP) asks to decide for given two independence alphdets
and(X’,1") whether there exists a coding frami(X,1) to M(X’,1") belonging to% .

If the class# contains all trace morphisms, then the question is just whétiiér, | )
is isomorphic to a submonoid afI(X’,1") and we call it briefly the trace coding
problem (TCP).

The trace code problem is well-known to be undecidable even for strong morphisms
when both monoids are fixed add(X, ) is free (see e.g.1l[]). The undecidability
result in the case of cp-morphisms was established Ghysing substantially more
complex construction; we generalize this statement in Propositibf, which forms
one step of the proof of the main result. On the other hand, some positive results
were also achieved; most notable are the decidability of the trace code problem for
connected morphisms and for codomain monoids whose independence alphabet is
either a transitive foresti] or acyclic [28, 37].

However, when we consider the problems of existence of codings, the situation is
entirely different. In the first place, unlike for the trace code problem, it is not clear
whether the complement of the problem is recursively enumerable.

The two classical cases of the TCP are simple: all finitely generated free monoids
can be embedded into the one with two generators and for free commutative monoids
injectivity of a morphism coincides with linear independence of images of letters.
These characterizations were generalized’jrid all instances of the TCP where the
domain monoid is a direct product of free monoids. In both classical cases, there
exists a strong coding as soon as there exists an arbitrary coding; but a weak coding
between free monoids can be constructed only if the codomain alphabet has at least
the same number of elements as the domain alphabet.

The .”-TCP turned out to be NP-complete due to the following result.

Proposition 1.2.10 (I.7]). Let(X,1) and(X’,l’) be independence alphabets and let
H: X — 2 be any mapping. Then there exists a strong coding fdiax, 1) to
M(Z',1") satisfyingalphog|,, = H if and only if for every xy € X :

H(x) x H(y) CI"\idy, <= (x,y) € I'\idy,
HX) xH(y) Cl' = (x,y) €l .

The reason for the relative simplicity of th&-TCP is that a strong coding can
be easily constructed as soon as reasonable contents of images of letters are chosen
(this choice is provided by a mappind). To see this, notice that in the image of
a letter dependent letters may occur, which enables us to encode all of the information
needed for deciphering whenever we can do it independently for all letters of the
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domain alphabet. And the defining condition of strong morphisms provides us with
this freedom since the only properties we have to satisfy are commutativity and linear
independence of images of independent letters, which are trivial in this case as their
contents are disjoint. On the other hand, if we consider weak morphisms, the image
of any letter consists entirely of independent letters and at the same time images of
independent letters may contain common letters. So we have less opportunities to
encode some information into images of letters under weak morphisms than under
general morphisms and that is why the problem of existence of weak codings becomes
even more complex than the one for general codings (see Thépiem

The main motive for considering weak trace morphisms is that, compared with
general trace morphisms, they possess many properties substantially simplifying their
manipulation. For instance, the following simple observations are very useful.

Lemma 1.2.11.Letg: M(X,X x X) — M(X’,1’) be an arbitrary weak coding from
a free commutative monoid. Then the set NJ{alph(¢(x)) | x € X} forms a clique

in the graph(X’,1’) and there exists an injective mappipg £ — A which satisfies
p(X) € alph(@(x)) for every xe X. In particular, |A| > |Z|.

Proof. As ¢ is an injective linear mapping, itis defined by a matrix with its rank equal
to | X|, which allows us to construct a desired mapping O

Lemmal.2.12.Letp: M(X,1) — M(X’,l") be a weak morphism anda.X* a word.
«— —
Theno('U) ~,, ¢(u).

Proof. We just calculate

O(U) = @(Xn) -+ P(Xy) ~p (%) - @ (X)) = P(X1) - @(Xn) = @(U) ,

whereu =X, ---%n, N € Ny andxy,...,xn € X. O



Chapter 2

Restricted Classes of Morphisms

In this chapter we concentrate on classes of trace morphisms defined by additional
requirements on contents of images of generators of the domain monoid. Sedtion

Is devoted to the study of properties of weak morphisms; we also develop there some
methods of manipulating weak morphisms and codings and introduce the notation
used in the subsequent chapters when constructing counter-examples to injectivity for
weak morphisms. In Sectio@s2and2.3we reveal connections between the existence

of general codings and the existence of weak codings and so-called co-strong codings
respectively. We also apply the calculus of weak codings to show in Setfidhat

in order to decide the existence of codings between trace monoids it is enough to deal
separately with all connected components of the dependence alphabet of the domain
monoid and in Sectio.3that when the dependence alphabet of the domain monoid

is C5-free there exists a co-strong coding between given trace monoids every time an
arbitrary coding exists.

2.1 Weak codings

A trace morphismp : M(X,1) — M(X',l") is not a coding if and only if there exist
two wordsu,v € X* such thau <, vande(u) ~,, ¢(v). Itis often useful to consider
just minimal wordsu andv satisfying these conditions, i.e. those possessing the least
number|u| + |v|. For such counter-examples

init(u~,)Ninit(v~,) =fin(u~,)Nfin(v~,) =0 (2.1)

always holds; otherwise a smaller counter-example can be obtained by cancellation
due to Lemmal.1.6
If a morphisme is a coding, then in particular

V(xy) €D @(xy) = ¢(yx) , (2.2)

15
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which is equivalent to saying that the domain dependence relatisimduced by the
dependence relatiod’ via the mappingp. Observe that a morphismp is weak and
satisfies 2.2) if and only if

Vx,y € X : alpho(x)) x alph(o(y)) C 1" < (x,y) €1 . (2.3)

In this section we investigate properties of counter-examples to injectivity for weak
trace morphisms, introduce some techniques for manipulating weak morphisms and
develop several methods of disproving their injectivity.

Let us start with one observation about the form of counter-examples to injectivity
for morphisms satisfying(3).

Lemma2.1.1.Letp: M(Z,1) — M(Z’,l') be a trace morphism satisfyir{g.3) and
let u,v € £* be any words such that(u) ~,, ¢(v). Theninit(u~) x init(v~,) C 1.

Proof. Suppose that there exigts y) € D such thak < init(u ~,) andy € init(v ~,).
By (2.3) there ara € alph(¢(x)), b € alph(¢(y)) satisfying(a,b) € D’. As ¢ is weak,
acinit(o(u) ~,,) andb € init(¢(v) ~,,), which contradictsp(u) ~,, ¢(v). O

The following lemma shows that if a weak morphigms not injective, then it can
be verified by a counter-example of one of two special forms — one of them based
purely on linear dependence of words and the other on independence of letters of the
codomain alphabet.

Lemma 2.1.2.Let o : M(X,l) — M(Z’,1") be a weak trace morphism which is not
a coding. Then at least one of the following cases arises:

() There exists X X such that Xx X C | and the systenig(x)),.x of elements
of the free commutative monoid generated by the set

Ufalph(e(x)) | x € X}

Is linearly dependent.

(i) There exists & £* such that w¢, U, @(u) ~,, ¢(U), u~, is connected and

Moreover, if O(X) # 0 for every xc X, i.e.X = D(X), the second claim is always true.
Before presenting the proof of this claim, let us give an example.

Example 2.1.3.Consider the relatiod on the alphabel = {X;,X,, X3, X4, X5, X5}
defined by the graph

Xy

N
e
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and let

M(Z' 1) = {a;,a,}" x {by,b,}" x {c;,c,}" x {d,d,}".
Then one can disprove injectivity of any weak morphigrffrom M(X,1) to M(X’,1")
with the following contents of images:

alph(e(xy)) = {a;,b;}  alph(e(x3)) = {a,,b,,¢} alph(e(xs)) = {c;,d,}
alph(o(x,)) = {ay,by} alph(e(x,)) = {a;,b;,c,,d;}  alph(e(xg)) = {d;} .

Since each of the lettess,, b,, ¢, andd, occurs just in one of the images of letters,
without loss of generality we can assume thpdtas the form:

(X)) = ailbj P(X3) = azbch P(X5) = ngz
P(X) = albl P(Xy) = aEb?czdf P(Xg) =di .

Let us consider for instance the cdse> ko, jn > io andil > jk. Then the word

In ko) (jn—io) (il—jk)
u= X3X 4

Xgﬂxg(il—ik)

verifies the conditionii) of the lemma. In all the other cases such a worhn be
constructed similarly — the inequalities determine the positions of the ledfexg
andx, with respect tos.

Proof of Lemm&.1.2 We can assume tha?.¢) holds, otherwise the conditiom )
is true. Take some wordgw € I* satisfyingv ~; w and ¢(v) ~,, ¢(w) such that
the numbetv| + |w| is minimal possible. Consider the wosd= vw. Then we have
‘s =w'V and thereforep(s) ~,, ¢('s) by Lemmal.2.12

If s, ‘S then we repeatedly employ cancellation to remove from the wiiidse
letters which are simultaneously initial and final letters of the trmeg until the
set inifs~,) Nfin(s~,) is empty. More precisely, for anyc init(s~,) Nfin(s~,),
if |slx = 1 thens~, xt and‘s ~, xT , and if|slx > 2 thens ~, xtxand‘s ~, xT x,
for some word € X*, so we can use thisas a new word; the properties ~, ‘s and
@(s) ~,, ¢('s) are preserved thanks to Lemma.6 Now Lemmal.l.6guarantees
the existence of somg,y) € D such thatry(s) # 7xy('S). Let the wordu € Z*
represent the connected componens ef which contains the lettersandy. Then
bothu ~, U and¢(u) ~,, (0) hold by Lemmal.1.6since two dependent letters
from X’ can occur in the images of elementsibéinder a weak morphism only within
one component. This proves the second condition.

It remains to deal with the caséw ~, wV. Due to the minimality ofv andw,
we can use4.1) to obtainv = w\v andw = v\w, and therefore these words represent
independent traces by Lemnial.13 This implies alplig(v)) x alph(¢(w)) C I
since the morphisnp is weak. Hence the set algp(v)) = alph(¢(w)) forms a clique
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in the graph(X’,1"), and thus also algh) Ualph(w) is a clique in(Z,1) by (2.3) and

the caseif arises. Under the additional assumption, we can now take aph(vw)

andy € D(x) to obtainvyw, wyv~, Vywusing the minimality of andw and then
choose the only non-trivial connected component to get the validity of the second
condition as in the previous paragraph. O

With Lemma2.1.2in hand, it is easy to find out that the status of the existence of
weak codings often remains unchanged by adding new completely independent letters
into the codomain alphabet.

Lemma 2.1.4.Let (Z,1) and (X'UT",l") be two independence alphabets such that
YNIr=0,Ix(XUr)cl’and =D(X). Letg: M(Z,l) - M(Z'UI,l’) be

an arbitrary weak morphism. Thep is a coding if and only if the weak morphism
my 0 M(Z,1) — M(Z',l") is a coding.

Proof. Notice that any counter-example of the second form of Lergma? for the
morphismr, o@ is also a counter-example for the morphigm ]

In the following, the task of deciding the existence of weak codings between given
trace monoids is decomposed into separate tasks for the connected components of
the domain dependence alphabet. First, we deal with letters of the domain alphabet
independent on all the others.

Lemma 2.1.5. There exists a weak coding
@ M(Z,1) x {x}* —M(ZX1")
if and only if there exist a letter @ X’ and a weak coding
v M(Z, 1) — M\ ({ajuD'(a)),l") .

Proof. The converse implication of this claim is easily obtained by seifif}g = a
and¢(y) = y(y) for all y € X. In order to prove the direct one, observe first that
alph(e(x)) x alph(¢(s)) C I for eachs € M(Z, 1) as¢ is weak. We have to choose
a suitable letter in alph(¢(x)). For the sake of contradiction, let us assume that
for everya € alph(¢(x)) there exists a non-empty ¥t C X such thatXa x X3 C |

ar_ld. the syste.nﬁyrz,\{a}((p(y))_)yexa is linearly dependent. Providex was chosen
minimal possible, we can write

(o) o (o(0))
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for someiqy, jay € N, satisfyingiay =0 <= jay # 0. If there exist, b € alph(¢(x))
andz e X, such that{z} x Xq Z I, then

o[z () o e [ 9°)

contradicts the injectivity op. OtherwiseXa x X, C | holds for alla,b € alph(¢(x)).

Let us denote
ia = ‘qo( U\fﬁy) and ja= 'rp( |'>!ayjay>
ye a ye

Becausep is a coding, we can assume that> j5 and consider the positive integer
k= rlaealph((p(x))(ia_ ja)- Then we also get a contradiction with the injectivity¢f

a

klo(X)laiay Kk ko(X)|ajay
[0) |_| Yy fala ~p @ | X< I_l Yy Taa
acalph(¢(x)) acalph((x))
yeXa YEXa

Thus we can choose a lettarc alph(¢(x)) such that, for every subsét C X
which satisfiexX x X C 1, the systen(nz,\{a}(go(y)))yex is linearly independent. Let
us definey(y) = nz,\{a}((p(y)) for ally € X. As for eachy € X the emptiness of
the set alphyp(y)) ND’(a) follows from the weakness ap, the weak morphisny
really leads to the desired monoid. Clearly no counter-example of the figraf (
Lemma2.1.2exists fory due to our choice of the lettex Let a wordu € X* satisfy
the condition {{) of Lemma2.1.2for y. Theny (u) ~,, y('0') implies(u) ~,, ()
since{a} x alph(¢(u)) C I'. But this contradicts the injectivity of. Hencey is
a weak coding. ]

Lemma 2.1.6. There exists a weak coding froli(X,1) to M(X’,1") if and only if
there exists a weak coding: M(X,1) — M(Z’,1") such that for every ¢ X\ D(X)
the alphabef’ contains some letter a satisfying
alph(e(x)) ={a} & VvyeX\{x}: {a} xalph(e(y)) CI'\idy, .
Proof. It is obtained by applying Lemma 1.5inductively. O
Now we can state the general version of the decomposition result.

Proposition 2.1.7.Let (X, 1,) fori € {1,...,n} and(XZ’,1") be arbitrary independence
alphabets. Then there exists a weak coding

n

0 -ﬂM<2i"i> —M(Z',1)
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if and only if there exist subalphabels C X', for every ic {1,...,n}, such that
I x Xj CI’\idy, holds for every,jj € {1,...,n}, i # j, and weak codings

¢ M(Z, 1) — M(Z, 1)
for every ic {1,...,n}.

Proof. To get the converse implication, it is enough to defin@s the product of
all codingsg,. When considering the direct one, we can assumedtsatisfies the
condition of Lemma2.1.6 Let M(X,l) denote the domain product monoid, where
X is the disjoint union of, andD = |, D;. Then in particular

Vie{l,...,n}: D(X) CL & (5 \D(X))x X Cl
andD(X) = UL, D(X,). Let us consider the alphabets
o= J{alph(e(x)) |[xe D(X)} and X' =XyND'(X).
Applying Lemma2.1.4to the restriction ofp to M(D(X), 1), we obtain a weak coding
W = Ty 0@l o) - MD(E), 1) — M(X', 1)

satisfyingX’ = (J{alph(y(x)) | x€ D(X)}. Now everya € X" appears in the images
of letters undeny only within one connected component of the grgpi{X),D);
indeed, ifa € alph(y(x)) Nalph(y(y)) then there exists a lettére D'(a) N X’ and
consequently alsbe D(X) with b € alph(y(z)), which satisfiex D zandy D zdue to
the weakness af. Therefore alpty/(x)) Nalph(y(y)) = 0 holds for eaclx € D(X;)
andy € D(Z;) whenevei # . So if we take

z = Nalph(w(x)) [ xe D(5)} U Halph(e(x) | x € 5\ D(Z)}

and define

0 (0) = {w(x) forx e D(X,)
e(x) forxe Z\D(%),

we reach the desired conclusion due to our initial assumptiap. on O

Lemma2.1.2can be also used to deduce that if a weak morphpsisistrong too,
then verifying @.3) suffices for concluding thap is a coding.

Lemma 2.1.8. Every non-erasing strong morphisgm: M(Z,1) — M(X’,1") which
satisfieg(2.3) is a coding. In particular, if | > 1 then every morphisnp from X*
to M(X',1") satisfying(2.3) is a coding.
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Proof. We prove that none of the cases of Lemna 2can occur. The first condition
does not hold since is non-erasing and contents of images of distinct independent
letters are disjoint becaugeis strong. So assume that X* satisfies the casé ) of
Lemma2.1.2 Takex € init(u ~,) and lety be the last letter i such thatx,y) € D.
By (2.3 there exista € alph(¢(x)) andb € alph(¢(y)) with (a,b) € D’. Due to the
weakness 0, a c init(o(u) ~,,) = fin(¢(u) ~,). Becausa ¢ alph(¢(y)), there is
a letterzbehind the last occurrence pin u satisfyinga € alph(¢(z)). As ¢ is strong,
either(x, z) € D or x =z But the former case is impossible by the choicg ahd the
latter case impliex € init(u ~) Nfin(u ~,), which contradicts the assumptions.

The second claim now follows from Rematk?.6 O

Now we are going to prove one assertion useful for showing the injectivity of
a weak morphism by induction on the structure of the domain dependence alphabet.
First, we state a technical lemma about word morphisms.

Lemma 2.1.9.Let¢ : £* — (X')* be a morphism. Let X X, ac X’ and uv € X*
satisfyp(u) = @(v), |u|x = |v|x for every xe X and

VxeXVyeZ: alph(o(y) € {a} = mxy(u) = 7xy(V) -

Thenp(7,, (1)) = @(Ty (V).

Proof. Observe that after removing theh occurrence of a letter € X from both
wordsu andy, fori € {1,...,|u|x}, all assumptions of the lemma remain preserved.
More precisely, if alplip(x)) € {a} then the occurrences of letters eliminated in this
way from the wordsp(u) and¢(v) are exactly the same and if al@h(x)) = {a} then
all occurrences oé eliminated frome(u) and¢(v) belong to the sama-block. [

Lemma 2.1.10.Letg : M(X,1) — M(X’,l') be an sw-morphism andX such that
(p‘M(E\{x},I) is a coding. Let words w ¢ I* satisfyo(u) ~, ¢(Vv), |ulx = |v|x and
Tixy(U) = myy(v) for ally € D(x). Then u~, v.

Proof. To concludeu ~, v, it remains to showrz\{x}(u) ~ ”x\{x}(v)- We verify
the fact<p(7r2\{x}(u)) ~y ‘P(”z\{x} (v)) using Lemmal.1.6 which is enough because
the restriction<p|M(2\{x}7|) is injective. It is clear from the equalityu|x = |v|x that
every letter has the same number of occurrence,s(irb\{x}(u)) and (p(yrz\{x} (V).
Consider(a,b) e D'. If a,b ¢ alph(¢(x)) then

z(o(,n,0)) = 2o =200 =2 (0( 7))

Otherwise say € alph(¢(x)). Then for everyy € X\ {x} such thatb € alph(¢(y)),
we havey D x since¢ is an sw-morphism. Therefore Lemrdal.9can be applied
to the morphisnm,  o¢ : £* — {a,b}" for the set{x}, the lettera and the wordsi

andv. We obtain the desired equaliﬂzyi’b((p(nz\{x}(u))) = ”a,b(‘P(”z\{x} (v))). O
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Notice that if the morphisnp is not assumed to be an sw-morphism, Len#rial0
does not hold:

Example 2.1.11.Let

X = {X7y7za paq7r}a | = IdE U{(va)7 (y,X)} and
M(Z' 1) ={ag,a,}" x {by,b,}* x {c;,c,}" .

Consider the morphismp : M(X,1) — M(X’,1") given by the rules:

o(X) = aya,a, o(y) = alazalblbgclc2 ¢(2) = a,a,8,C;
¢o(p) =a;b; ¢(q) = aza%bzczcicz ¢(r) = a;a,b,C,C; -

It is not hard to verify that the restriction @f to the submonoid(X \ {x},1) is
a coding; this is performed in detail as Exampl&.21 But ¢ is not injective because
@(yzypxqzy ~,, (pzxqryz) holds althoughyzypxgzr=, pzxqrfz. Moreover, the
morphisme can be easily modified to ensure that any counter-examfulg~,, ¢(v)
to the injectivity of @, whereu,v € X*, satisfiegu|x = |v|x andx, «(u) = 7, (V) for
all lettersx € D(x); it is sufficient to introduce a new lettet into the @-image ofx
and new letterg, p/, g andr’, all of them dependent exactly af into the images of
the corresponding letters .

The aim of the following considerations is to describe one method of manipulating
numbers of occurrences of letters in the images under a weak morphism in order to
simplify the morphism before starting any computations.

Definition 2.1.12.For a morphisnp : M(X,1) — M(X’,1") and amappin§{ : £ — N,
let N denote the morphism fromi (X, 1) to M(X’,1’) defined, for allx € X, by the
rule N (x) = (x)N™,

Lemma2.1.13.1f ¢ : M(X,1) — M(X’,l") is a coding and N X — N is an arbitrary
mapping, therpN is a coding as well.

Proof. Itis clear that idj . | is a coding and" = g oidy ;. O

For any alphabeX andn € N, let us denote by, the corresponding constant
mapping, i.eNy(x) =nforall x € X.

As the construction of Definitiof.1.12preserves contents of images of letters, itis
clear thatpN is a weak morphism wheneveris. Now we state a simple observation
and then we use it to prove that for weak morphisms the converse of Léhinia8
also holds.

Lemma2.1.14.1f ¢ :M(XZ,l) — M(ZX’,1") is a weak morphism andaN any positive

integer, themp™ = @ o idy;f(m = idsjff(m,) o . O
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Lemma 2.1.15.Letp : M(Z,1) — M(Z’,1’) be a weak morphism. #N is a coding
forsome N X — N, theng is a coding as well.

Proof. Letn=Icm{N(x) | x€ £} and defineN’ : £ — N by the ruleN’(x) = n/N(x)
for all x € £. Then the morphisnp™ = ¢No id&[(z N Is a coding. Since we also have

N = idl’g‘g(z, ) © @ by Lemma2.1.14 this gives us the injectivity op. O

The previous lemma is a typical property of weak morphisms, once again it is not
true in general:

Example 2.1.16.TakeX = {x,y,z} andX’ = {a,b}. Let a morphismp : £* — (X)*
be given by the ruleg(x) = a, ¢(y) = b, ¢(z) = ab and consideN(x) = 2 and
N(y) = N(2) = 1. ThengN is a coding, butp is not.

The following statement asserts that every weak coding can be modified without
violating its injectivity to achieve that in the image of any letter there is at most one
occurrence of an element from a reasonably chosen subset of the codomain alphabet.

Lemma 2.1.17.Lete : M(Z,l) — M(X’,l") be a weak coding and & X’ such that
Vxe X: |alph(p(x))NA <1.
Then there exists a weak codipg M(X,1) — M(X’,1") satisfying
vxe X alph(y(x)) =alph(e(x)) & [y (X)[, <1
and forall xy € X, a,b € alph(¢(x)) Nalph(¢(y)) :

lw(X)|a . [¥(X)|p _ lo(X)|a . |‘P(X)|b
vWla v, leWla leWl,

Proof. Let
n=lem{|p(x)|, | X€ £, alph(@(x)) NA% 0}
and defineN : ¥ — N andN’: X’ — N by the rules:

N(X) = {n/lq)(X)\A if alph((x)) A £ 0,
1 otherwise

N'(a) = n foracA,
1 fora¢A.

Let y be the morphism given by the formula:

() = a-myA(@"(x) if a€ alph(e(x)) NA,
v (%) if alph(o(x))NA=10.
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ThenoN = idM(m,) oy is a coding by Lemma.1.13and thusy is also injective.
The remaining conditions are easy to verify. O

The following notions are introduced in order to formalize reasoning in the course
of a construction of a counter-example to injectivity.

Definition 2.1.18.Let ¢ : M(Z, 1) — M(ZX’,1") be a morphism. Lat,v € £*. We say
that the pair(u, v) is asemi-equalityor ¢ if init (u ~,) Ninit(v ~,) = 0 and there exist
wordss,t € ()" such thatp(u)s~,, (v)t. We call this semi-equalitpon-trivial if
there do not exist words,r € X* such thauw ~, vr.

The next definition makes sense thanks to the defining properties of semi-equalities
due to Lemmad..1.15

Definition 2.1.19.1f (u,v) is a semi-equality for a morphisg: M(X, 1) — M(Z’, "),
then the pair

(V) = ((@W\@ (W) ~p1, (@(U\@(V)) ~,) € M(Z',I") x M(Z',1)
is called thestateof (u,v) and the paifred(u’),redV')) thereduced statef (u,v).

When dealing with semi-equalities, we often omit the reference to the morphism
provided it is clear from the context. Recall that by Lemima 13every statgu’, V)
satisfies alpfu’) x alph(v') C 1"\ idy..

The following lemma states that semi-equalities arise as initial parts of minimal
counter-examples to injectivity.

Lemma 2.1.20.Let o : M(X,1) — M(X’,1") be a morphism and,u € X* be words
satisfying W<, v and(u) ~,, ¢(v) such thatu| +[v| is minimal. If w=uand r=v,
then(w,r) is a semi-equality. O

All of the information we need to explore possible continuations of a semi-equality
Is contained in its state. Let us demonstrate this by an example.

Example 2.1.21.The diagram below shows that the restriction of the morphgsm
introduced in Exampl&.1.11to the submonoi®1(X \ {x},1) = {y,z p,q,r}" is really
injective. The idea of the calculation is to find a counter-example to injectivity by
starting from the paif1,1) and successively adding lettersz, p, g andr from the

right to both components to build new semi-equalities with the aim of reaching some
semi-equality possessing the stétel). The states of the semi-equalities obtained
by this construction are depicted here together with the letters frarsed to acquire
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them; for each state, the underlined component is the one we try to extend in every
possible way without violatingl(1).

: 1, 1
1.2) 2P (@,a,880,0,,1) 7 (B3, 8) — Y (b, BEECEC)
l(lar)
(1) (z1)
(1,a,a%c,c2c,) <(q——1)> (b,,1) ? (&7 3,8,,Cy) (ayb,cyC5,1)
(r1) “(Lf) T(lyp)

1 1
(1,88,C,¢) LA (by,8,¢,¢y) SN (a2b,b,c,C,, 1)

For weak morphisms, Lemnial.20can be partially reversed, namely, if we have
a semi-equality whose state consists entirely of independent letters, then it can be
prolonged into a counter-example.

Lemma 2.1.22.Let ¢ : M(X,]) — M(X’,l") be a weak morphism such that there
exists a non-trivial semi-equalityy, v) for ¢ with a state(u’,V') which satisfies

alph(u'V) x alph(u'v) C 1.
Theng is not a coding.

Proof. Using Lemmal.2.120ne calculates

—

P(UV) ~, (W) @(V) ~, @(V)@(u) ~, p(VT) ,

where the equivalence in the middle is a consequence of LemmAa3since

«—

(@(V\ o) (e(U\@((V)) ~, ((W\@(V)(p(V)\@(u))

due to the assumption. O

Let us now justify the consideration of reduced states. In Seétidmwe need to
find a counter-example to injectivity under certain assumptions. In order to do this,
we construct some semi-equality and then inductively extend it until Leghfn@?2
can be applied. Because a counter-example has to be found regardless of numbers
of occurrences of letters in the images of element¥ othe reduced state contains
exactly the information common to all the possible cases. The first prerequisite for
this construction is the ability to multiply the lengths of blocks in the state of the
current semi-equality by an arbitrary fixed positive integer.



26 CHAPTER 2. RESTRICTED CLASSES OF MORPHISMS

Lemma 2.1.23.Let ¢ : M(Z,l) — M(X’,1") be a weak morphism and léu,v) be
a semi-equality forp with a state(u’,V'). Then, for every & N, the pair
: N : N
(IdM(E,I)(u)’IdM(Z,I)(V)>

Is a semi-equality forp with the state
: 1Np : Ny
(IdM(Z/J/) (U/), IdM(E’J/) (\/>> *
Proof. It follows directly from Lemma2.1.14 Remarkl.1.14and from the fact
AN 21 (PN 1, (0(W) =} (@(V\@(U)
which is easy to verify. O

Often we have to append a new pair of element& ¢b a semi-equality in order
to remove a given letter from the state, which in our constructions usually results in
a replacement of this letter with another one together with some effect on the rest of
the current state. This situation is described in general by the following lemma.

Lemma 2.1.24.Let ¢ : M(Z,l) — M(X’,l") be a weak morphism and léa,v) be
a semi-equality forp with a state(u’,Vv'). In addition, let xy € X and

acinit(v') Nalph((x)) \ alph(o(y)) (2.4)
be letters satisfying
(alph('- @(x))\ {a}) x alph(V' - g (y)) C I, (2.5)
x € D(alph(u)) & y € D(alph(v)) . (2.6)
Let m be the length of the first a-block ihand n= |¢(X)|a. Then the pair
(idhe (W X™idhe | (v)-y™) 2.7)

is a semi-equality forp and its statgu, V) satisfies & init(Vv).

Proof. Due to the assumptior2 (6), the initial alphabets of the new pair are the same
as those ofu,v), which verifies the first condition of Definitioh.1.18 We are going

to check the validity of the second condition using Leniria15 By Lemma2.1.23

it is enough to verify thatX(.1) holds for the traces

Up = idll\jﬁ](zu/)(u/) ’ ((P(X>)m and Vo= idI\NA?(E/J/)(\/) ’ ((P(y))m :

It is clear for letters different froma due to @.5). Since alplu’) x alph(V') C 1"\ idy,
and ¢ is weak, no letters dependent arappear inu,, and becausa ¢ alph(¢(y)),
the number of occurrences afin u, is equal to the length of the firatblock inv,.
Hence (..1) holds also fola anda ¢ init(v) as desired. O
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Remark2.1.25 The construction of Lemma.1.24will be in fact occasionally used
even when the conditior2(5) is not satisfied; in such a case one has to ensure that
(2.7) is really a semi-equality independently.

2.2 Reduction to the Weak Coding Equivalent

In this section we describe the fundamental connection between the problems TCP
and?/-TCP. For an arbitrary trace morphisp: M(X,1) — M(Z’,1”), we consider
for every letterx € X the decomposition of the imaggx ~, ) into primitive roots of
connected components. By Propositiofi.19primitive traces do not commute unless
they are equal or independent and therefore the substantial information characterizing
their behaviour is their content. So, we introduce sufficiently many new letters for
each possible content and replace these primitive roots with them. Since in each of
the images there is at most one primitive root with a given content, for fixed alphabets
(X,1) and (X',1") we can manage with a finite number of new letters. In this way
we express every morphisg as a composition of a weak morphism and a strong
morphism. Clearly, itp is a coding, the weak morphism constructed must be a coding
as well. On the other hand, we can use Propositi@nl0to find a strong coding for
prolonging any coding to the new codomain monoid into a coding to the original one.
Let us perform this construction in detail. For a grdphE), we denote

% (V,E) = {X CV||X| >2and(X,E) is connecte}l .

Definition 2.2.1. Let (X,1), (X’,1") be independence alphabets. We exteEd!’)
into a new independence alphalpEt,.,I’,) as follows. Let

=X uU(¢ (' D)xX)
and, for awordi € (X')*, define itsextended contergalpi{u) C X’ as
ealpt(u) = (alph(u)N X" ) U {A| (A,x) € alph(u) \ X'} .
Finally, for o, B € X', set
(a,B) €'y < ealpia)xealpHB)Cl'ora=p. (2.8)
Then the pair of independence alphalétsl ), (X', 1) is calledsaturated

Remark2.2.2 Itis easy to verify that ealdle) NealpH8) # 0 implies(c, ) € D'y
for any distinct elements, B € Z';; therefore the relatiolfy, can be equivalently
defined by the condition

(a,B) € |/z\idz/£ <= ealpHa) x ealpHp) C I"\id,, . (2.9)

Notice also that if a word € (X')* satisfies ealpfu) x ealpi{u) C I, thenu e (X)*.
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Remark2.2.3 If M(X',1") = i, M(Z/,I{), wheren € N, andX is an arbitrary finite

alphabet, thedI(Z',,1",) = [ M((X)) 5, (I)5).

As the relationwl,/S preserves extended content, the notion of extended content can
be used also for traces.

Proposition 2.2.4.Let o : M(X,1) — M(X’,1") be any morphism of trace monoids.
Then there exist a weak morphigm M(Z,1) — M(X',l’y) and a strong morphism
o :M(Z'y,I'y) — M(X',1") such thato o y = ¢. Moreover, if the morphisnp is
strong then the weak morphisygncan be chosen strong too.

Proof. Forx € X let us denoté = ZZ(¢(x~,)) and
Qx={se R |alph(s)| > 2}, Re={acZ'|(a~,)eR}.

We construct a weak morphism first. For everyA € € (X’,D’) we choose any
mappinge, : £ — X suchthatforalk,yc X, x#y:

ex(X) =en(y) <= Ise BNR,: alph(s) =A.

Such mappingg, certainly exist because the defining condition always determines
an equivalence relation an. Now for every lettex € X, consider the decomposition
of the tracep(x ~, ) into primitive roots of its connected components

otx) = []%) - (ato~)

w9~ ] (@915) %)) (o))

We prove that this mapping really extends to a weak morphism. Lety) € 1.
Theng(x)@(y) ~, ¢(y)@(x) and Propositiori..1.19pplied to the traceg(x ~, ) and

@(y~) gives

and define

Vse R, t€ R s#t = alph(s) xalpht) C 1. (2.10)

In order to verify alpliy(x)) x alph(y(y)) C Iy, take any elementse Qy, t € Qy,
ac Ry, be R,. We immediately deduc@, b) € I’y and(a, (alpl‘(t),ealpm)(y))) elly
from (2.10. If s#t then alplis) x alph(t) C I’ holds by .10 and if s=t then
€alph(s) (x) = ealph(t)(y) by the definition ofealph(s). In both cases we obtain

((alph(s),ealms) (x), (alph(t),ealpm)(y))> el'y.
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Altogether, we get alpty(x)) x alph(y(y)) C I'y.. Trivially, the morphismy is also
strong whenevep is.

Now we define a strong morphism : M(X'y,l'y) — M(Z',l'). Forae X’ let
o(a) =aand for(Ax) € X'y \ X' let

s ifdyeX: seR, alphs) =A, e,(y) =X,
1 otherwise.

o((AX)~ )= {

xz

Notice that the second rule is unambiguous due to the definitieg. @ince we have
alph(c(a)) C ealph{a) for everya € X5, by (2.9) this assignment defines a strong
morphism. Finally, it is clear thap = o o y holds. O]

Proposition 2.2.5.Let (X, 1), (X',1') be independence alphabets. Then the following
conditions are equivalent.

(i) There exists a coding frol(X, 1) to M(Z’, ).
(i) There exists a weak coding frdvfi(Z, | ) to M((X'y,I'y.).
(i) There exists a coding frofl(X, 1) to M(X'y,I'y).

Proof. (i) = (ii). If ¢ : M(Z,l) — M(X’,l") is a coding, by Propositiod.2.4there
is a weak morphisny : M(Z,1) — M(X',,1’y) such thatp = o o y for some strong
morphismo : M(Z',1';) — M(X’,1"). Hencey is also injective.

(i) = (iii) is trivial.

(i) = (i). Lety : M(Z,1) — M(Z',l’5) be any coding. Because the mapping

H =ealphiy, X'y — 2

satisfies both conditions in Propositidn2.10due to ¢.8) and @.9), there exists
astrong coding : M((X'y,l's.) — M(Z',1"). Therefore we obtain a desired coding
as the compositior o y. O

Example 2.2.6.As an example, let us employ Propositiar2.5to characterize up
to isomorphism all trace submonoids of the moridi¢gX’,1”), whereX’ = {a,b,c,d}
and the dependence grapff,D’) isa— b— c— d (hence the independence graph
(X',1") isc—a—d —Db). By Proposition2.2.5this task is the same as to find those
trace monoid$/(Z, 1) for which a weak coding : M(Z,1) — M(X', 1) exists.

First observe that the pairs of independent elements’ pfare just(a,c), (a,d),
(a,({c,d},x)), (b,d) and(d, ({a,b},x)) for everyx € X. Since only two elements
of X'y, namelya andd, are independent on at least two other elements, there can
be only two letters inX independent on at least two other letters and their images
can contain only the lettex (d respectively); in particular, the grag, | ) is acyclic.
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Suppose there arey, z € X satisfying alplig(x)) = {a},xDy,xD zandy | z. Then
there isa € X'y independent ol such that alpfyp(y)) Ualph(¢(z)) C {d,a} and
a € alph(g(y)) Nalph(e(2)). Consequently the wond= y/?@lexz2?Vle verifies the
condition (i) of Lemma2.1.2and sog is not injective. Next, if there amey,zr € X
satisfyingx 1y, z I r and {x,y} x {z,r} C D, then alplig(xy)) Nalph(¢(zr)) = 0.
Indeed, ifa € alph(@(xy)) Nalph(¢(zr)) holds, then we have alpi(xy)) = {a, B},
B € alph(o(x)) Nalph(¢(y)) and alplie(zr)) = {a, y} for somef,y € X', and thus
the condition i) of Lemma2.1.2holds foru = x ?Wlszy?Xls.
Altogether, the independence gragh | ) is of one of the following forms:

(i) One connected component(d,|) is a subgraph of a graph of the form

X1 Y1

N e

X y

o .

and the other components are trivial.

(i) The graph(X,l) consists of two connected components with two elements and
arbitrarily many trivial ones.

On the other hand, in both cases some weak cogimgally exists: it is enough to
define in the first case(x) = a, ¢(y) = d, @(x) = ({c,d},%) andp(y,) = ({a,b}.y))

and in the second case map the letters of the non-trivial components to the words
b, bd, c andac, and for anyz € X forming a trivial component defing(z) = (X', z).

Corollary 2.2.7. Let% be an arbitrary class of trace morphisms containing all weak
codings. Then th&-TCP restricted to saturated pairs of independence alphabets is
equivalent to the TCP modulo effective reductions.

Proof. Due to Propositior2.2.5 given an instance of the TCP one can equivalently
consider the corresponding saturated pair, which is easy to construct; and in the case
of saturated pairs there exists a coding if and only if there exists a coding belonging
to the clas¥. O

Now we state the analogue of Propositiba.5for strong codings, which provides
a reformulation of Propositiofi.2.10characterizing the existence of strong codings
using the notion of saturated pairs.

Proposition 2.2.8.Let (X, 1), (X,1") be independence alphabets. Then the following
conditions are equivalent.
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(i) There exists a strong coding frami(X, 1) to M(Z’,17).

(i) There exists a strong and weak coding fidfz, 1) to M(X'y.,Iy.).
(iii) There exists a strong coding fraii(Z, | ) to M(X'y,I'5).
(iv) There exists a mapping HE — 25'= satisfying for every y € X :

H(X)xH(y)gI’Z\idZ,E — (x,y) €l\idy ,
HX)xH(y) Cl'y < (xy) €l .

Moreover, if H is any such mapping then every mappigg £ — (X';)* satisfying
alph(g,(x)) = H(x) for all x € X extends to a strong and weak coding frdfit 2, I )
to M(X'y,1'}).

Proof. This can be proved by the same arguments as Propo&itiof the last claim
and the equivalence of the conditiong &nd {v) follow from Lemma2.1.8 O

Notice that in Propositior2.2.5there is the same domain monoid in each of the
three conditions. This makes it suitable for showing decidability of the TCP for some
classes of instances specified by properties of their domain monoids by means of
proving the corresponding result for weak morphisms, which is the aim of Chapter
Let us now illustrate the usage of Propositi2.5by transferring Propositiof.1.7
to the case of general codings.

Proposition 2.2.9.Let(X,,1,) fori € {1,...,n} and(XZ’,1") be arbitrary independence
alphabets. Then there exists a coding frppf ; M(Z;,1;) to M(Z',1") if and only if
there exist subalphabel; C X', for every i€ {1,...,n}, such that/ x Z; C 1"\ idy,
holds for every.ij € {1,...,n}, i # ], and codings

o - M(Z;, 1) — M(ZL 1)

foreveryic {1,...,n}.

Proof. We have to prove only the direct implication, the converse is clearXlet
the disjoint union off;,. By Proposition?.2.5there exists a weak coding

n
7 _HM(Zhli) —M(Z'y,1y)
i=
Propositior2.1.7provides us with subse C X' such thal/ x X{ C 1’5\ idy, for

everyi # j and with weak codingg; : M(X;, ;) — M(X/,1’;). Let us consider the
alphabets! = U{ealpH(@) | & € X{}. ThenX x Zj CI"\idy, for i # j due to .9)
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andX/ C (X/), C X'y. Because the relatioly is defined on elements da'y, \ X’
according to their first components, elements£6f \ X’ which have the same first
components are mutually interchangeable in the alph@Bgt1’ ). Therefore we can
replace second components of all element§’gf\ £’ occurring in somay;-images
with letters fromZ; to obtain weak codings; : M((Z;,1;) — M((Zi’)Zi , I’Zi ); notice that

1771
the relationd’y andl’y coincide on(Z), and that there are enough letterg &) ;.
to perform this replacement since the codingsare weak andA,x) D';. (A,y) for
every (A x),(Ay) € £’y \ Z" with x # y. Applying Proposition2.2.5in the reverse
direction, we get the required codings: M(Z;, ;) — M(Z/,1"). O

177

2.3 Co-strong Codings

Besides strong and weak morphisms, other kinds of trace morphisms can be naturally
defined by introducing certain conditions on contents of images of letters. Studying
restrictions of the TCP to these morphisms may shed some light on how the complex
instances of this problem look like. This point of view, for instance, again underlines
the simplicity of the.”-TCP: having an arbitrary additional effective condition on
contents of images under strong morphisms, existence of such codings can be easily
decided using Propositioh2.1Q

In this section we consider the condition obtained by replacing the reference to the
independence relation in the definition of strong trace morphisms with the reference
to the corresponding dependence relation.

Definition 2.3.1. We call a morphisnp : M(X,1) — M(X’,1") co-strongif

V(x,y) € D: alph(e(x)) Nalph(¢(y)) = 0.
We denote by the class of all co-strong trace morphisms.

Remark2.3.2 Notice that performing the same construction for the definition of weak
morphisms is not interesting with respect to the TCP due to the previously mentioned
property of strong morphisms and Lemma.8

Let us start with two simple observations about co-strong morphisms.

Lemma 2.3.3.Let ¢ : M(Z,]) — M(Z",1") and y : M(X', ") — M(Z",1") be two
co-strong morphisms. If the morphigmis in addition strong, then the composition
Y o @ IS co-strong too. O]

The next claim can be easily verified by means of Lenimiag

Lemma 2.3.4. Every co-strong and strong trace morphiggmwhich is non-erasing
and satisfie¢2.2) is a coding. O
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In the following, we prove that the construction of Sectibf can be performed
as well for the problem of existence of co-strong codings, i.e. tha¥t&TCP is
effectively reducible to th&.” N #'-TCP. There are two main differences between
these situations. First, for co-strong codings the new independence alphabet can be
constructed independently of the domain monoid. Second, in this case it is not enough
to consider just one new monoid; we have to introduce a set of monoids such that
every co-strong morphism factorizes through one of them.

For a graphV,E), we denote

¢ (V,E) ={X CV |X#0and(X,E) is connected .

Definition 2.3.5. Let (X, 1) be an independence alphabet. We define the independence
relation 22 (1) on the se%’(X,D) by the rule:

(X,Y) € 2(I) & XxYClorX=Y .

Remark2.3.6 Notice that the independence gra@@i(X’,D’), Z(l")) is isomorphic
to a subgraph ofZ’;,1’;.); singletons correspond to the copy Bf and each set
A C X’ with |A| > 2 corresponds t0A, x) for an arbitraryx € X.

Proposition 2.3.7.Let g : M(X,1) — M(X’,1") be a co-strong morphism. Then there
exist a subalphabef, C ¥ (X', D’) satisfying

VABEX, :ANB#0 — A=B, (2.11)

a co-strong and weak morphisp: M(X,1) — M(X,, Z(l)) and a co-strong and
strong morphisno : M(Z,, Z(l")) — M(Z’,l") such thato o y = ¢.

Remark2.3.8 Instead of considering, as a subset o&'(X’,D’) we can view it as
a subset of'; the condition 2.11) should then be rephrased in the form

Vo,B € X, cealpa)nealphf) #0 — a=j. (2.12)

Proof. It can be directly verified using Propositidnl.19that the objects defined as
follows possess the required properties. For exeryX denoteP = ZZ(@(x~,))
and if the decomposition of the traggx ~,) into primitive roots of its connected

components is .
P(x~) = s,
=11

y(x) = |_Fl (alph(s))’s.

then assign:

Let the subalphabet be
X, ={alph(s) | I3xe £ :se R}

and for every € X ands € P let o(alph(s) N@(V)) =s O
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Proposition 2.3.9.Let(X,1), (X/,1") be independence alphabets. Then the following
conditions are equivalent.

(i) There exists a co-strong coding fravfi( X, | ) to M(Z’, 7).

(i) There exist some subalphatigtC ¢’ (X’,D’) satisfying(2.11) and a co-strong
and weak coding froMI(Z, 1) to M(Z,, Z(I")).

(iii) There exist some subalphaligtC ¢’ (X’,D’) satisfying(2.11) and a co-strong
coding fromM(Z, 1) to M(Z,, Z(l")).

Proof. (i) = (ii) follows from Propositior?.3.7.

(i) = (i) is trivial.

(i) = (i). Lety : M(Z,l) — M(Z,, Z(l")) be an arbitrary co-strong coding and
let o : M(XZ,, Z(l")) — M(Z',l") be any morphism such that al@h(A)) = A for
everyA c X;. Theno is clearly non-erasing, co-strong, strong and satistted,(
hence it is a coding by Lemnia3.4 Therefore we obtain a desired co-strong coding
as the compositior o y due to Lemma&.3.3 ]

Corollary 2.3.10. For an arbitrary class#’ of co-strong trace morphisms containing
all co-strong and weak codings, there exists an effective reduction &f.tHelTCP to
the®@-TCP. O]

Now we are going to show that if the domain dependence grapffiee, then one
can construct a co-strong coding whenever there exists an arbitrary coding. First we
prove the analogue of this claim for weak codings.

Lemma 2.3.11.Let(Z,l) and(X’,1") be independence alphabets such that the graph
(Z,D) is Cy-free. Then there exists a weak coding frdfiz, 1) to M(Z',1") if and
only if there exists a co-strong and weak coding fldi™, | ) to M(Z’, ).

Proof. Let ¢ : M(XZ,1) — M(ZX’,1") be an arbitrary weak coding. If we consider the
decomposition of the domain monoid

M(Z,1) = M(D(Z),1) x M(£\D(Z),1) ,

then by Propositior2.1.7there exist some subalphab&ts X C X’ of the codomain
alphabet such tha] x X5 C 1"\ id,, and weak coding®, : M(D(Z),l) — M(Z3,1’)
andg, : M(X\D(X),l) — M(X5,1"). Without loss of generality, we can in addition
assumeZ; = [J{alph(¢,(x)) | xe D(X)}. Due to Lemma2.1.4 the weak morphism
o) OP1 " M(D(Z),1) — M(D'(X7),l") is a coding. Moreover, it is also co-strong.
With the aim of showing this fact by contradiction, ket € X satisfy(x,y) € D and
let a € alph(¢,(x)) Nalph(¢,(y)) ND'(X;). Then there is a lettdys € £; N D’(a) and
consequently there e D(X) such thatb € alph(¢,(2)). But the weakness of the
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coding e, implies(x,z) € D and(y,z) € D, which is impossible ag~, D) is C;-free.
Since the weak coding, is trivially co-strong too, we obtain a required co-strong
and weak coding frofVI(X,1) to M((X’,1") as the product o:frD,(z,) op, ande,. O

1

In order to shift this result to the case of general morphisms we need a technical
lemma.

Lemma2.3.12.Let(X,l) and(Z’,l") be independence alphabets andlgiC X’ be
a subset such that the gragh,, D’y ) is C;-free. Then there exist a subsgtC X'y
satisfying(2.12) and a co-strong and strong coding fra¥i(X,,1;) to M(Z,,1y.).

Proof. The construction of the desired coding proceeds inductively with respect to
the numberza€22|ealpl’(oc)] using the following claim.

Claim1. Let X, C X', be a subset not satisfying.(2 such that the grapfZ,,D’y.)
is C;-free. Then there exisE) C X', such that X, D';.) is C;-free and

S lealptia)| < 3 lealph)

aeX) aeX,
and a co-strong and strong coding fr&fi{z,,1’y.) to M(X5,1'5).

Proof. Consider any lettera, § € X, satisfyinga # 8 and ealpla) Nealph ) # 0.
We distinguish two cases.

First assume ealglx) = ealpH8). Thena = (A x) andf = (A,y) for some letters
Xy € X, x#y, and some subsét C X’ such thatA| > 2 and the graphiA,D’) is
connected. Hence we can split the Aetto disjoint non-empty subseBandC such
that both graph$B, D’) and(C,D’) are connected. Now defire = (B,x) if |B] > 2
anda, = bif B= {b} and analogousl, = (C,y) if |C| > 2 andf; = cif C= {c}.
Then consider the alphabB = (2, U{e,,B,}) \ {e,B}. Since we havéy,a) € Iy
and(y,B) € Iy, for everyy € X, \ {«, B} becaus€X,,D’;) is C;-free, the graphs
(XZ,,D'y) and(Z5,D'y) are easily seen to be isomorphic.

Second, assume ealfgh) # ealphf); say ealpki) 2 ealpH). Let us denote by
B, fori =1,...,nthe connected components of the graphlpH) \ ealpia),D’).
Letx € X be an arbitrary letter and I} = (B, x) if |B;| > 2 andB; = by if B; = {b;}.
Take the subalphab&t, = (£,U{B, |i=1,...,n})\ {B} and consider the morphism
¢ M(Z,,l'y) — M(Z5,1'y) defined by the rulep(B) = []iL, B; and identical on the
setX, \ {B}. The graph(X5,D’;) is C;-free because for everye X, \ {B} we have
(v.B) € D'y whenever(y,B;) € D'y for somei € {1,...,n}. Due to the definition
of B, there exist letters; € ealph{a) NealpH ) andb; € ealph(;) such that, D’ b;.
Therefore(a, B;) € D'y, and since plainly alsdo, ), (B,p;) € D'y holds and the
graph(X,,D’y) is C;-free, it follows thatB, ¢ X,. Thuse is co-strong and strong.
Now considery € X, \ {«, B} satisfying(B,y) € D's. Then there exists some letter
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b € ealp{3) ND’(ealph(y)). Becaus€¢X,,D’;,) is Cs-free, (o, 7) € I’y holds. Hence
b ¢ ealpi{a) and for a certain € {1,...,n} we haveb € ealpl{j3,), consequently
(B,,7) € D'y, and @(By) “p o(yB). That is whye fulfils (2.2). Altogether,¢ is
a coding by Lemma.3.4 l

Applying Claim 1 repeatedly and composing the codings constructed in each step,
we eventually obtain a required sub&gtC X' ;. satisfying €.12) and a strong coding
from M(Z,,l’y) toM(Z;,1’5), which is also co-strong due to Lemrig8.3 O

Proposition 2.3.13.Let (X,1) and (X’,1") be any independence alphabets such that
the graph(Z,D) is C;-free. Then there exists a coding fravi X, 1) to M(X',1") if
and only if there exists a co-strong coding fréfi{ X, 1) to M(X,1").

Proof. If there is a coding frolM(X, 1) to M(X’,1"), then by PropositioR.2.5there
is a weak coding fronM(Z,l) to M(Z's,l’y). Using Lemma2.3.11we obtain
a co-strong and weak coding: M(X,1) — M(X'y,l's). As ¢ is weak and Z,D) is
C;-free, we in fact havep : M(X, 1) — M(X,,l’;.) for a certain subsef, C X', such
that the grapi{X,,D’y.) is C;-free. Now we employ Lemma.3.12to get a co-strong
and strong coding : M(X,,l'5.) — M(X,,l’;) for some subalphabgy C X', which
satisfies 2.12. Then the compositiony o ¢ is a co-strong coding frorvI(X,1) to
M(Z,,l’y) due to Lemm&.3.3 Finally, according to Remarks3.6and2.3.8we can
apply Propositior?.3.9to obtain a co-strong coding frob(X,1) toM(XZ'|1"). [



Chapter 3

Decidable Cases

In this chapter we show that in some cases the existence of a weak coding between
trace monoidM(X,1) and M(X’,1") is equivalent to the existence of a choice of
contents of images of generators of the moridi@®, | ) satisfying certain regularity
conditions. This choice will be provided by a mappifigZ — 2*'; besides putting
requirements ori assuring that it allows us to define a weak morphism and guarding
against linear dependence on free commutative submonoids, we introduce a condition
ensuring unique decipherability on every submonoid of the masiB, | ) generated

by a subset oF on which the dependence relation forms a tree. Mappings satisfying
these conditions will be called wlt-mappings.

We start by defining the notion of wlt-mappings and demonstrating some of their
basic properties. In Sectidgh2 we use wlt-mappings to deal with domain monoids
whose dependence alphabets are acyclic and then in S&cHaove generalize this
result, in the case of codomain monoids which are direct products of free monoids,
to all C5,C,-free domain dependence alphabets. The final Seétibrs devoted to
proving that in these results none of the assumptions on instances can be avoided.

3.1 WIt-mappings

A crucial role in our considerations will be played by those letters of the codomain
alphabet which occur in the image of exactly one generator of the domain monoid.
Recall that according to Lemnzal.4letters of the codomain alphabet independent on
all letters occurring in the images are not significant for injectivity; that is why in the
following definition of central letters they are excluded. Actually, since the process of
reconstructing a word from its image under a weak coding by means of central letters
IS inductive, we have to consider central letters also for each subset of the domain
alphabet.

37
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Definition 3.1.1. Let (£,1) and(X’,1") be independence alphabets. lfetz — 2%’
be an arbitrary mapping and letc X C X. The set ofcentral lettersfor X in f(x)
with respect tof is defined as

CY(x)={acf(x)|(3ye X, be f(y): (a,b)eD) &
& (WyeX: aef(yy = x=y)}

and the set of central letters f8rwith respect tof as the (disjoint) union

= FX.

xeX

Now we are ready to present the definition of wit-mappings.

Definition 3.1.2. Let (X,1) and(Z’,1") be independence alphabets ahds — 2
a mapping. We calf awlt-mappingfrom (Z,1) to (X’,1") if it satisfies the following
conditions V), (L) and (T).
(W) — weakness:
Foreveryx,yc Z: (xy) el < f(x)x f(y)CI'.
(L) — regularity on linear parts:
For all X C X such thatX x X C |, there exists an injective mappipg : X — X’
satisfyingvx € X : py(x) € f(x).
(T) — regularity on trees:
For all X C X such that(X,D) is a tree, there exist a lettgre X and an injective
mappingoy , : D(x) N X — D’(C¥(x)) satisfyingvy € D(x) N X : oy x(Y) € f(y).
Such lettex will be calledX-decipheringor f.

Remark3.1.3 The condition (V) ensures that every morphism constructed according
to the mappingf satisfies 2.3). In what follows, when referring to/{) we mostly
utilize only its direct implication; the converse implication is in fact a special case
of (T) for 2-element subtrees.

Notice that the conditionL() in particular guarantees thétx) # 0 for everyx € X;
this corresponds to the morphism property of being non-erasing.

Remark3.1.4 It is clear from the definition that the restriction of any wlt-mapping
from (X,1) to (X’,1’) to an arbitrary subalphabet &fis again a wlt-mapping.

Example 3.1.5.Take anyn € N, n > 3, and let the dependence alphab®tD) be
isomorphic toR, with the i-th letter on the path denoted by, for i € {1,...,n}.
Further, consider the monoMI(X’,1") = {a;,b,;}" x --- x {&, ;,b, ;}". Then the
rulesa; € f(x) andb, € f(x_,), for eachi € {1,...,n— 1}, define a wit-mappind
from (X,1) to (£’,1") where all vertices of every subtreeof the graph(X,D) are
X-deciphering forf. Now choose any indekk € {2,...,n— 1} and construct fronf
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a new mapping : £ — 2*' by adding the lettea, into f(x;,,) forie {1,....k—1}
andb; into f(x_,) fori € {k,...,n—1}. Thengis also a wit-mapping frontZ,|)
to (X',1"), but only oneZ-deciphering letter exists fa@, namelyx,. As we will see in
Lemma3.1.13 this behaviour of our wlt-mapping is not just a mere coincidence.

Example 3.1.6.Consider the dependence alphal#tD) isomorphic to the grap@,,
wheren> 5, and letMI(X’,1") = {a,,b;}" x--- x{a, ;,b, ;}". Itis not hard to show
that there are, up to symmetry, just two wlt-mappings frid@nl ) to (X’,1’); namely,

if we denote the letters on the cydl&,D) by X,,...,X, in a natural order, one of
the mappings is defined by settiage f(x) foralli € {1,...,n—1}, b, € f(xn) and
b€ f(x_y)Nf(x, ) forallie{2,...,n—1}, and the other one can be obtained by
adding the letteb, into f(x,).

We start the detailed examination of the notions introduced in the above definitions
with two simple observations.

Lemma 3.1.7.Let(X,1), (£',1') be independence alphabets, £ — 2" a mapping
satisfying(W) and X C X a subset such that the gragk,D) is C;,C,-free.

() Letxy,ze X, y# z, be arbitrary letters and let lettersa f(x), b € f(y) and
c € f(z) satisfy(a,b), (a,c) € D'. Then ac C}(x).

(i) If letters ac f(x) and be f(y), where xy € X, satisfy(a,b) € D’, then either
ae C{(x) orbe CX(y).

Proof. (i). Notice that ifa € f(r) for somer € X, then(x,y), (x,2),(r,y),(r,z) € D
due to (V) and thug = x since(X, D) is C;,C,-free.

(ii). Assumeb € C>f<(y) does not hold. Then thereis X, z#Yy, such thab € f(2).
Hencea € C¥(x) by (i). O

Lemma 3.1.8.Let(Z,1) and(X’,I’) be independence alphabets andsf — 2= any
mapping satisfyindW). Let xe X C X and let YC X be the subset consisting of
all elements of X whose distance from the vertex x in the gfxpb) is at most2.
ThenC¥(x) = CY(x) holds and therefore x is X-deciphering for f if and only if it is
Y -deciphering for f.

Proof. Considera € C¥(x). Then there exist € X andb € f(y) such thata,b) € D'.
Due to (V) we have(x,y) € D and soy € Y. Hencea € CY(x).

Conversely, ifa e C}((x) then for anyy € X with a € f(y) we employ the existence
of a letterz € Y with someb € f(2z) satisfying(a,b) € D’ to concludex D zandz D y
using (V). Thusy € Y and consequentty='y. O
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Remark3.1.9 From Lemma3.1.8one can see thatX C X is an arbitrary subset and
Y is a connected component of the grgph D), thenCY (x) = CY(x) for all x € Y.
Therefore in the conditionT() of Definition 3.1.2we can equivalently requirgX, D)
to be acyclic instead of a tree.

Now we state a lemma which provides two reformulations of the condifipf
Definition3.1.2 In contrast to (), where the mappings, , are defined locally on the
setD(x) N X, these conditions require the existence of a suitable simultaneous choice
of dependent letters frotd’ for all pairs of dependent letters from

Lemma 3.1.10.If (£,1) and (X’,1’) are independence alphabets and % — 2% is
any mapping satisfying/\V), then the following statements are equivalent.

() The mapping f satisfig9).

(i) For every XC X such that(X,D) is a tree, there exists an injective mapping
dy 1 DN (X x X) — D’ satisfying the conditions:

(@) Yx,ye X, xDy: ox(x,y) = (a,b) = ac f(x), be f(y).
(b) VX,yE X? X Dy 5X(X7y) = (avb) = 8X(y7x) = (b7a)'
(c) The dependence alphalet’,Im(éy)) is acyclic.

(d) Vae £\ C¥: |Im(8y)(a)| < 1, i.e. every letter fronk’ with at least two
neighbours in the grapfi’, Im(Jy)) is central for X.

(iii) For every XC X such that(X,D) is a tree, there exists an injective mapping
Ty - {{X,y} C X |x Dy} — X’ satisfying for all xy € X, xDy:

t({xy}) € fX)ND'(CF(Y) or 7({xy}) € F(ND'(CF(x). (3.1)

Proof. (i) = (ii). Let f satisfy (). We construct required mappingg inductively
with respect to the cardinality of the ¢t So, letX C X be such thatX,D) is a tree.
Choose aiX-deciphering lettex € X for f and definey fory € X, y D x, by the rules
8y (x.Y) = (2,0 ,(y) and 8y (y,x) = (0x,(y),a), wherea € Cf(x) N D'(0y ,(¥)),
and forz,r € X\ {x}, zDr, by the ruledy (z,r) = &,(zr), whereY is the connected
component of X\ {x},D) containingz andr.

The validity of the conditionsg) and @) for oy is clear. In order to show that
Oy is injective, assuméy (y,z) = 6« (r,s) = (a,b) for somey,z,r,sc X,yDzrDs.
If a€ C¥(x) theny=r =xandb = Oy x(2) = 0x «(s), which impliesz= sdue to the
injectivity of oy ,.. Similarly one can deal with the cabes CX(x). Finally, if we have
a,b ¢ C¥(x) theny,zr,s € X\ {x} and sincey D sfollows froma € f(y), b € f(s)
anda D' b using {V), the lettersy, z, r ands belong to the same connected component
Y of (X\ {x},D) and we obtairy,z) = (r,s) from the injectivity ofd, .



3.1. WLT-MAPPINGS 41

With the aim of proving that the dependence alph&a®&tim(Jy)) is acyclic by
means of contradiction, let us suppose there is a simple ek ,...,anh = a,
in (£',Im(8y)). Becauseoy , is injective, not all edges of this cycle lie in the set

8y (DN ((X x {x}) U ({x} x X))). They also do not all belong to the same relation
oy (DN (Y xY)) for a connected componelt of the graph(X\ {x},D) thanks to

the property €) of &,. Therefore we can assume without loss of generality that for
somei € N, 1<i <n-1, and some connected compon¥rdf (X \ {x},D) we have
(8,8,1),- - (2 _1,80) € 8 (DN (Y xY)) and(a,a,), (8_y.3) ¢ 8 (DN (Y xY)).
Take the lettery,zc X, y D z andr,sc Y, r D s, such thaty (y,z) = (a,,a,) and

Oy (r,s) = (a,_1,a@n), Then the conditions\W) and @) givey D r andz D ssince

ay D" a,_; anda; D' a,. Thusy,ze XND(Y) C YU {x}. The equalityy = x would
imply a, € C¥(x) due to the definition 06y, contradictinga, € f(s). Hencez = x
andy is the only element dD(x) NY. The same arguments can be applied also to the
pair (a;_,,&), yielding (a,_;,a) = 8¢ (X,Y) = (ay,a,). In particulara; = a,, which is
impossible as the cycle is simple.

It remains to verify ). Assume(a,b),(a,c) € Im(8y), wherea € X'\ C¥. Then
(a,b) = 04 (y,z) and (a,c) = 6x(r,s) for somey,zr,se X, yD z r Ds. Because
a¢ CX,ac f(y),be f(z) andce f(s), Lemma3.1.7(i) givesz=s. Sincea ¢ C%,
according to the definition of the mappidg we have neithey =xnorr =x. If z=x
thenoy ,(y) = a = oy ,(r) by the definition ofd,, which meansy = r due to the
injectivify of oy, and we geb = c. Finally, in the casg,zr €Y for a connected
componenty of (X \ {x},D), eithery = r, immediately leading td = c, ory #r,
which impliesa ¢ C}( and consequentlly = c by the condition §) for d, .

(i) = (iii). Let X C X be a subset such th@X,D) is a tree. For each non-trivial
connected compone#t of the dependence alphaliét’,Im(dy)) choose and fix an
arbitrary lettera, € KN C¥, which always exists due to Lemmgal.7(ii). In order to
define the mappingy, take anyx,y € X satisfyingx D y. Then by the propertyb] we
have{dy (x,y), 0x(Y,x)} = {(b,c), (c,b)} for some(b,c) € D'. LetK be the connected
component ofZ’, Im(é8y)) containingb andc. Without loss of generality assume that
cis the predecessor tfon the simple path froma, to b in the tree(K,Im(dy)) and
definety ({x,y}) = b. Since eithec = a, holds orc has at least two neighbours in
the graph(X’,Im(8,)), the choice of the lettea,, and the conditiond) imply ¢ € C¥.
Therefore we get3.1) from (a).

It remains to show that the mappinyg is injective. Let letterx,y,z,r € X satisfy
t ({xy}) = 7x({zr}). Then up to symmetrg, (x,y) = & (z,r) = (4 ({x,¥}),c),
wherec is the predecessor df, ({x,y}) on the simple path frona, to 7y ({x,y})
in (X’,1m(8y)). The injectivity of 6, now gives(x,y) = (zr).

(i) = (i). LetX C X be such thatX,D) is a tree and let, be a mapping which
meets the requirements ofi §. Since the number of edges (X,D) is less than the
number of elements of, we can choose a letteic X satisfyingz, ({x,y}) € f(y) for
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ally € D(x) N X and defineoy ,(y) = 7« ({X,y}). The injectivity ofoy , is clear from
the injectivity of 7, and becausé(y) ND'(C¥ (y)) = 0 due to {V), the condition 8.1)
implies oy ,(y) € f(y)N D’(C¥(x)). Hencex is anX-deciphering letter foff. O

The following claim presents a simplification of the conditions of Len#ial0in
the case of codomain monoids which are direct products of free monoids.

Lemma 3.1.11.Let(X,I) be an independence alphabet and let the mobbid’,1")
be isomorphic to the produgq_,(X/)* for pairwise disjoint alphabet&, ..., X).
Let f: X — 2*' be any mapping satisfying both conditiof) and (L). Then f is
a wlt-mapping from X, 1) to (X’,1’) if and only if for every subset X X such that
(X,D) is a tree there exists an injective mapping

& Yy S X[xDyt —{1,....n}

satisfying for all xy € X, xDYy:
[(FOQU W) NZE (xyn] =2- (3.2)

Proof. Assuming validity of {VV), we prove the equivalence of the conditior) Of
Lemma3.1.10and the condition given in this lemma. First notice that whenever
(X,D) is C4-free, the graptil f (X),D’) is C4-free too by (V), which means

Vie{l....n}: |JFX)nZ|<2. (3.3)

In particular, the graph f (X),D’) is acyclic and both conditions) and () are
immediate consequences aj.(

“—" Let X C X be an arbitrary subset such that,D) is a tree and consider
a mappingy verifying the conditionif) of Lemma3.1.1Q For anyx,y € X, xDy, we
havedy (x,y) = (a,b), wherea,b € X/ for somei € {1,...,n}. Then ) ensures that
we can correctly definé, ({x,y}) =i. The condition 8.2) holds for thisé, thanks
to (3.3 and @). In order to show the injectivity of,, take any letters,y,z,r € X
satisfyingx Dy, z D rand&y ({x,y}) = §x({z r}). Now the image$y (X.y), 6 (zr),
dy (r,z) belong toEéx({ny}) X Zéx({xyy}) as well as toJ f(X) x U f(X) by (a) and
at the same timé, (z,r) # 0x(r,z) due to p). Therefore the inequality3(3) gives
Oy (X,y) € {0x(z,1),04(r,2)}, which implies{x,y} = {z r} asdy is injective.

“«<=" Assume we have a mappirfy which meets the requirements given in the
lemma and take anyy € X satisfyingx D y. Due to 8.2) and (V) there exist letters
ac f(x) mz&x({w}) andb € f(y) ﬂzéx({)(’y}), aD' b, and we defindy (x,y) = (a,b).
Then @) is trivially valid and @) is clear from 8.2). Finally, the injectivity of 5y
follows from the injectivity ofé, because oft). O
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Remark3.1.12 A significant advantage of the conditions stated in Lem@as10
and3.1.11is that it suffices to verify the existence &f, T, and{y respectively only

for maximal subtrees gf£, D) since the restrictions of these mappings to any subtree
Y of X also satisfy the requirements.

Before proceeding to study relationships between wlt-mappings and weak codings,
let us state a useful consequence of Len#rial(Q which essentially says that once
the condition () is violated, one cannot put it right by removing letters from the
images. This provides significant help when one tries to verify non-existence of
wlt-mappings.

Lemma 3.1.13.Let f be a wit-mapping fromiz, 1) to (£',1’) and let g: £ — 2% be
any mapping satisfyin¢/V) and f(x) C g(x) for all x € X£. Then g is a wit-mapping
as well.

Proof. Itis clear thag satisfies(). We verify the conditioni() of Lemma3.1.10for g
using the same mappings as for f. The only non-trivial task is to prove the validity
of (d). Assumea € 2’\C§< for a subtreeX of (X,D) and let(a,b), (a,c) € Im(y).
Then(a,b) = 34 (x,y) and(a,c) = 8« (zr) for certain letter,y,zr € X. Because
acgx),begly),ceq(r),a¢ Cé andg satisfies \(V), Lemma3.1.7(i) gives us that
y =r holds. Ifa C¥ then we havex = zas well and thereforb = c. And finally in

the case ¢ C>f< we obtain the desired equality= c from the conditiond) for f. [J

3.2 Acyclic Domain Dependence Alphabets

We start our calculations aiming to deal with instances of the TCP whose domain
monoids have acyclic dependence alphabets by proving that in general the existence
of a wit-mapping is always necessary for the existence of a weak coding. In view of
Proposition2.2.5 the following claim is a generalization of Proposition 11 from [

which states this fact for the simplest non-trivial case whea {a,,...,a,,b} and

D =sym{(a;,b),...,(a,b)}. The construction performed in its proof is illustrated

by Example2.1.3

Lemma 3.2.1.Let ¢ : M(Z,l) — M(XZ',l") be any weak coding. Theiphog|; is
a wlt-mapping from(Z,1) to (X', 1").

Proof. Let us denotd = alphog|,.. The condition (V) is clear from £.3) and () is
just a reformulation of Lemma.2.11 SupposeT) does not hold. We will show that
¢ is not a coding. LeX C X be a subset falsifyingl(). Take an arbitrarx € X. Then
the system

(0 () @)
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of elements of the submonoid b(X’,1") generated by f (D(x) N X), which is free
commutative, is linearly dependent. Therefore we can Bygh N X into disjoint sets
Lx andRy such that there exist, € N, for y € D(x) N X, not all of them equal to 0,

satisfying y y
~ y 3.5
yDX(D,(gg (X))(fp(y))> | yI;[X(D,(Cg(X))(w(y))) (3.5)

Suppose we have fixed, for evexye X andy € D(x) N X, someLy, Ry andny,
satisfying 8.5). In addition, since the dependence relation restricted i® acyclic,
it is easy to fulfil the condition

VX,yeX:yely <= xeRy

by interchangind.x with Ry for appropriate letters € X. Now we choose a subtrae
of (X,D), |Y| > 2, satisfying the condition

VxeY,yeDX)NX: n#0 < yeVY; (3.6)

if we understan as a directed graph, where there is an arrow fraimy € D(X) if
and only ifnY # 0, then we obtaitY as a terminal strongly connected component of
this graph. Further, we take numbengc N for x € Y such that

. my_ng.

VX,¥,z€Y: y,ze D(X) = moe (3.7)
such numbers can be easily constructed inductively while adding vertices of the tree
one by one, namely, when we add to the current suléreeY a vertexy € Y \ Z
dependent ol € Z, then we already havey, = (k/I) - n for everyze D(x)NZ and
for fixed integerk,| € N, so it is enough to multiply the values, for all z€ Z by |
and setmny = k- nj.

Let u € Y* be an arbitrary word consisting of exactly ordlock of lengthmy
for each letterx € Y such that for every,y €Y, if (x,y) € D, theny precedes
in uif and only ify € Ly. Clearlyu~, U since|Y| > 2. We will verify by means
of Lemmal.1.6that ¢(u) ~,, @(‘U) holds, thus reaching a contradiction with the
injectivity of . Leta,be |J f(Y) satisfy(a,b) € D'. Then at least one of these letters
(saya) belongs toC}((x) for a certainx € Y by Lemma3.1.7(ii). Hence, the trace
¢(u) ~,, contains only one-block and the number of occurrencestopreceding

(succeeding) this block ip(u) ~, is Y o v (My - [@Y)|p), Syery (My - [@(Y)]p)
respectively. Due to3(5), (3.6) and 3.7) these two numbers are equal and therefore

Tan(@(U) =T, (0(T)). 0

To be able to prove that in some cases the existence of a wit-mapping suffices
for producing a weak coding, we need a procedure converting the local regularity
conditions given in Definitior8.1.2into a global construction fully exploiting their
potential. This is the aim of the following technical lemma.
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Lemma 3.2.2.Letmne Nand let ZC {1,...,m} x {1,...,n} be any subset. Then

there exists arim x n)-matrix A= (a;;) overN, such that

() &; =0ifand only if(i, j) € Z,

(i) for every MC {1,...,m} and NC {1,...,n} with M| = |N|, the submatrix
A(M,N) of A is regular if and only if there exists a bijectiat M — N which
satisfieq(i, t(i)) ¢ Z for all i € M.

Proof. Without loss of generality we can assume< n. Consider the increasing
sequenceS of natural numbers, = m™, for k Ny, and complete the matriR

on nonZ coordinates with arbitrary elements of this sequence, taking each of them
only once. The “only if” part of the conditioni{ is clear since if there is not such

a bijection, then déA(M,N)) = O due to the first condition. For the converse, let us
consider the productp; = Miem &z which make up the determinant 8{M,N),

for all bijectionst : M — N. By the assumption, not all of these products are zero.
Take any two distinct bijections, 7 : M — N satisfyingps # 0 # p;. Letk € N, be

the greatest integer such that the nunmddies in one of the setga].c(i) |ie M} and
{a”(i) | i € M} (say in the former one) but not in the other. THer 1 and we can
easily calculateps/p; > s./s¢' ; = ml. As there are at most! non-zero products

summed in the determinant, the greatest one is bigger than the sum of the others and
thus detA(M,N)) # 0. O

In order to employ this lemma for our purposes, we have to understand every weak
morphisme : M(XZ,1) — M(Z',1") as a(X x X’)-matrix (|¢@(X)|a) 5 overN,.
Since alph |, = f can be rephrased as

xeX,ac

[9(X)]a#0 = acf(x),

a wit-mappingf just determines non-zero entries of this matrix and the conditions
(L) and (I) provide regularity of certain submatrices whens constructed using
Lemma3.2.2

Proposition 3.2.3.Let(Z,1) and(X’,1") be independence alphabets satisfying one of
the following conditions.

(i) M(Z,1) is a direct product of free monoids.
(i) The graph(X,D) is acyclic.

Then there exists a weak coding frdvf{X,1) to M(X’,1") if and only if there exists
a wlt-mapping from(Z,1) to (X/,1").
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Remark3.2.4 The first case was already solved for general trace morphism$;in [
notice that in this case the requiremen} (s redundant.

Proof. The “only if” part is a direct consequence of Lemi®&a.1

Let f be any wit-mapping froniX, 1) to (X’,1”). We prove the converse implication
in the caseif first. Let us assumbl(X,1) = (X;)* x --- x (X,)*. Due to V) and (),
we can use Lemma. 2.2to construct some weak morphispt M(Z,1) — M(Z',1")
satisfying alpo|,, = f such that for all subsets C X with X x X C I, the system
(@(X))yex Of elements of the free commutative monoid generated by thig) $€X)
is linearly independent. This shows that the casef(Lemma?2.1.2cannot happen.
Because \(V) makes the casei] of Lemma2.1.2also impossible by Lemma.1.8
applied to the monoid&X;)* for i € {1,...,n} with |X;| > 1, we conclude thap is
a coding.

In the casei(), we employ all conditions of Definitio.1.2and Lemma3.2.2to
construct a weak morphisp: M(X,1) — M(X’,1") such that the same conditions as
in the previous case are satisfied and in addition foall X such thatX,D) is a tree,
there isx € X for which the system3.4) is linearly independent. As these conditions
are valid also for each induced subgraplidfD), to prove thatp is a coding we can
use induction with respect to the number of vertices of the graph. So, let us assume
that ¢ is injective onM(Y, ) for each proper subs#tof X. If the graph(X,D) has
no edges, thew is a coding due to the condition for independence cliques. Ifitis
not the case, leX be one of its non-trivial connected components and considex
such that §.4) is linearly independent. Let,v € £* satisfy ¢(u) ~,, ¢(v). Since
X is a connected component (@, D), due to {V) letters fromC¥ (x) occur just in the

image ofx and letters fromD’(C¥(x)) just in the images of elements BX(x) C X.
As CY(x) # 0, the equalitylu|x = |v|x holds. Further we deduce

uy) | ~ Vv
C?‘(X)Ug’(C%‘(X))((p<{X}L7JrD(X)( )>) I C?(X)Ug’(C%‘(X))((p<{X}L7JrD(X)( )>)

and the independence of the systed)(gives usty y(U) = 7y y(V) for everyy € D(X).
Becausap is injective on the submonoll(X \ {x},!), we can apply Lemma.1.10
to concludeu ~, v. Thuse is a coding. O

3.3 Encoding into Direct Products of Free Monoids

Now we are going to present a solution of e TCP for all instances which have the
dependence alphabet of the domain morjdC,-free and whose codomain monoid

is a direct product of free monoids. Because the property of being a direct product
of free monoids is preserved by the construction of Definidh1, we consequently
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obtain the corresponding positive result for the TCP by applying Propositida

As the following example shows, unlike in the cases covered by PropoSitiv§

in this situation it is not true that for every wilt-mappimdhere exists a coding such
that alptro|,, = f, therefore a modification of the wit-mapping in order to make it
suitable for a construction of a coding is unavoidable.

Example 3.3.1.0n the alphabeX = {x,y,zr,st} define the dependence relatibn
by the graph

z

e

y

N

r

S

and let

M(Z",1) = {ag,a,}" x {by, by} x {c;, 6} x {d},dp}* x {e,8,}" .
Consider the wilt-mapping from (Z,1) to (X’,1”) given by the rules:

f(x) ={ay,b,} f(y) ={ay,b,,c;,d; } f(2) ={ay,cp. 0}

f(r) ={cy,&} f(s) ={dy, e} f(t) = {by,dy} -
When proving that every morphism: M(X,1) — M(X’,1") satisfying alpl |, = f
fails to be a coding, we can assume

[9(X)]a, = [@W)lg, = |9 (D)]a, = [@(S)]q, =1

by Lemma2.1.17and

|‘P(Y)’a2: oY)y,

2

=0@)e, = l@(N)lg, = [@M)]e, = 1
since all of these letters occur only in one of the images. Thus

o(X) = aby (y) = ab,cldy ¢(2) = ayC€f
o(r)=cle, o(s) =d, e o(t) = bld,

for somei, j,k,1,m,n € N. Thenu = xXmnykinzZimny jkntilmgdin satisfiesp (u) ~,, @(T),
which shows thabp is not injective.

Our approach is based on calculating how many of the free submonoids of the
codomain monoid have their elements employed by a given wit-mapping. We show
that there are in fact always enough letters for constructing some morphism whose
injectivity is easy to prove. Let us first introduce a requirement on wit-mappings
which is sufficient to avoid counter-examples of the second form of Lethfna
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Lemma 3.3.2.Let ¢ : M(Z,l) — M(X’,1") be an arbitrary weak morphism and let
us denote = alphog|,.. If every connected component of the grgphD) contains
at most one vertex & X such that fy) N D’(C¥(x)) = 0 for some vertex ¥ D(x),
then the conditiorfii) of Lemma2.1.2does not hold.

Proof. Assume that a word € X* verifies the conditioni() of Lemma2.1.2 Then

for everyx € init(u ~,), the last occurrence ofin u is succeeded by an occurrence
of somey € D(x), because iniu ~,) Nfin(u~,) = 0. If there exist lettera € CF(x)
andb € f(y)ND'(a), thenm,,(¢(u)) # 7, ,(@(0)), contradictingg(u) ~|, ¢(U).
Thereforef (y) ND’(C¥(x)) = 0 holds. Due to the symmetry, the same fact can be
deduced also fax € fin(u ~,). Asu~, is connected, by the assumption of the lemma
this implies that only one element of alph can belong to initu~) Ufin(u~,),
which is impossible since ir(iti ~, ) Nfin(u~,) = 0. O

For counting of letters in the images we use the following property of graphs with
vertices valuated by non-negative integers.

Lemma 3.3.3.Let (V,E) be a connected undirected graph together with a valuation
n:V — N, of its vertices. Assume that for everyO¥ such thatX,E) is atree, there
exists a vertex x X satisfyingn (x) > |Ex(x)|, where B (x) = {y e X | (x,y) € E}.
Theny,c, 1(x) > V| - 1

Moreover, for every undirected gragW, E), such a valuatiom :V — N, satisfying
the equalityy ., n(X) = |V| — 1 exists.

Proof. The second claim can be obtained by settif{g) = 1 for all verticesx € V
except one; then every non-trivial subtree(dfE) contains at least one leafwith
the valuen (x) = 1.

We are going to prove the first claim through a contradiction. For this purpose,
let us consider some graghf,E) and its valuatiom : V — N falsifying the claim
such that the numbén —1(0)| is the smallest possible, wherg*(0) stands for the
set{xcV | n(x) =0}. Clearly|n—1(0)| > 2. Additionally, assume that this graph
possesses the minimal shortest distance between distinct zero-valuated vertices among
such counter-examples. Take some vertices V satisfyingn(y) = n(z) = 0 whose
distanced is minimal. Thend > 2; otherwiseX = {y, z} contradicts the assumption.
Let s be the successor gf on some shortest path toand consider the valuation
¥ :V — N, defined by the ruleg}(y) = 1, ¥(s) = n(s) —1 > 0 and¥(x) = n(x)
for everyx € V\ {y,s}. Then eithen(s) > 1 and thereforé®—1(0)| < [n~1(0)] or
¥(s) = ¥(z) = 0 and the distance betwesrandzis d — 1. We will show that the
valuationd satisfies the assumptions of the lemma, thus contradicting the chajce of
sincey ey B(X) = Yyey N(X).

Let X CV be such thatX,E) is a tree. It is enough to deal with the case X.

First assumg € X. If yis a leaf ofX, it is a required vertex. Otherwise a required
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vertex can be obtained using the conditionfioon the maximal subtree of which
contains the vertexand does not contam In the casg ¢ X, we also distinguish two
situations. IfEy (y) = {s} thenY = X U{y} is a tree and each verteoc Y satisfying
n(x) > |Ey(x)| lies in X and satisfies} (x) > |Ey (X)|. If |[Ex(y)| > 2, take any vertex
t € Ex(y) having the maximum distance frogin (X, E) and letY be the subtree of
consisting of all vertices such that the shortest paths connecting theraiwitX, E)
containt. Then we get a required vertex by applying the condition for the valuation
to the treey U {y}. O

Now we are ready to prove the main result of this section.

Proposition 3.3.4.Let(X, D) be an arbitrary G,C,-free dependence alphabet and let
M(Z’,1") be a direct product of m free monoids over at least two generators and n free
one-generated monoids. Let M be the number of non-trivial connected components of
the graph(X,D) and let N be the number of trivial ones. Letl fori e {1,...,m}

and ¢ fori € {1,...,n} be distinct letters and consider the monoid

M(E, ) = iﬂ{a,bi}* 9 i|j{ci}* |

Then the following statements are equivalent.
() There exists a weak coding frdifi(X, 1) to M(X’,1).
(i) There exists a coding frofvil(X, 1) to M(X',1").
(iii) There exists a weak coding fravi(Z, 1) to M(Z,,1,).
(iv) There exists a wit-mapping fro(, |) to (X;,1,).
V) |Z|-M=N<mandXZ|—M <m+n.

Proof. (i) = (ii) and (ii) = (i) are trivial.

(i) = (iii). First notice thabI(X',,1’;.) is also a direct product @f free monoids
over at least two generators andree one-generated monoids. By Propositton.5
there exists some weak coding fravfi(Z, 1) to M(X'y,l’y). And because a weak
morphism from a trace monoid havil@-free dependence alphabet cannot employ
three mutually dependent letters of the codomain alphabet, the codomain monoid in
the condition {ii ) is sufficient.

(iii) = (iv) follows from Lemma3.2.1

(iv) = (v). Let f be a wit-mapping from(X,l) to (X,,l;). First, we have to
slightly modify f. For everyi € {1,...,m} such that;,b, € U f(X), we assume that
a € C¥(x) for a certain lettex € X (this is possible due to Lemnfal.7 (i) since
a andb, are interchangeable) and then we dsldnto the f-images of all letters
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from D(x) using Lemma3.1.13 Let us now denotédy = {a; | i =1,...,m} N C¥(x)
for everyx € X.

Let Y be any connected component of the grgghD). Consider an arbitrary
subsetX C Y such that(X,D) is a tree and lek be anX-deciphering letter forf.
If there exists somé, € CF(x), then the lettey € X whose f-image containg, is
a leaf of (X,D) thanks to the initial modifications of our wilt-mapping. Otherwise
we haveC¥} (x) C Ax and consequentlipy| > |D’(CX(x))| > |D(x) N X| because is
X-deciphering forf. In both cases we find a lettgre X such thaiAy| > |[D(y) N X|.
Therefore Lemma.3.3can be employed to conclugg, |Ax| > |Y|—1. Summing
these inequalities for all connected component&oD), we obtain

Z[-M=-N< T [A (3.8)
XEX

and the first inequality of the conditior)(follows from 5, _|Ax| < m, which holds
sinceAyN Ay = 0 for x #y. Next, notice that every € X such thaD(x) = 0 satisfies
f(x)N{a,b | a € C¥} = 0. So the number of trivial components of the gr&phD)
is at mostm+n—73, _+|Ac by Lemmal.2.1] which gives the second inequality
of (v) due to (.8).

(v) = (iii). Let us first construct a suitable wit-mappifdrom (X,1) to (X,,1,).
We put each of the lettei® andc; into the f-image of at most one element bfto
satisfy the following:

e For every non-trivial connected componéhbf the graph(X,D), the image
of all but one element of contains exactly one lettex, the remaining one
contains neithea; norc;.

e The image of eack € X satisfyingD(x) = 0 contains just one lette or c;.

The condition () ensures that this construction can be done. Then for every index
i € {1,...,m} andy € X such thata, € f(y), we addb; into f(x) for all x € D(y).
Notice thatf is really a wlt-mapping since for every cliqein (X,1) one can define
a mappingpy by settingpy (x) equal to the lettea, or ¢; contained inf (x) if such
a letter exists, and equal to sorbeif x is the exceptional vertex of a non-trivial
connected component of the graph,D), and the conditionT) is valid because
every non-trivial subtree d£, D) possesses a leaf with a central letter infiisnage.
Now we use Lemma.2.2to construct a weak morphisg: M(Z, 1) — M(Z,,1,)
satisfying alpk¢|, = f in the same way as in the proof of Propositib@.3 Clearly
the caseij of LemmaZ2.1.2 cannot occur for the morphismp. And the caseii)
of LemmaZ2.1.2is also impossible by Lemma3.2since alla’'s used in non-trivial
connected components @f,D) are central fo. Henceg is a coding. N

The problem of existence of trace codings into direct products of free monoids
(posed in [4]) was already tackled inl[/], where it was solved in the case @&,D)
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being a path or a cycle. PropositiBrB.4settles this problem for all domain monoids
with C;,C,-free dependence alphabets. But as we will see in the next section, in more
general situations the technique of wit-mappings fails.

3.4 Counter-Examples

The aim of this section is to show that none of the assumptions of Propo3ifich
can be removed. The first example demonstrates that the restriction on the codomain
monoid cannot be avoided because the existence of a coding is not guaranteed by
the existence of a wlt-mapping on the corresponding saturated pair of independence
alphabets even for domain monoids which h@yeC,-free dependence alphabets.

Example 3.4.1.Let
X = {X0, %5, X3, %, %5, T U{Yp, 2y | AC {1,2,3,4,5}, |A| =2}
and consider the alphabet
Z=ZoU({ryal x{1,2,3,4}) U({z4} x {1,2}) ,
whereA always runs through the same values as above. Define a dependence relation
onZX as follows. Foi =1,...,5:
XDy, <= i cA,
YaD 7, z,Dr, 2, D (z5,1), (Zp,1) D (24,2)
yA D (yA7 1)7 (yA7 1) D (yA72)7 yA D (yA73)a (yA73) D (yA74) )
rD (r,1), (r,1) D (r,2), rD (r,3), (r,3)D (r,4) .

The remaining pairs are left independent. The picture oEtfpart of the dependence
graph is

Xq X X3 Xy Xg
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with at most two simple paths of length 2 attached to each vertex. Let the codomain
monoid M(X’,1") be isomorphic taVI(X{,15)%2, where|Zj| = 4 and the relatior,

(and hence alsby) is defined by the grapR,, i.e. the codomain dependence graph
(X',D’) consists of 32 copies &,.

We will prove that there exists a wit-mapping frof®, 1) to (Z';,1’;) but still
there is no coding fronMI(X,I) to M(Z’,1”). In our arguments we implicitly use
Lemma3.2.1and instead of weak morphisms we often talk about the corresponding
wlt-mappings. First observe that eve@y-free subgraph of the gragiZy) ., (Dg) )
is isomorphic to some subgraphif(see Exampl@.2.69. Becaus¢X,D) is Cs-free,
the graph(U f(X),D’y) is C,-free for every wit-mapping from (Z,1) to (£'y,1'5)
and so we can employ Rematk?.3to find out that any weak coding froM (X, 1) to
M(ZX'y,l'.) can be turned into a weak coding fravii( Z, | ) to M((X',1”) by renaming
letters in the images. Therefore, in order to conclude that a coding K@, | )
to M(X’,1") does not exist, it is sufficient to verify non-existence of weak codings
between these monoids and then apply Propostiarh

Consider any wit-mapping from (X,1) to (X’,1’). The condition {V) implies that
the letters fromD’(|J f(X)) belonging to the same copy &}, in (X’,D’) are used
in f-images just in some connected subgrapl2aD) with maximal distance of its
vertices no more than 3. Consequently, for distinct paths attached to elem&pis of
the graph X, D), the pairs of dependent letters frahcreating dependences between
the two vertices on these paths come from different copid?.0AAs the number of
attached paths equals to the number of copiéy dhe set f(Z,)ND’(U f(Z,)) can
contain at most two letters from each copyRpf Moreover, as soon as two dependent
letters from one copy d?, are used irf-images of some elements Bf, one of them
occurs in the image of the element Bf the corresponding path ifE,D) leads to
and the other in the images of some of the neighbouring letters. Hence, if a weak
coding fromM(Z,1) to M(X’,1") exists, by Lemma&.1.4there is also a weak coding
from M(Z,,1) to ({a,b}*)32 with the number of’s from distinct copies of a,b}*
occurring in the image of a given elementXfbounded by the number of 2-element
paths attached to this elemen{, D). From now on, we consider only weak codings
of this form.

Let us now summarize the properties of the restriction of the wit-mappitag,
we have discovered so far, together with introducing more transparent notation for
elements of’ :

f(x) C {anba |1 €A} fOn) € Babucal g

f(ZA) - {aA7 bAcha d? e} f(r) - {CAaavé} ’ .
where the pairs of dependent lettersliharea, D’ @,, by D' by, ¢, D' T,, d D' d
ande D & Itis not hard to verify that there really exists a wit-mapping frai|)
to (X',1") by taking equalities for all of these inclusions and extending taaturally.
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But in the following we prove that none of the morphisms
¢ M(Zg,1) = [1({an8a}" x {ba,Ba} x {Ca,Ta}") x {d,d}" x {e,&}"
A

satisfying alphb(p]ZO = ﬂfo is injective.
First observe thatl) is not valid when eithec, ¢ f(y,) orc, ¢ f(r) for someA;
for instance, in the Casg, ¢ f(r) we consider the tree

X= {X]_7X27X37X4ay{173}7y{2’4}7Z{LZ}a2{173}52{274}7 r} ’
verify that it is a counter-example for the mappifigdefined by taking equalities
in (3.9 exceptf(r) = {c,,d,e| A# {1,2}} and apply Lemm&.1.13 Let us denote:
If the morphisme is a coding, then for every j € {1,2,3,4,5},i # j :

[P(%)lay, - |(P(Xj)|b{i_’j} 7 1oXla , - 100§)lp, - (3.10)

{i.i}

So we can assume that there existe N andf;;, %;; € Z satisfying

%j 102 1))l + By 1900, | % -lo(x J)|b{.1}

Now consider the ratios

p(z )’d
|‘P(ZA) e © QO Uil

(if both numbers in one of these fractions are zero, the condifigris( violated).
Whenever two of the ratios corresponding to disjoint sets are eduaide behave
like one letter there andl§ can be also considered unsatisfied. Otherwise careful
examination shows that, up to symmetries of the gr@phD), one of the situations

Np =

12} <Nasp < Maay SN2y 8N Niug SNpgy <Nigsy <Nizg
arises. In other words, there exéte, § € N such that

d- "P(Z{172})|d +E- ’@(2{173})1(1 =C- ’@(2{475})’(1 )
0 |‘P(Z{172})|e+8' |(P(Z{173}>|e: ¢ |(P(Z{475}> e

and similarly for the se{2,3} instead of{ 1, 3}.
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In the case

|<p(z{172})|a{172} - |(p(z{172})|b 0, (3.11)

(1,2} -

we can additionally assunfi 5 # O, for if 3, = 0 theng is not injective on the tree
X X4 X5, Y11 22 Y1.3) Yiasy 42y Zuay Zasy ' -

Now define a word

u= Xi‘45p05(_ﬁ13)8 .yk13k45I12pos(—sgr(ﬁ13)) . Xi‘45 pos—py3)e X§a45pos(—y13)s.

{1,2}
yk12k45|13 . x%sPOSBz)e yk13k45|12 POS(sgN(Bya)) . ysPOSBrg)e,
{13} 1 {1,2} 1
2045P0113)€ | 2030450 | 2030558 KiKigKys 2030458 4 2043P0SBys)E
%3 25 g 248 %

X20613p05(}’45)C . yk12k13|45 . X2a13 POS(—f45)¢ X2al3pos(—y45)§
5 {45, 4 5 ’

where pogm) denotesm if m> 0 and O otherwise. Then we havex, U since
Ty, (U) 7 nxrym}((ﬁ), but at the same time(u) ~,, o(U).

If (3.11) does not hold, due t&3(10 the numbers

|(P(X]_)|a{1’2} |(P(X2)|a{172} |(p(z{172})|a{172}

o(x)lo T2 ™ Toza2)ls

m. —
1
X
o( 2)|b{1’2}

{1,2} {1,2}

in Qg U {e} are correctly defined and by possibly interchanging the indices 1 and 2
we can achieve tham, is either strictly larger or strictly smaller than bath) andm,.
Under this assumption, let us denote

P =le()la,,, g = |(p(xi)|b{i,j}

Sj = “P(Z{i’j}”a{i’j} tj = |(p(z{i7j})|b{i,j}

and consider the numbers

1N = (P31013 — P13%1) (Pt — Up1Si2)
¥ = |(P31%13— P13%1) (P21%12 — P1oChy)|
1= SgN(1) g5 (€( P31tz — Ua1S13) (P21012 — P1o0pq) — OM)
K = Sgn(1N)(P31013 — P13%a1) (U151, — Piotyo)
A = sgn(n) (03813~ Pagti3) (P210h2 — P1othy) -
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Then the word
— y%50In| | 056 POS(K) |y 05€POSA) | KiKyglip 4 POS(T),
u=Xx; X5 X3 B

KioKasli3 . yPOS—1) Kyl 058 POS—K) _,0ty5EPOY—A)
. X .\f184512 . x%as . x%as .
y?l,S} 1 yﬁ,z} 2 3

72500 | S0sED (2K K gKeg 08T POSBys)ET POY5)C Y
{12t {13} {45 4 >
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does not satisfy ~, ‘U becausery, y  , () # ”ley{lz}(v)' But ¢(u) ~,, ¢(U).
Altogether, is not a coding. '

Proposition3.3.4states that a coding from the mond¥ X, | ) to a direct product
of free monoids exists if and only if the condition) (holds provided the dependence
alphabet(X,D) is C5,C,-free. On the other hand, it is easy to see that wi&D)
is eitherC; or C,, this condition is not necessary for a coding to exist; as for the case
of the grapiC,, the submonoid of the monoigh, b}* x {c,d}" generated by the set
{ac,ac?, bd,bd?} is isomorphic taVI(X,1). Moreover, in the rest of this section we
show that for domain dependence alphabets which contain subgraphs isomorphic to
eitherC; or C,, the existence of a wit-mapping does not guarantee the existence of
a weak coding. Let us start with the graph

Example 3.4.2.Let

X ={xyzrst} | =idy, U{(x,y),(y,x)} and
M(Z' 1) ={ay,a,}" x {by,b,}* x {c;,c,}".

First, we demonstrate that wit-mappings fré®@, 1) to (X’,1") are (up to symmetry)
exactly the mapping$ : £ — 2%’ satisfying

f(x) € {{alvb1}7{317b1701}} , (@) ={ay,byc}, f(s)={a,,b;,c},
f(y) € {{a17C1}7{a17b17C1}} ,  f(r)={agb,yc}, f(t)={ayb,c}.

Without loss of generality assunfgx) U f(y) C {a;,b;,c;}. Due to the condition of
Lemma3.1.11for X = {X,y,z}, the setf(z) contains (up to symmetry) both letters
a, andb,. Supposef(z) = {a,,b,}. Then one of the lettera; andb,; belongs to
at least two of the set§(r), f(s) and f(t), saya, € f(r)N f(s). By Lemma3.1.11
for {x,y,r} and{x,y,s} we haveb,,c, € f(r)N f(s), which means that(r) = f(s),
contradictingr D s. Therefore eithef (z) = {a,,b,,c;} or f(z) = {a,,b,,c,}. Using
the same arguments as foalso forr, s andt we deduce that is of the required
form.
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Consider any weak morphisip : M(Z,1) — M(Z’,l") such that alphg|, = f.
We are going to prove that it is not injective. Thanks to symmetrieg i, andc,,
we can assume

[9X)lb, 19X, _ [,
00, ~ 190)la, ~ 190,

Then, applying Lemma.1.17for A= {a;,a,}, we modify ¢ to satisfy

[0(X)|a, = [@(Y)|a, = |@(5)]a, = [@(t)]a, =1

together With|(p(x)|bl > |qo(y)|bl and|@(x)[c, < |@(Y)]c,- If one of these inequalities

holds as an equality, we obtagr(xty) ~,, ¢(ytx) and@(xsy) ~,, ¢(ysX respectively.
If it is not the case, we have

p(x)=abicl ey =abict  o(s)=abld () =abdcl

for somej,k € Ny, i,l,mn,0, p € N and the wordu = x™M1 -1 gPi-KlymP satisfies
o(u) ~ o(T).

Remark3.4.3 Another interesting case of th&Z(-)TCP which still remains open

is obtained by allowing for domain monoids only free products of free commutative
monoids. In P] the condition analogous to the existence of a wit-mapping was proved
accurate for general codings provided all of these free commutative monoids have at
most two generators. But Exam@et.2demonstrates that once we try to generalize
this result to weak morphisms, such a condition becomes insufficient.

Finally, we consider domain dependence alphabets contaih)ing

Example 3.4.4.0n the alphabeX = {x,y,z p,q,r,s,t} let the dependence relati@n
be defined by the diagram

X y z p

and let

M(Z' 1) = {ay,8,}" x {by,0,}" x {1, 6} > {dy, dy} " x {e},8,}" .

By applying the condition of Lemma 1.11to maximal subtrees of the graph,D),
one can show that there exists (up to symmetry) just one wit-mappfrgm (X, 1)
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to (X',1’), namely

f(x) = {a;,b,}, f(y) ={a,,b,,c,} , f(z) ={c;,d;, e},
f(p) ={dy &}, f(q) ={dy, e}, f(r)={c,dy, e},
f(s) ={ay, by, ¢}, f(t) ={a,,b,} .

But there is no weak coding : M(X,1) — M(ZX’,1") such that alph¢|, = f since
we may assume

[9Y)le, = @(@D)e, = |@(r)]c, = |@(S)]c, = 1

due to Lemma.1.17and then we obtaip(ysrz ~,, ¢(rzys.
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Chapter 4

The General Case

This chapter is devoted to proving the undecidability of the TCP. The proof proceeds
in two steps. In Sectiod.1 we consider the problem of existence of weak codings
with partially prescribed contents of images of letters and show that many instances
of this problem can be effectively encoded into instances of the trace coding problem.
Then, in Sectiont.2, we construct a reduction of the PCP to this problem. The proof
of the correctness of the reduction is given in Sectiohafter presenting its main
ideas on a particular instance of the PCP in Secti@n

4.1 Content Fixation

The aim of this section is to describe how the problem of existence of weak codings
satisfying certain requirements on contents of images of letters can be effectively
reduced to the TCP. We use two mappings to specify these restrictions on contents —
one of them to express which letters are compulsory and the other to express which
are allowed.

Definition 4.1.1. Letu,v: X — 2~ pe any mappings. We say that a weak morphism
@ :M(Z, 1) — M(Xl")is (u,v)-weakif it satisfies for allx € X the condition

1(x) C alph(p(x)) C v(x) .
We call it v-weakwhenever alpfp(x)) C v(x) forall x € X.

First, we are going to show how to specify mandatory letters defined bging
only the mappingv. There is nothing to take care of farc X such thatv(x)| =1
because alplyp(x)) = v(X) is satisfied for everw-weak codingp. The idea of the
construction is to enrich each of the original alphabets with the sam@ séthew
letters and define’(y) = {y} for everyy € ®; since the behaviour of an arbitrary
v-weak coding on these letters is obvious, they can serve as a skeleton for prescribing

59
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contents of images of other letters. More precisely, to ensure that the imagedér
everyv-weak coding containa € X', we introduce a lettefx, a) € ® dependent ox
in the domain alphabet and dependent only on the latierthe codomain alphabet.
In order to make it possible to extend afyy, v)-weak coding to the monoids with
the additional generato£3 without violating its injectivity, we add into the codomain
alphabet another set of new lettéfrswhich enables us to encode relative positions of
letters from® in a word from(X U®)* with respect to the original lettess.

In addition, we have to ensure that the resulting alphabets satisfy all assumptions
of Proposition4.1.3which provides the second step of the reduction — this is the first
claim of the following proposition.

Proposition 4.1.2.Let (X, 1) and (X’,1") be independence alphabets such that D
and | is transitive, i.e. the monoidl(X, 1) is a free product of at least two non-trivial
free commutative monoids. Letv : £ — 2% be mappings satisfying for allxe X :

X1y, x#y = p(x) =uly) =0, (4.1)
vx)xv(x) I’ (4.2)
Xly = v(X)=v(y). (4.3)

Define new independence alphabgis, |,) and(X3,17) as follows. Let

r=J{yyxuy)x(E\{yhlyex},
o =J{{dxux|xex}, E=rue, I;=rx'ueur

and let the independence relations be given by the conditions:

LNEXZ)=I ;N (O x X)) =idg
NN xX)y=1 r'x(X'ur)cuny

andforallxy,ze X, y#z,ac u(x),be u(y),ce x’:

(x,a)l1¢c < a#c, (4.4)
(xa) 11 (y;b,2) <= (xa)# (y.b), (4.5)
(x,a) 11 (y;b) <= (x,a)=(y,b). (4.6)

Further, define a mapping, : £; — 21 by the rules:

vi(¥) = v Uy < m(y) x {2z} [y.ze 2, y#2 21 X},
vi((x,a) = {(X, a)},

for x € £ and a€ u(x). Then the following assertions hold.
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() The new independence relatigni$ transitive and the mapping, satisfies the
corresponding modifications @ft.2) and (4.3).

(i) There exists &u,v)-weak coding fronM (X, 1) to M(X’,1") if and only if there
exists av,-weak coding fronM(Z,, ;) to M(X3,17).

Proof. The first claim is evident. Let us prove the second one.
“="Let @ :M(XZ,l) — M(X',lI') be any(u, v)-weak coding. For all lettersc X
anda € u(x), set

W(X) = (P(X) ’ |_| (y7 b7 X) ) W((Xu a)) = (X7 a) .
yeX\{x}
bepu(y)

It is clear that this defines & -weak morphismy : M(Z;,1,) — M(X1,17). In order
to prove thaty is injective, take two worda,v € (X;)* which satisfyy (u) ~i y(v).

Thenry (u) ~, 7y (V) since

¢(mx(U) = 7y (Y(W) ~p 7y (W(V) = (7 (V) -

One also derives

Forx,y € X, x#vy, ac u(x), the wordyr(xa)y(u) can be obtained from the word
T (x.a) (Xay)(y/(u)) by substitutingy for (x,a,y). As the same holds also ferand
becauséx, a) D&.(x, a, y)', we haverr()g a)7y(u) =Ty a)7y(v).

Togetur~, v, itremains to shovw(xia) L(U) = 7 xa) (V) forallxe X anda € u(x).
Let us employ Lemma.1.9for the word morphismr(x 02V (Z)* —{(x,a),a}",

the set, \ {(x,a),x}, the lettera and the wordsi andv. We obtain

(x,g,a(l”((xg),x(u))) N (x,jatxa(l”((xg),x(w))

andn(xa)’)((u) = n(x7a)7x(v) now follows froma € alph(y(x)). Hencey is a coding.
“«<="Let y:M(X,,1,) — M(Z],1]) be av,-weak coding. We are going to prove

that the codingr = ‘/’|M(z N is (1, v,)-weak. Consider arbitraryc X anda € p(x).

Then alp{y((x,a))) = {(x,a)} sincey is av,-weak coding. BecauseD; (x,a) and

v is a coding, it implies that there & € alph(y/(x)) such thaix D) (x,a). Since

alph(y(x)) € v;(x) € Z'UJ{{y} x u(y) x {x} |y € 2\ {x}}
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due to the assumptiord (1), using the conditions4(4) and @.5) we concludex = a.
Hencea belongs to alpfo(x)). This means that is a (u, v;)-weak coding from
M(Z,1) to M(X'UTI,17). Therefore the morphismy, oo : M(X,l) — M(X',1’) is
adesired i, v)-weak coding by Lemma.1.4since the facD # 0 and the transitivity
of the relationl together implyX = D(X). O

In the rest of this section we show that we can manage our content requirements
even without the mapping. This time, we add to the original independence alphabets
mutually dependent cliques of independent letters, each of them having sufficiently
distinct size. Then we can employ Lemm&.11to verify that images of elements
of a given clique in the domain alphabet under a weak coding use almost exclusively
letters from the clique of the same size in the codomain alphabet. So, in order to deal
with the requirements for a lettere X, we introduce a clique which has all of its
elements independent arin the domain alphabet and independent exactly on letters
allowed in the image of in the codomain alphabet. Because images of independent
letters under a weak morphism always contain only independent ones, this ensures
that prohibited letters are never used.

In effect the construction functions in the same way even if we add new letters
to the codomain alphabet according to Definitid&.1in order to pass to the TCP.

It is due to the fact that these new letters do not form in the codomain independence
alphabet any cliques bigger than those already existing.

Proposition 4.1.3.Let(X,1) and(X’,1") be independence alphabets with | transitive
andv:x — 2 a mapping satisfying4.2) and (4.3). Letx ¢ X be a new letter and
7: X U{x} — {1,...,n} a bijection such that(x) = 1. Define new independence
alphabetyZ,,1,) and(X,11) as follows. Set

O ={(xi)|xeZU{x},ieN, 1<i<t(x)-(|Z'|+2)}

and letX; =X U® andX; = X' UO. Let the independence relations be given by the
conditions:

ILN(ZxZ) =1, N(EZ' xx) =1
for (x,i),(y,]) € @, xye ZU{x}:
X)) 1 (%) <= Xi) 11 (%)) == x=Yy
and for(x,i), (x,j) €0, xyec X, ac X’

(Xi)l,y < xly (X hy
(x,i)11a <= acv(x) (x,j)11a.

Then the following statements are equivalent.
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(i) There exists a-weak coding fronM(X,1) to M(X',1").
(i) There exists a weak coding frasi(X,,1,) to M(X1,17).

(iii) There exists a weak coding frd¥i(Z,, |,) to M((Zi)zl, (115 ).

1

(iv) There exists a coding frol(X,,1,) to M(X3,17).

Proof. (i) = (ii). Letg:M(XZ,l) — M(X’,l") be av-weak coding. Then we can
extende into a weak morphismy : M(Z;,1,) — M(X1,17) by taking the identity

on ®. Indeed, when verifying that this defines a weak morphism, everything is clear
except for the case of lettefs,i) |, y with x,y € X; for such letters we havel y and
alph(y(y)) = alph(e(y)) C v(y) = v(X) becausep is v-weak andv satisfies 4.3),

and therefore alpfy((x,i))) x alph(y(y)) C 1.
Let us prove thaty is a coding. Suppose,V € (X;)*, y(u) ~i y(v). Itis easy

to see thatr (u) ~i, Tx (v) and g (u) ~1, To (v) since bothe and the identity are
injective. Take(x,i) € ® with x € X. Consider the weak morphisms

pIM(ZU{(xD)}1y) — M(Z,1)
identical onX and mappindx,i) tox and

P M(E U{(x D)}, 1) — M(E, 1)
identical onX’ and mappingx,i) to @(x) = yw(x). Notice thatp’ is really a weak
morphism because farl; (x,i), wherea € X’, we havea € v(x), using ¢.2) we get

{a} x v(x) C I" and consequentlya} x alph(y(x)) C I’ as¢ is v-weak.
Then the following diagram commutes.

M(ZU{(xD)}1) —F— M(Z,1)
‘I’l l‘P 4.7)
M(Z'U{(x,i)},1]) —— M(XZ",I")
p/
Let us consider the words= 7504 (x i)}(u) andv = nzu{(xli)}(v). Since

v(U) = EZ/U{(XJ)}(‘V(U» ~ EZ,U{(XJ)}(I,I/(V)) =vy(v),

from (4.7) it follows that (¢ o p)(U) ~,, (¢ o p)(V) and hencep(U) ~, p(V) due to
the injectivity of the morphismp. If a lettery € X satisfiesy D, (x,i), theny D x
and thusmyy(U) = 7y y(V). Therefore Lemma.1.9can be applied to the morphism
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Tyyop : (ZU{(xi)})* — {x,y}" for the set{x}, the letterx and the wordsi andv.

We obtain
U = v
)zry(p <(2U{(X?ir)})\{x}( )>> ZrY(p <(2U{(X?ir)})\{x}( )>> ’

which is clearly equivalent twy7(x7i)(u) = 7ry7(x7i)(v). Altogether, we have verified the
factu~, v. We conclude thay is a coding.

(i) = (iii) is trivial.

(i) = (). Leto :M(XZ},1;) — M(@i)zlv('i)zl) be an arbitrary weak coding.
First, we need to describe all large cliques in the codomain independence alphabet.
So, consider a cliqu in the grapk((zi)zl, (Ii)zl) having at leastX’| + 2 elements.

If we choose for everyr € K one element of ealglr), we get a cliqu&k’ in (Z7,17)

of the same size a< by (2.9). ThereforeK’ contains at least two elements ©f
Moreover, each of these elements is of the fgrm) for a uniquex € X U {*}, hence
the other elements d&€’ lie in v(x) (for x = %, considerv(x) = X’). Since there are
always at least two elements 6fin K’, we can also see that for any choice of the
cliqueK’ thisx is the same. Thus, if we write, fore X,

Ly={(xi)]ieN 1<i<t(X)-(||+2)}Iuv(x),
Li={(xi)]ieN, 1<i< |E’\+2}u2’21,

using @.2) we obtainK C Ly andK N ® # 0 for somex € X U {x}.
Now we are going to prove that the set

Kx=J{alph(e((x,i))) [ieN, 1<i<t(x)-(|Z'|+2)}

satisfies the conditiorn§x C Ly andKyN® # 0 for everyx € X U {x}. We proceed by
induction starting from the largest cliques. Assume we are already done with all letters
x € {t71(n),...,77(k+ 1)} and let us considex = t~1(k), wherek € {1,...,n}.
By Lemmal.2.1] the setKy is a clique in the graplo(zi)zl, Ui)zl) of cardinality
at leastr(x) - (|| +2). Using the results of the previous paragraph, we can see that
Kx C Ly andKy N ® # 0, for some lettey € X U {x}. Due to the cardinality oK,
we havey € {t71(n),...,771(k+1),x}. If y # x thenK UKy C Ly, which is a clique
in ((21)21,(%)21) sincey # %. But this contradicts4.3) for any (x,i),(y,j) € ©
becausé€x,i) D, (y, j) holds. Thereforg = x and the fact is proved also far

For every lettex € X U {x}, asKxN® # 0, there existXx,ix), (X, jx) € ® such that
(x,ix) € alph(@((x, jx))). Now consider any € X. Theny |, (x, j.) andy I, (y, jy),

which implies
alph(e(y)) x {(xix), (%iy)} € (1), -
consequently ealglp(y)) C v(y) and so alpbp(y)) C v(y) by the assumptiori(2).
Hence, the restrictiorp\M(E’l) :M(Z,1) — M(X,l") is a requiredv-weak coding.
(i) <= (iv) follows immediately from Propositiod.2.5 O
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4.2 Encoding of the Post’s Correspondence Problem

It is well-known that the coPCP is not recursively enumerable. In this section we
construct a reduction of this problem to the problem of deciding the existence of
(u,v)-weak codings. Because our construction should be based only on contents of
images of letters, we have to impose a certain restriction on instances of the PCP
which enables us not to care about the numbers of occurrences of letters in these
images.

Let &2 denote the following instance of the PCP. et N. We are givem pairs
(W, W,),..., (Wn,Wn) of non-empty words over some finite alphaiesuch that each
two consecutive letters in any product of the wovdsw,, ..., wn, W, are different.

The problem asks to decide whether there exists a finite sequgnceim of integers
from the sef{1,...,n} satisfyingwlwilwi2 W =W W W W (observe that we
require the initial pair of a solution to be equal to the first pair on the list).

Notice that this restriction on instances of the PCP causes no loss of generality
since for every instance of the PCP we can obtain an equivalent instance of the above
form by introducing a new letter # int6 and performing the substitution— x# for
allxe &.

Forie {1,...,n} andj e {1,...,|w|} andk e {1,...,|W|}, we refer to thej-th
letter of the wordy; asx; and to thek-th letter ofw; asx;,. For the rest of this section,
when writing indices, ij or ik, we implicitly assume that they run through all values
as in the previous sentence.

Now we define two independence alphaligtd ) and(X’,1"). Let us first introduce
a set of new letters:

Q ={a,00,B1,- -, Bg: 11, Y20 V3 615 62: &1 Eij 2 Eika> Eiks
G Gijzs Cikas Sikas Mij1 Mij2s Mijas Mk Mikz> Mikas Vijs Pk
li; Ky K27)~ij1alijzv7Li13>)~ik177tik2v7tik3a5i1a§i2a§i3} -

The domain alphabel = (2 \ {a}) x {1,2} consists of one pair of letters for each
element of the se® \ {«,}. Letters from these pairs should appear on opposite sides
of a counter-example to the injectivity of our morphism and correspond there to each
other according to their first coordinates. Let the independence relation be

| = idy U{ (0. 2),(@,2)), ((e2). (@, 1)}

In the desired outcome of our construction, counter-examples to the injectivity
should correspond to solutions of the instari€ée A computation of a solution of”
will be simulated by appending the pairs of element&¥db an already constructed
semi-equality by means of Lemn2al.24in the way determined by its state. Just one
pair of letters inX is set independent to ensure that there is only one way to start this
computation due to Lemnial.l
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The alphabet’ is divided into several disjoint subsets according to the role of
letters in the encoding:

I ={l,l,,ry,ry,b,c,d USUAUEUFUGUPUQUEU{*x}ULQ .

Letters from the seB= {s,s,s, Sij» S tij .ty } will control a computation during its
initial and its final phase except for the leteemwhich will keep it from a premature
termination. The process of composing the wondsindw, in a semi-equality will
be controlled by elements of the get= {a, 4,3, }, whose occurrences characterize
individual steps of a computation: a semi-equality having the Ieﬁe(aik) in its
state will be extended by pairs of elementohtroducingx:. to the left component
(X, to the right one respectively) and a semi-equality vaiih the state will allow us
to choose the next pair of words:,w. ) or to finish a computation. During an addition
of the pair(w;, W), all letters of the worav; will be placed before proceeding to place
the letters of the word,.

The progress of a computation will be determined by dependences betiseel
letters from the sets

E={egqj.8} F={ffj fi} andG={g; g0} -

More precisely, each of these letters can appear in the images of letters appended
to a semi-equality only if it is independent on the letter frénin the state of this
semi-equality. The lettee will serve for terminating a computation and the other
elements ok for introducing letters fron&. In the same way, each letter frdewill

be used for manipulating the corresponding letter fil@nElements ofG will guard
against undesirable letters remaining in the state from one step of a computation to
the next one. Letters froM \ {e} andF are paired with auxiliary letters from the sets

P={pjj, Py} andQ = {0}, q;, Ty } -

The letterx will behave just as the letters of the original alphaBetnd it will mark
the end of a solution of”. Letters fromX will be placed on the appropriate sides of
a semi-equality thanks tidcs andr’s and the pairs of letters i& will be fixed using
elements of2.

Dependences between elementsLbfire set by the following rules; all pairs not
mentioned below are considered independent:

l,D'l,,r;D'r,,bD'c,bD' d,
pj D&, Py D' &, 6 D" i, a; D' fij, @ D' Ty,

NS =idg, 1'N(EU{x})?=idz,,

I'N Q% =id, Usym({a, ap} x {By, B, B3, Ba}) -
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I'N(AUEUF UG)? = idy g rucUsYM (e a), (g, &;
(fi7a)v(fij7aij)7(Tik7aik>7<gi7a> (gi7ai|w‘)’(glja
(G Bie)» @ie- A1) (G5 1), (95 ) i T
wherea,; = aanda,; = By |

i)s (B8
a;); (9> &_1),

Now let us construct mappings,v : £ — 2'. For each elemenb € Q \ {ap},
the images ofw, 1) and(®, 2) underu andyv are together understood as one rule for
a computation. In fact, we cannot fix contents of images completely since we have to
satisfy all assumptions of Propositidril.2which should be applied to every instance
produced here in order to prolong the reduction to the TCP. As the desired contents
are given by, let us definev first.

The following rules guarantee that a computation starts correctly and that we can
remove control letters at the end of a successful computation:

v((er,1)) ={ly,ry,b,s,84;, a} v((er,2)) ={ly,ry,b,51,81, 0}
V((B1,1) = {l5,rq, 00, B} V((B1,2)) = {1515, B, }
v(( 271)) {15, 0tg, B, } V((B2;2)) = {115 @, By}
V((B3;1)) = {13,120, B3} V((B3,2)) = {l5,r, Bs}
V((Byg: 1)) = {1y, 00, By} V((B4:2) = {1515, 0, B}
V((Bs: 1)) = {1, Bs} V((Bs;2)) ={rp, 81, Bs}
V((Bg, 1)) = {l2,51, Bg} V((Bg:2)) = {ry, s a,Bg}
v((B7,1)) = {l,,c. 57} v((B7,2)) = {ry,b, b7}
v((Bg,1)) = {l,,b, Bg} v((Bg,2)) ={r,,d,Bg}
v((r, D) = {51t v((n:2) ={l.snt
V((12,1)) ={ry, s %} v((12,2)) ={r2 %, %}
V(1) ={a11, 5 %5} v((1,2) ={a s, 15} -

The next family of rules serves for the initial placemenp&fandq's:

v((61,1)) ={l,,¢,5, 81} v((8i1,2)) ={rp, 0,841,064}
v((82,1)) = {l5, ¢, G} V((82,2)) = {rpd,8,1, 85}
v((&j1:1) = {125 &1} V((&1,2) = {r2 811, Bij- &j1)
V((Sijzvl)) {l 2S5 Bijs |12} V((8|12’2)) = {r2’51j+178ij2}
V((Ek1s 1) = {12 S Eika V((€ik1,2)) = {r2: Sk 1> Pix> Eikn
V(& 1)) = {1234 Pic- Eiz} V((Ei2:2) = {12811 €z}
v((Gj1, 1) = {24, Gja } V((Gij1,2) = {ra. b, 1.9, Gt
V((Gij2: 1) = {l2:t, G, G2 V((Gij2,2) = {ratj 1, Gjat
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v((Zikla 1)) = {|2,fikfik1} V((fikl,Z)) = {r27fik+1aqkazik1}
V((Cikor D) = {15, 6 Ty Ciea V((Cio:2)) = {r27fik+1; Cikat >

where we use the notation

Sh1 = S11 Sjw 1 = S+10 Shi11 = S Sy 1 = S S =l
G lr1 = b1 Ty = 1 fi\wi|+1 =t i =s.

The main cycle inserting letters frof is performed by the rules:

V((M1:1) = {l2,8 Pij, %, Mij V((M1,2) ={rz,s.€), M1}
v((Mij2,1)) = {12 5.6, M5} V((Mij2,2)) = {rp: s, 1, My}
V(M3 1) = {l2,S, Bij, Mij3} v((Mij3,2)) = {ry,s,€j,Mjj3}
V(M 1)) = {128, i Mia I V(M 2)) = {2 8.8 Ko Miga }
V(Moo D) = {12,881 M2t V((Mi2:2)) = {128, Py M2}
V((Mikz: 1) = {158, Py Mkt V((Mikz:2)) = {r2,S. 8, Nika}
V((8,0) = {5805, 81 v((9,2) = {1258, Gjra 0}
V((By 1) = {15,581, Oy} V((01:2)) = {288 G 1 %o Di)
v((4,1) = {l 8.8, 4} v((4,2) = {rys,a,Gy, 4}

wherea1|Wi|+1 =a,, ETIWiHl =8 Gy 41~ o andg”vvi|+1 = ¢g;, which corresponds to
the desired order of introducing letters frdtn Later we will also employ the notation

f”Wi|+1 = f,, and fI|W +1 = fj- A computation of a solution of” is successful if we

can eventually use one of the following rules:

v((x, 1)) = {l5,8,%, %1} V((k,2)) ={r, 8, €%,&}
V((K,1)) = {15, 8%, K5} V((K5,2)) = {ry s, 1} .

Finally, for manipulating letters frors we need the rules:

V((Aijlal)) = {|27S gij aqij7 ijl} V((Aijlaz)) {I‘Z,S, flj ’)Lljl}
V(<)Lij2>1)) {I 'S, flj7llj2} V(ULiJZ’Z)) {r27squ7 |12}
V((4ij3: 1)) = {l5,5.0, 43} V((4j3:2) ={ry.s fij, A3}
V(A D)) = {800 O At V(A 2)) = {128 T A}
V(A1) = {1,8, T, Ajo) V(A2 2)) = {8, T Ao}
V((Aig: 1) = {12:5 Ty Ays) V((A3:2) = {rp,8 Ty, i}
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v((§i1,1) = {15,596, 51} v((§1,2) =1{rps 1,81}
v((§2,1) = {158, 1,80} V((&2,2) ={r,,5q, &5}
V((&iS? 1)) = {|2’Sv qhéis} V((§i372)) = {r27S7 fi?éis} .

The mappingu : £ — 2% is defined by the same rules as the mappinexcept for
u((e, 1)) = p((a,2)) = 0.

Let ¢ be the(u,v)-weak morphism fronM(Z, 1) to M(X’,1") determined by the
conditions¢((o,1)) = l,bag 0, o((e,2)) =r bs,a and for allw € 2\ {o, 0},
ze ¥ andhe {1,2}:

1 ifzev((w,h)),
0 otherwise.

[o((@,h))|z= {

Now we are ready to formulate the result, which will be proved in Seetidn

Proposition 4.2.1.Let 22, (X,1), (X,1'), u, v and ¢ be as defined above. Then the
following statements are equivalent.

(i) < has no solution.
(i) ¢ is acoding.
(iii) There exists &u, v)-weak coding fronMI(X, 1) to M(X’,1").

This proposition is the last item we need to construct a reduction of the coPCP to
the TCP, thereby proving that the TCP is undecidable.

Proposition 4.2.2. There exists an effective reduction of the coPCP to the TCP.

Proof. As the first step, we use Propositidr?.1to reduce the coPCP to the problem
of deciding the existence dfu, v)-weak codings. Since every instance (consisting
of alphabetgX, 1) and(X’,1’) and mappinggt andv) constructed there satisfies all
assumptions of Propositioh1.2 we can employ this claim to prolong the reduction
to the problem of deciding the existencevefveak codings. Finally, Propositigh1.3
can be applied to all instances of this problem obtained in Proposgitib@and we
get a reduction to the TCP. H

Observe that Propositioh2.1limmediately implies that injectivity is not decidable
for cp-morphisms because for every instar€eof the PCP we have constructed the
cp-morphismg being a coding if and only i possesses no solution. This result
was first announced in [] and proved in 6.

Corollary 4.2.3 ([16]). The restriction of the trace code problem to cp-morphisms is
undecidable.
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4.3 Example of the Encoding

Before proceeding to prove Propositidr?.], let us demonstrate its basic principles
by an example.

Consider the alphabe& = {x,y,z #} and the instance” of the PCP consisting
of the pairs(x#y#,x#) and (z#,y#z#). Further, lety : M(Z,1) — M(X',1") be the
(1, v)-weak morphism defined by the same rulegpascept for:

<< 1)) =I7bs,af;0 y((@,2)) =1y, b8y,
(1n,0) = 1,87 W((ky,2)) = Tp9ex K7
\//(("7 21,1)) = 2sz4n 241 V((Mp422)) = rzsp%4ﬁ242
Y((Dyp,1)) = 1,88, #° 0y,

We will use the solutiorix#y#)(z#) = (x#)(y#z#) of the instance?” to show that the
morphismy is not a coding. Let us take the semi-equality, 1), (,2)?), whose
state is(llafl,rfbssl). We are going to successively append elements fsbm the

right to this semi-equality preserving the property that no letter f@noccurs in

its state until we reach a semi-equality satisfying the assumptions of Léirini
During the whole construction we will be interested only in the state of the current
semi-equality, which contains enough information to verify that the next addition does
not violate the definition of semi-equalities and to calculate the new state.

First we add the paif(Bg, 1)3, (Bg,2)%) to removeb's from the state (in such a case
let us simply say that we add the p#§); the resulting state |$| all, r2r3d3s,).
Then we use the padi;; to replaces, with S We get the statd,|5ca;, r2r‘2‘d4squ)
Similarly, appending,, now producesl,15c?as,, rr3d°s;,q,0,) and we continue in
this way witheyy;, €151, €131, €141 €211 2210 €111 €121 €211 g2 ANAExgy, thUs
obtaining the state

<| |16 2.3 16d5
1

2°c%ay, r{r5%d®s, 4Py 1 1201 3P14 P21 PooP1 11 5P, PoPag0Cy) -

Since the images dff],,;, 1) and(M,,,,2) undery differ from the images undap,
we have to be more careful with introducing the lefigj to the state. Later we will
see that the right choice is to append the jpajy, which leads to the state

17.2.3 1745
(11137c%a8 1Py, 1515 Aty 1 Py - oty O) -

Now we deal with{’s in the same way as with's to reach the state

(115%C%831 1,4, 1315°0°S Py - POl Cpllyg - Opgllyg -+ - Upa) -

As the letter fromSin the current state is, we can start composing the solution
of & using the rules containing First we replace the lettex;; with a,, by adding
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the paird?;. We obtain the state

32.2.3 2325
(I413%c a12p24x3,r1r2 d Sgi'zpll"‘_pzsql"‘qzﬂ :

Now we have to remove all occurrencesgpb. In order to do this, we employ the
pair A,,, exchangingy,, for f;,:

2.3 3345
>7d

(11133c%a3,1,¢, 15r520°s 50520 1 -+ Ppglly oG 1G5 Tps) -

Then we perform this exchange in the reverse direction usjgg).

3423 2,3445
(|1|2 C alzp24X37r1r2 d Sgizpll"'ngql"‘qM) .

Repeating the last two steps twice more, we eliminate also the remaining occurrences
of g;, and we get the state

(|1|38 2,3 38d5

2
5°Ca1 P X7, 1115°0°S Py - Posly -+ Upy) -

In the same way we now append the pahs, A;31, Aran 955 Arars Aiam Oop A11q
andA,,,to reach the state

('1'350275‘%1324)(3#33/3#3,r%rgg)dSSpll‘ Pogly  Taa)

where the reduct of the projection of the first component tis x#y#, which is just
the wordw; .

Similarly as before, we adds;, A,,,, A;,, and ¥y, to remove from the state the
letters corresponding to the wo :

(I1IZ702a3‘p24y3#3, r%rydssﬁ p11' : '_ngql' : -024) .

Then we eliminatey, using the pairg,; and¢,, and start introducing the second pair
of words of 22, as suggested by the chosen solution, by appendinghe resulting
state is

(1415°C%83 Poay#, 1 1r5°d°S @1 Prg -+ Paslly -+~ Tog) -

After employing the pairs,;1, A,15 951, Aoags Aopo Dap, 4517 ANAA,,,, We end up
with the state

(1137685 Doy #2#0 133 A0Sy - Pglly T

transforms it into

137,23 6 .2.13745
(14127 c az4Po #°, 11r2°'d7S Py -+ Poslly - Toy) -
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In the next step of our construction we have to replace three occurrenagsiof
the state witla and simultaneously remove six occurrences of the letter #. This cannot

be achieved by simply appendirﬁﬁél, therefore we have to modify the state before
proceeding to use the pafr,,. First we add the paif,,, by means of Lemma.1.24
where we takep,, as the distinguished letter i@.¢). Since the lengths of all blocks
in the current state are multiplied by 2 due to LemPa 23 we reach the state

2| 275-4-6 2 4.2754102 2 2 2 2
(191378l 2,1, 1ir5 °d 06 pf - D350 -+ Tda) -
Then we append,,, in order to exchange,, for p,, :
2127646 3 111 4.2764102 12 2 2 2
(1137 P34, rir3 °d "0’ pgy - P3a0 -+ o) -

When performing this replacement of lettqig, ande,,, the ratio of the number of
occurrences o8, in the state to the number of occurrences of # increases, so we
repeat it until these numbers are equal. More precisely, in each step of the iteration
the lengths of all blocks in the state are multiplied by 2 and the appropriate number of
the pairsn,,, andmn,,, is added, producing in sequence the following states:

455582123 122 .8,555420.4 4 =4 4 4
(1713 ca24ez4#2,r1r2 d“s" P11 - Poss - - Uza)

(HE U s et
OB D), B -l
7 A R e B R
(el FE 51 Pl B

Now there are exactly 10 redundant occurrences of # in the state, which is already less
than the current number of occurrence€gf Therefore we append only 10 copies

of the pairT,,, and finish the replacement using the [t instead. This leads to

the state

1612322 32,4847 ,448 32,2322 801616 <1616 16
(119153%2c3%ag3ps 18, r34r5322d%0s10pi? - - p3ar®- - - 039)

and we finally apply the paﬁgi and the pair§1® and&12 three times to obtain

(39305622, 23 SRSt . piSgf- o

Notice that the construction we have just employed would not work if the letter
P,, were placed on the other side of the state. In fact, in such a case théjpairs
andm,,, would have to be applied in the reverse order, thus if the replacement were
performed iteratively, the ratio of the number of occurrences,pto the number of
occurrences of # would converge tg53

Up to now, it has never been possible to use the rules contakigg— either
because the letter fror in the state was dependent eror because some letters
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from =, which are dependent ofy were present in the state. But the current state
allows us to append the pditk;, 1)1°, (k;, 2)®) to replaces with ;

16/2482.32,48:47, 8 32, 2474808816 16,16 16
(1195%8%c%a* P08, 754 0’ prf - - pagai® - a39) -
Finally, we employ the pairgl® andy32 to reach a semi-equality with the state
249832244847 .8 25064808116 16,16 16
(1249%¥s a3 %, 129 prt - - 3301 9)

which satisfies the assumptions of Lem#&.22 This shows thaty is not a coding.

4.4 Proof of Proposition4.2.1

Let us start with one useful observation. In this proof we deal solely with weak
morphismsy : M(X,1) — M(X’,1") satisfying

Yo e Q\{a, o}, he {1,2}: ‘.Q\{Zoc }(w((w,h)))’ ~1. (4.8)

Because all letters in the s&\ {a, ay} are mutually dependent, if wordsv € X*
satisfy w(u) ~,, w(v) for such a morphisny, letters fromZ on the same position

in the wordsnz\{(a71)7(a72)}(u) and nz\{(a71)7(a72)}(v) have the same element &f

on their first coordinate. This allows us to consider only those semi-equalities which
respect these pairs. More precisely, the word morpmm%%} oy X* — Q* will

be always equal to the morphisirdefined by the rule|, = oo} OP1 and we call

a semi-equality(u,v) for y balancedwheneverr(u) = 7(v). Conversely, the state
of any balanced semi-equality for a morphism satisfy#@)(contains no letter from
the setQ \ {¢, 0y}

Since the implicationi() = (iii) is trivial, it is enough to prove the validity of the
implications () = (ii) and (i) = (i).

4.4.1 Implication (i) = (ii)

Suppose that the morphisgis not a coding and lat,v € £*, u =, v, ¢(u) ~,, @(V),
be a counter-example with minimfl| + |v|. We have to construct a solution #.
In order to do this, we are going to study balanced semi-equalitieg &ising from
the pair(u,v) by Lemma2.1.2Q starting from the shortest ones.

First, one has to verify thap satisfies 2.3). Since thep-images of(w,,h;) and
(wy,hy) for hy,h, € {1,2}, o, 0, € 2\ {0}, 0, # 0, contain different letters
from Q, most of which are dependent, it consists of checking the condition for every
pair (w,1), (0,2) with w € 2\ {«, 0y} and a few pairs ofx's andf’s.



74 CHAPTER 4. THE GENERAL CASE

By Lemma2.1.1we have, up to symmetry = («,1)Mu, andv = («,2)Mv, for
someh,,h, € Nandu,,v; € X* such that

p, (first(u,)) = p, (first(v;)) # c .

If h, andh, differ, thena occurs in the state of the semi-equalftyr, 1)™, (a,2)").
Thusp, (first(u,)) € {B,,B,, B3, B,} because the other elements@f\ {o, oy} are
dependent o, so they would violatel(.1) for prefixes of the wordg (u) and(v).
But this is also impossible sinégandr, occur in the state and eithigrorr,, is present
in both ¢(first(u,)) and ¢(first(v,)). Thereforeh, = h, holds and the reduced state
corresponding to the initial blocks ofs is (1,a,;,r1S;).

Observe that after the initiat’s, letters fromX usingr, (1, respectively) in their
images cannot occur in the word(v) until the letterr, (I,) is removed from the
right (left) side of the state. Ag(first(u,)) contains eithes; or no letter fromS,
it is just a matter of verification (to deal wit,, 3, and 5 one has to employ also
the lettersa, b, ¢, d in the reasoning) to see that the pdirst(u, ), first(v,)) is either
((611,1),(811,2)) or ((8,5,1),(8,5,2)). And after at least one of these pairs either
the letters; no longer occurs in the state or only other pairé s follow by the same
arguments and using the fact € D’(b) to excludex’s. Actually, the occurrences of
the lettersc andd in the state prevent us from's occurring inu andv also further on.

In the proof of this implication, none of the arguments makes use of elements of
the setP U Q; therefore when writing states we will omit them even though they are
often present and distributed somehow to both sides of the state.

The reduced state after the pairs&s is (I,1,ca;;,r;r,ds,). Similarly as before,
one can argue that the next pairqinv) are in sequence

0,’S,...,6n'S,€14'S, ... ,en|Wn|’s, $11Ss-- - Cn‘w’s
due to the changes of the first letter fr&in the state. After these pairs, the reduced
state is(l;1,ca,,,r1r,ds). Itis easy to see that only pairs of letters uséman follow
in (u,v) until the first occurrence af’s because in the image of each of these letters
there is exactly one occurrencesko the number of’s in the state does not change.
Moreover, eventually some pair &fs has to follow; otherwisé, andr, would never
be removed from the state.

Now we want to describe balanced semi-equalities appearing befoere used.
We define three special forms of these semi-equalities based on which letteAfrom
occurs in their state and we show that after every semi-equality of one of these forms
another one can be found. We also determine which semi-equalities allow the addition
of a pair ofk’s. The projection of the image of such a semi-equalit£tes a key to
a solution of#.

Let us consider balanced semi-equalities possessing the following projections of
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their reduced states &y \ = and projections of theip-images toz :
(I15ca [ j],rarodsg; ;1) (Wo---W_1-W (] —1),Wp---W_4), (4.9)
(111268, [F; i 11720 ) (Wo W, Wo W1 - W (k—1)) , (4.10)
(I3pcalf; ],ryrodsg ) (Wo- W[, Wo -~ W[) , (4.11)

for somel € N and some wordw/,, W, € Z* satisfying redw|,) = W, redw,) = W,

forl’ € {0,...,1}, wherei, € {1,...,n}, i, = 1, and letters in square brackets do not
have to occur. Notice that the semi-equality obtained above is of the foén (

Let us have an arbitrary balanced semi-equalityfaf the form ¢.9) arising from
the pair(u,v) and consider the first balanced semi-equality after this one such that its
state(u’,V) satisfiesailj ¢ init(u"). The only pair which employs elements Afand
which can occur when passing between these semi-equalit(éﬁili% 1), (ﬁilj,Z))
and it is also the last one since it removes. Therefore the IetteaiIj is replaced
with g ;. in the reduced state. As longas is an initial letter on the left side of the
state, due to the definition of the relatibmo other elements & UF UG thane
ch’ G a\ndgiljJrl can be used in the images of letters/of

From the above considerations we deduce that several occurrences of th |etter
are introduced into the image of the left side of the semi-equality by occurrences of
the pair((ﬁilj,l), (ﬁilj,Z)) and possibly also of the pa((niljl,l), (niljl,Z)) and no
more changes in the projectionfoare done. These considerations further imply that
G j+1 cannot be inserted by letters wiind thus it is never present on the left side of

the state in the course of passing between these semi-equalities. Because the last pair
insertsg, ;, , into Vv, there can be only letters independentgan, , on the left side

of the state at that moment; observe that, , is the only letter inE UF UG which
satisfies this. And since the last pair inserts @sq , into u’, none of the letters, ;,
fi|J' andgi|j can occur in/. Altogether, the new semi-equality has the desired form

(111568 j14[f jalTar2089 1) (Wo W1 -Wi{]),WoW[_y) .

For a semi-equality of the form4(10, everything is similar to the previous case
and we reach a semi-equality of the form

K

(111568 [ Fi kg als T2 20 4) (Wo Wi, Wo W1 - Wi (k) .

It remains to deal with the casé.(]). First notice that, unlike in the previous cases,
a pair ofk’s may be appended here singés the only letter inA independent oe.
Suppose it does not happen. Again, we consider the next balanced semi-equality
such that its statéu’,V') satisfiesa ¢ init(u). But this time one can use any pair
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((4,1),(y,2)), wherei € {1,...,n}, for manipulating letters from. All letters from

the setE UF UG excepte, f;, g, andg;; are prohibited to occur in the state on the
right due to the occurrences afon the left. This means that the projection of the
image of the semi-equality t& is not modified and naj;, is inserted to the left.

Let ((li|+1, 1), (1i|+1,2)) be the first pair oi’s used. Once this pair is added, there are
some occurrences gfml on the right side of the state and they do not vanish by the
previous considerations. BecaL{gﬁHl,aﬂ) € D' fori #1i4, only this pair oft’s is
allowed also further on. Hence we can finish the reasoning in the same way as in the
first case to deduce that the new semi-equality is of the fdr):(

(hlpca alf alirarodsq ) (W -W, W+ W]) .

As we have seen, the state of every balanced semi-equality wik®webntains
a letter fromA on the left. Since the first pair of's introduces the first occurrences
of e and puts them on the right, it can be used just when the only letter Aam
the state i®. From the preceding arguments we can conclude that in such a case the
projection of the image of the semi-equality Zois (WywjW, - - - Wi, WoW, W, - - - Wiy,)
for somem € N,. Because the pair of’s introducesx for the first time to both sides
of the semi-equality, its state contains no letters fdnHence the sequencg... ,im
IS a solution of%? since we have

WIW, W W= red(WoWiWh -+ W)
= redWoWy W5 - - - W)

=Wy W Wi oW |

due to our assumption on instances of the PCP.

4.4.2 Implication (iii) = (i)

Assume thaty : M(Z,1) — M(ZX’,1") is a (u, v)-weak morphism and the sequence
i1,.--,im is @ solution of#?. We have to find a counter-example to the injectivity
of y. By Lemma2.1.17it is sufficient to do this fony satisfying é.8). Under this
assumption, it makes sense to consider only balanced semi-equalitigsfom the
first part of the proof. The main course of the proof is a gradual construction of
two wordsu,v € £* satisfyingu ~«, v and y(u) ~, y(v). In every step we extend
an already constructed balanced semi-equality by appending new pair& fusing
Lemma2.1.24

In order to get an initial semi-equality, we have to consider the numbers

N1I = |y((a,1)) Ny, = |l//((0£,1))|r1 Nla = |y((@,1))]q
Ny = ly((@;2)) Ny =y (e, 2))lr, Ny, = v ((et,2))la

I

3
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and their ratios

_ Ny

N, = _& N

Ny = Ny = 1% .

NZI N2r * NZoc

If more than one numerator or more than one denominator are equal to zero, then
v((a,1)), v((a,2)) respectively, commutes with eithes((,,2)) or y((p,,1)) or
v((By,1)) inM(Z',1") andy is not injective. Otherwise i, =N, orN;, =N, =0,

then we have

W((aal)NZI (Blaz)(a72)Nll) ~ W((a72)Nll ([31’2)(05,1)'\'2) .

In the same way we get a counter-example for the two symmetric cases(figithy)
and(f,,1). So the above ratios are pairwise different numbef@jn {eo}. Suppose
thatN; <N, < N, holds. If we consider the semi-equality

(e, )N, (0, 2)™) |

we can employ Lemma.1.24to add some occurrences of the p(e(iﬁl, 1), (B, 2)) in
order to replace, in the state of this semi-equality with. Then we do the same with
the pair ((B,,1),(B,,2)) to removeo from the state and we obtain a semi-equality
which satisfies the assumptions of Lem#na.22 thus showing thay is not a coding.
Since the casl, < N, < N; can be handled similarly and the same can be shown also
if the medium ratio isN; using ((B3,1), (B3,2)) and ((B4,1), (B4, 2)), the medium
one must bé\,. In particular, 0< N, < o holds and the lettex is contained in both
imagesy((a,1)) andy((e,2)).

Let us start with the semi-equality

(o, D)Noe, (o, 2)Nae ) (4.12)

and denote its state ky/,V). Due to the inequalities between the ratios, the letters
|, andr, occur in the state on different sides. Without loss of generality, let us assume
thatl, € alph(u'). If s; ¢ alph(u'V') then

1//((0571)N2a('}/172)(a72)N1a) ~ W((a72)Nla(}/1>2)(a71)N2a> .

In the cases, € alph(u), we have to use Lemnia1.24three times. First, we append
the pair((Bs, 1), (Bs,2)) to (4.12) to reach a state without occurrencespfThen we
remove the letter andr, from the state using(y;,1),(1;,2)) and ((%,1),(%,,2))
and finally we apply Lemma.1.22to get a counter-example to the injectivity gt
Thuss, € alph(V). If a,, ¢ alph(U'), we perform the same construction with the pair
((Bg,1), (Bg,2)) and all pairs ofy’s. Thereforea,, € alph(L/). If eitherb € alph(u)
orb € alph(V'), we remove it from the state usitfgB,,1), (8;,2)) or ((Bg, 1), (Bg. 2))
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respectively. Altogether, we obtain a balanced semi-equality for the morphisith
the reduced stat@, [I,][cla;;,r;[r,][d]s;).
Now we add to this semi-equality in sequence some pairs of

513,...,5ns,ells,...,8n|wn| s,Clls,...,Cn‘\Tvn| S

using Lemma2.1.24to replace the letter fror8in the current state with the next one.

In every step of this sequence we have to choose one of two pairs of letters which
can be used; in fact, each of them inserts some occurrences of a lettd? fraprto

a different side of the state. In the caseesf we denote

Jj = |W((nij172))|e,j '|‘l’((77ij272))|pij
Kij = |‘V((77ij2»1))|qj '|‘V(<77ij171))|pij

and we append the paife;;1,1), (g;4,2)) if J; > K;; and the pair((&;,,1), (&;,,2))
otherwise. The reason for this choice is the following. In the next part of the proof,
we are going to employ an iterative addition of the pe(i(sijl,l),(nijl,Z)) and
((Mj20 1), (mj2,2)) by means of Lemma.1.24 replacing the lettep;; in the state

with CY and vice versa. But this construction will function properly only if during the
iteration the ratios of the number of occurrences of the Iepﬁe'rn the state to the
numbers of occurrences of other letters do not decrease. This is achieved by inserting
the Ietterpij to the appropriate side of the state at the beginning of the construction,
thus determining the order in which the pairsip$ will be appended. The choices
for &’s, €'s, {’s and{’s should be decided in the same way by comparing the numbers
of occurrences of the correspondifig andg’s (€'s andp's, f’s andgs, f's andg’s
respectively) in the images of the correspondirgy(m’s, A's andA’s respectively).

The reduced state of the non-trivial balanced semi-equality obtained in this way is
(1;1,cay4,r41,08) with letters fromP U Q distributed to both sides as chosen above.
After every step of our construction, letters frdhw Q will occur on the same sides
as in this state and they will be independent on all letters in the state. Again, we
omit these letters when describing states, but this time we have to be conscious of the
fact just mentioned. Actually, each of these letters is dependent on exactly one letter
in X/, so we do not have to take care of its occurrences in the current state unless the
corresponding dependent letter fré& F is also in the state.

We are going to gradually construct the following balanced semi-equalities (using
the same notation as in the first part of the proof):

(|1|2C[S]ai|jar1r2d[s]) (Wo---W_1-W(j—1),Wp---W_3) , (4.13)
(|1|2C[S]31,k7r1r2d[5]) (Wo - W, Wp---W_q - W (k—1)), (4.14)
(hcsarnds) (W ). (@.15)
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for everyl € {0,...,m}, j € {l,...,|Wi| |} andk € {1,...,|v_vi| |}, and for some words
w,, W, € &%, for I’ € {0,...,I}, such that retv,) = W, and redw,) = W, where

ip =1 and if we denote byw, W) the projection of the semi-equality 0, it satisfies
eitherw = w, or w < W together with firstw\w) # lastw), or duallyw < w and
first(w\w) # lastw). Observe that each block in the projection®@aorresponds to

a unique letter of the wortztllwilwiz---wim due to our assumption on instances of
the PCP and the last condition actually states that the corresponding blocks on the
opposite sides of the projection Bhave the same length. Let us remark that we do
not require the worde/, andw, for distinct semi-equalities to be equal.

Since forl = many state of the form4(15 contains no letters fror&, we can use
one of the pairs ok’s to exchange for s if there is some in the state, then the pairs
of y’'s to remove; andr,; and finally Lemma.1.22to get a counter-example.

To finish the proof, it remains to construct the desired semi-equalities. All of the
following manipulations are based purely on ratios between the lengths of blocks in
the state, which allows us to modify the current semi-equality arbitrarily provided we
do not affect the ratios having impact on some step of the construction. We show how
to proceed from the statd (L3; the cases of4.14) and @.15 are similar.

Our first task is to introduce ;. If wg---W_; -Wi(j — 1) = Wp---Wj_; then we just
add the pair((r&I i1, (9, J,2)) by means of Lemm&.1.24to replace occurrences
of g ; in the state W|thar1IJ+1 If itis not the case, thg ;-block corresponding in the
image of the semi-equality to the block we are going to build is already present in
the wordwj - --W/_, and we have to insert exactly the numbeixpfs to match this
existing block. LeLy be the length of this block and, be the number of occurrences
of & | in the state.

First suppose that
Ly |‘If((19i|j71))|xi|,-

L™ W@, 2,

The following arguments employ the construction of Lemna 24although the
assumptiond.5) is not satisfied. A; i will be the only letter violatingZ.5), it will

suffice to take care of this single letter in order to ensure that the construction really
produces a semi-equality. We would like to add the ()aﬂqll , (% 1,2)) to replace

(4.16)

l ]’
g with & ;,, and at the same time match the corresponmngblocks. This can

be done directly if 4.16) is satisfied as an equality. In the case the inequality is
strict, we insert new occurrences>q)|fj to the left prior to appending’s as follows.

If J > K then p; ; oceurs in the state on the right thanks to the choice’®and

we can repeatedly append the pdifg; ;,1),(n; j1,2)) and ((m; j2.1), (M j2,2)) to
replacepI with 8, j and vice versa. (Iﬂ <K, s these pairs have to be appended in
the reverse order) Let us calculate the state resulting from performing this exchange
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M times.

First of all, we can assume that = |w((19|l,2))|a1.j and that|1,1/((niljl,1))|Xij
| |
dividesLy — |1//((19i|j,1))|xi ;+ In order to satisfy these two conditions it is enough to
|

replace each letter in the semi-equality with its
W0 D)l ;- [W((8;1,2))]a, ; copies

using Lemma2.1.23and to consider instead of the p&in, J 1), (5 l,2)) its

(Iw((1hj2, 1)y, ;- La)-th power.

For every letter, the number of its occurrences coming from the state of the original
semi-equality is multiplied b;(Kilj)M due to the modification of the semi-equality

performed in Lemma&.1.24 On the other hand, the number of occurrencepilci)ﬁn

the resulting state isp - (‘]ili>M’ wherel p is their number in the original state. We are
interested mainly in the firsqu-block on the right side of the state. Every iteration
inserts new occurrences of the Iettelg to the left. Their number is determined by
the current number a, 'S in the state and subsequently it is multiplied by the same
amount as for all letters in the semi-equality. Thus the resulting length of this block is

L = Ly- (K,

M-

M-1

—Lp- ‘W«nhjl’l))yxilj . ’W((nhjZ’l))‘Qlj . go(Jilj)N . (Kilj)M_N_l ‘

Our goal is to make4 .16 an equality in the new semi-equality. Due to our initial
assumption oy, this can be written as

Ly = (Kilj)M ' |‘lf((19i|j71))|xilj : (4.17)
Since the inequalityilj > Kin implies

M-1

go(Jilj)N’(Klj)M N~ 1>M (K ])M_l

one can see that ¥ is sufficiently large, therv} is even smaller than the number
requested in4.17). By our assumption ohy, the difference between the length of the
first X | --block in the state and the number h17) is after every step of the iteration

dIVISIb|e by [w((n, 1 ))\X ;» Which is exactly the amount inserted to the image of
a semi-equality by a smgle pa@(nI 11, ), (7 1 )). Therefore, if we consider the
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step of the iteration during whidd, lowers under the desired value, we can construct
a balanced semi-equality where the ratio of the length of thex‘,lrsblock in the

state to the number of occurrencesap]‘ satisfies4.16) as an equallty by appending

appropriately less number of the pa(l(mllll, 1), (n,ljl, )) in this step. Then we add
to the resulting semi-equality the pa(rmljg, 1), (ni|j3,2)) and((niljz, 1), (niljz,Z))
using Lemma2.1.24to replace all remaining occurrencesnplfj in the state WithaIIj
and back without further changing this ratio. This makes the semi-equality suitable
for the addition ofd’s replacingailj with 3 i1 and simultaneously matching the
%, j-blocks.
Now suppose that(16) is not valid. Then thequ-block we want to match is not

long enough to allow appending of the required numbe#'sf Let us consider the
initial part of the current semi-equality where building of this block started, which is
a balanced semi-equality of the ford {4):

('1'20[5]51fk7r1r2d[5]) (Wo - W, Wo- - W- - We(k—1)) (4.18)

for certainl € {0,...,I —1} andk € {1,.. ]w |} satisfying in partlcuIaRI k=X, j

In order to achieve the validity of the condltlon 16, we have to modlfy the step
of the construction corresponding to the semi-equality @ by the same means as
above usingy’s instead ofp’s to increase the length of the, -block in proportion to

|

the number of, ,'s in the state. Let us verify that such a modification produces the
|

desired outcome.
First observe that during the addition® the lengths of all blocks in the state are
multiplied by the same positive integrexcept for the blocks df,, r», s, ‘pi «andthe

block ofxI  under consideration. The pairs appended to the semi- equfall@ (vhen

building the semi- equality4(13 do not employ in their images letters dependent on
l,, r,, sandp, ,; as for the lette, ,, it is due to the fact tha#'s are introduced only
| |

when we adjust the number of occurrences of some letter Eam the right to match

the corresponding block on the left, which was not yet carried out for elemets of

on the right inserted after the semi-equalily1(d. The length of the modified block

of X, , has also no impact on these additions since the corresponding letters on the left

are Inot inserted. Therefore it suffices to append to the modified semi-eqdaliy (
the same pairs as we did for the original one, taking each of themes.

From the calculations performed previously for a similar situation, we can see that
by iterating the addition of’s the ratio of the length of thg,  -block to the number

|
of occurrences d , converges to infinity. Further, the number of occurrence pf

in the state of the Imodified semi-equality. 13 is obtained as a constant multiple of
the number of occurrences &f, in the state of the modified semi-equality.19),
|
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where the constant is determined by the ratios between the numbers of occurrences
of letters fromA in the images ot}’s, ¥#'s andi’s. Altogether, since the length of the
% -block in the two modified semi-equalities is the same, if we perform sufficiently
|
many iterations, the modified semi-equality 3 satisfies 4.16).
After introducingxiI i’ the semi-equality state is

(400088, 0080 1) (W g (1) Wh W] )

For removing occurrences of 41 from the state we can employ the same method as
for the previous matching of correspondi:qlg-blocks using&iI 11 instead ofnilj’s,

whereA. = Ii,l' We obtain either the next state of the form(3 or a state of

||\WiI [+1
the form @.14) if j = |WiI |.

Obviously, in this way some semi-equality of each of the forsdd, (4.14)
and @.15 for every admissiblg, k andl will be eventually constructed. O]



Chapter 5

Conclusions

In this thesis we have introduced the notion of weak morphisms of trace monoids
which appears to be a useful tool for exploring decidability issues of trace codings.
This is already suggested by the following claim obtained due to Cordllary.

Theorem 5.1. If ¥ is any class of trace morphisms containing all weak codings, then
there exists an effective reduction of the TCP to4h&CP. O

The next result, which immediately follows from Propositid2.9 was proved by
shifting calculations to the case of weak codings.

Theorem 5.2. The TCP is effectively reducible to instances with domain monoids
defined by connected dependence alphabets. H

By examining all subtrees of domain dependence graphs we have achieved several
positive results for the#-TCP.

Theorem 5.3. The””’-TCP restricted to instances with independence alphafizts)
and (X’,1") satisfying one of the following conditions is decidable.

(i) M(X,1) is a direct product of free monoids.
(i) The graph(X,D) is acyclic.
(i) Thegraph(X,D)isC;,C,-free andMI(X’,1") is a direct product of free monoids.

Proof. Since there are only finitely many candidates for wit-mappings for every pair
of independence alphabets and all the conditions of Definiéidrn2 can be easily
verified, this claim is a direct consequence of PropositibAs3and3.3.4 O

Because the reduction described in Proposifigh5preserves the domain monoid,
we immediately deduce the following statements about general codings.

83
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Corollary 5.4 ([7]). The restriction of the TCP to instances whose domain monoids
are direct products of free monoids is decidable.

Corollary 5.5. The TCP restricted to instances with domain monoids defined by
acyclic dependence alphabets is decidable. ]

Using Propositiors.3.4we can partially answer the question of Dieker{][asking
for the number of free monoids needed for encoding a given trace monoid into their
direct product.

Theorem 5.6. Let (X,D) be a G, C,-free dependence alphabet. Then there exists
a coding fromM(ZX,1) to ({a,b}*)™ if and only if m> |X| — M, where M is the
number of non-trivial connected components of the gr@piD). O

On the other hand, as we have shown, our methods become insufficient for domain
dependence alphabets containing cycles. This contrasts with Prop@siidwhich
asserts that in the case of codings into direct products of free monoids this limit moves
as far as one could expect in view of the fact that subtrees of the domain dependence
alphabet cannot capture enough properties of a morphism when each of two dependent
letters occurs in the images of at least two generators of the domain monoid.

As for the general case of the TCP, Propositioh.2shows that it is not decidable.

Theorem 5.7. The TCP is not recursively enumerable. O

The same assertion for certain classes of trace morphisms immediately follows due
to Theorent. 1

Corollary 5.8. If € is any class of trace morphisms containing all weak codings, then
the@-TCP is not recursively enumerable. O

Notice that the above results tell us nothing about the recursive enumerability of
the coTCP, which remains a challenging open question.

An important special case of the TCP where the methods presented in this thesis
fail to produce positive results is the restriction to domain monoids which are free
products of free commutative monoids. Moreover, as all domain monoids resulting
from applying Propositiond.2.1and4.1.2are of this form, we can conclude that the
existence problem fov-weak codings is undecidable in this case.
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