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Deciding Existence of Trace Codings

disertǎcńı práce
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Abstract

This thesis deals with the problem of deciding the existence of codings (injective
morphisms) between trace monoids. We introduce the notion of weak morphisms of
trace monoids and show that the problem of existence of weak codings is even more
complex than the original problem for general morphisms. Further we investigate
properties of weak morphisms and use them to prove the decidability of this problem
for some classes of instances, which entails positive answers for the corresponding
cases of the original problem. In particular, we show the decidability for instances
whose domain monoids are defined by acyclic dependence graphs. We also partially
answer the question of Diekert from 1990 about the number of free monoids needed
for encoding a given trace monoid into their direct product. On the other hand, we
prove that in general the problem of existence of codings from any given family of
trace morphisms containing all weak codings is not recursively enumerable, which
answers the question raised by Ochmański in 1988.
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Introduction

Trace Theory

One of the central topics in contemporary computer science is the specification and
automatic verification of parallel and concurrent programs. As such a work has to be
based on a rigorous mathematical model, several algebraic formalisms for describing
concurrent computations (often called process algebras) have been introduced, among
others Milner’s Calculus of Communicating Systems (CCS) [30], Bergstra and Klop’s
Algebra of Communicating Processes (ACP) [3], Hoare’s Communicating Sequential
Processes (CSP) [22] or the ISO standard Formal Description Technique LOTOS.
There were also proposed many different representations of behavioural semantics
for these models of various levels of coarseness, e.g. labeled transition systems, Petri
nets or event structures.

In 1977 Mazurkiewicz [29] used free partially commutative monoids (often called
trace monoids) for an intuitive and elegant coarse description of the behaviour of
concurrent systems, and he showed that in this way the behaviour of elementary net
systems (1-safe Petri nets) can be captured faithfully. In this approach one represents
elementary actions with letters of a given alphabet; then an observation of a finite
run of a system is nothing but a word over the alphabet. Two words are regarded as
describing the same behaviour if and only if they can be obtained from each other by
commuting adjacent occurrences of letters representing concurrent (or independent)
actions. The mathematical formalization for this concept is provided by considering
finitely presented monoids with their defining relations expressing commutativity of
some of their generators. Possible behaviours of a system then correspond to the
congruence classes modulo the defining relations, which are called traces. In this way
causal order of actions is distinguished from the order arising from sequentiality of
observations.

Recently trace monoids were also successfully applied in the theoretical analysis
of Message Sequence Charts (MSC), which is a standardized formalism for graphical
specification of message exchange scenarios used in the design of communication
protocols. Many basic decision problems concerning MSCs appeared to be closely
related to some problems for semi-commutations and were settled by direct reductions
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2 INTRODUCTION

to results from trace theory (see e.g. [31]).
From the mathematical point of view, trace monoids are a common generalization

of finitely generated free and free commutative monoids. They are usually defined
using symmetric binary relations on the sets of generators (so-called independence
relations), which contain just the pairs of commuting letters.

The most important class of trace monoids are direct products of free monoids;
already in the beginnings of computability theory, certain subsets of these monoids
(such as rational and enumerable relations) were studied [34, 20]. General partial
commutations were probably first employed in 1969 by Cartier and Foata [11] as
a tool for the study of M̈obius functions. In the following decades trace monoids
appeared in connection with different research fields and a self-contained theory of
traces has also gradually developed. Finally, in 1995 the first monograph on trace
theory [18] was published, presenting an overview of various directions of research
on partial commutativity, and two years later one chapter of the Handbook of Formal
Languages [15] was devoted exclusively to trace monoids.

Topics considered in the framework of trace theory belong to many areas of both
mathematics and theoretical computer science: algebraic structure of trace monoids
as well as their combinatorial properties are studied, the theory of formal languages
over partially commutative alphabets and logics corresponding to partially commuting
variables were developed, solutions of unification and rewriting decision problems
under partial commutativity are sought etc. Methods employed within the theory also
have various origins, ranging from combinatorics on words to automata theory, logic
or graph theory. In several branches of trace theory the research produced interesting
results and challenging problems, many of which are still open.

Rational Trace Languages and Trace Codings

Since all behaviours of a concurrent system can be represented as a subset of some
trace monoid, i.e. a language over a partially commutative alphabet, it is not surprising
that a significant part of the research on trace monoids has been done in the framework
of formal language theory. Attention of researchers focused mainly on the concepts
of recognizable (i.e. recognized by finite automata) and rational (i.e. defined by means
of rational expressions) trace languages, which led to the development of a common
generalization of the classical theories of regular languages, (semi-)linear sets and
rational relations [4]. Similarly to the theory of regular languages, the relationships
between descriptions of languages using finite monoids, rational operations, standard
automata, asynchronous automata and logic were established (see [15]).

It is well known that for regular word languages all basic problems are decidable.
But this nice property is not shared by the class of rational trace languages, which
contains also non-recognizable languages and where many problems — like deciding
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universality or recognizability of a language or equality of two languages — become
non-recursive. This results in undecidability of some questions about trace monoids
expressible in terms of rational expressions. One of such questions is the problem
of determining whether a given morphism of trace monoids is injective, which was
proved undecidable already in [24]. The interest in such morphisms stems from the
fact that injective trace morphisms (often called codings) are a natural generalization
of the classical notion of codes (see [5]) to partially commutative alphabets. Another
motivation for studying properties of morphisms of trace monoids comes from the
theory of concurrent systems since they arise when simulations of these systems are
considered.

For most of the fundamental decision problems about rational trace languages
a characterization of the monoids where these problems are decidable was already
established [25, 2, 6, 21, 35, 1, 36] (for an overview see e.g. [15]). A lot of work
has been done also in the study of trace codings, but the status of decision problems
of trace codings turned out to be more complicated. The first task concerning trace
codings is to give an effective procedure for deciding whether a given morphism is
injective. A decision procedure for injectivity of word morphisms is well known [37]
and for free commutative monoids the injectivity of a morphism coincides with the
linear independence of images of letters, which is easily decidable using elementary
results from linear algebra. As the injectivity problem can be easily reduced to the
disjointness problem for rational languages in the codomain monoid, by means of the
theorem of Aalbersberg and Hoogeboom [1] these classical positive results can be
directly extended to the case of codomain monoids whose independence graph forms
a transitive forest (for free domain monoids this was proved in [12]). Further work
towards classification of monoids having the injectivity problem decidable has been
done in [16, 23, 28, 32]; several examples of classes of monoids with decidable and
undecidable injectivity problems have been found. It also turned out that for some
trace monoids the problem of deciding the freeness of their submonoids is equivalent
to the reachability problem for certain naturally arising classes of abstract machines,
for instance Matiyasevich’sQ-machines, where the decidability of the reachability
problem is still unknown. In [32] complexity issues of deciding injectivity of trace
morphisms were considered.

In 1988 Ochmánski [33] formulated several problems about trace codings. One of
his conjectures was proved true in 1996 by Bruyère and De Felice: as trace monoids
are defined by means of presentations, all their morphisms are determined by word
morphisms of the corresponding free monoids; and in [8] they demonstrated that it is
possible to obtain an injective morphism of trace monoids only if one starts with an
injective word morphism. Another Ochmański’s question asked to give an algorithm
deciding for any given pair of trace monoids whether there exists a coding between
them, i.e. whether the first of the given monoids is a submonoid of the second one.
It is usually referred to as the trace coding problem. This problem appears to be rather
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intractable since there is no obvious enumeration procedure either for all submonoids
of trace monoids being itself trace monoids (due to the undecidability of the injectivity
of morphisms) or for the pairs of monoids where no coding exists (as there are usually
infinitely many candidates for being codings). The two classical cases of the problem
are simple: all finitely generated free monoids can be embedded into the one with
two generators and for embedding a free commutative monoid into another one we
need at least the same number of generators. These characterizations were generalized
in [7] to all instances of the trace coding problem where the domain monoid is a direct
product of free monoids. In [17] the existence problem was solved for so-called strong
codings of trace monoids (defined in [10]) and several approximations for encoding of
trace monoids into direct products of free monoids were proved. Some partial results
about the case of domain monoids being free products of free commutative monoids
were obtained in [9]. But in the full generality the problem remained completely open.

Overview

Most of the material presented in this thesis (except for Section2.3) is contained in
the paper [27] currently submitted for publication; main ideas of these results were
briefly described in the extended abstract [26].

In order to deal with the problem of deciding the existence of codings between
trace monoids, we consider a particular family of trace morphisms, whose members
we call weak morphisms. We show that the analogous problem of existence of weak
codings is even more complex than the original one for general morphisms and we
prove its decidability for some classes of instances, which entails positive answers for
the corresponding cases of the original question. On the other hand, we prove that in
general the existence of codings from any given family of trace morphisms containing
all weak codings is undecidable.

The thesis is organized as follows.
Basic definitions and results are recalled in Chapter1; we refer the reader to [15, 32]

for a more comprehensive overview of the theory. In Section1.1we deal with general
notions of trace theory and in Section1.2 we present elementary facts and known
results about trace morphisms and codings and introduce the notions of strong and
weak morphisms.

Chapter2 is devoted to the study of certain natural classes of trace morphisms
and codings. In Section2.1we demonstrate several characteristic properties of weak
morphisms significant for our purposes. The aim of Section2.2is to describe how the
original trace coding problem is connected with its equivalent for weak morphisms.
And in the following Section2.3we use the same technique to find such a connection
for another class of trace morphisms, so-called co-strong morphisms.

In Chapter3 we consider certain restrictions on pairs of input monoids for the
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problem of existence of weak codings which are sufficient to obtain its decidability.
The main tool employed there is the notion of wlt-mappings. These mappings are used
to describe those choices of contents of images of generators of the domain monoid
which allow to construct a weak coding. In Section3.1wlt-mappings are introduced
and their basic properties are studied. Then they are utilized in Sections3.2and3.3to
solve the trace coding problem for domain monoids with acyclic dependence graphs
and for codomain monoids which are direct products of free monoids provided the
dependence graph of the domain monoid does not contain cycles of length 3 or 4.
Finally, Section3.4 demonstrates that once the above assumptions on instances are
weakened, the claims presented there are no longer valid.

The undecidability result for the general case of the trace coding problem is proved
in Chapter4. First we show that when properly restricted, the problem of existence
of weak codings with partially prescribed contents of images of generators can be
reduced to the trace coding problem; this is the aim of Section4.1. In the rest of
the chapter we prove the undecidability of this problem by constructing a reduction
of the Post’s correspondence problem (PCP). The actual construction is performed
in Section4.2, then Section4.3 describes its main ideas on a particular instance of
the PCP and in Section4.4 we demonstrate that the construction really produces the
desired outcome.

The final Chapter5 is devoted to summarizing the main results.

General Notation

We mean byZ, N0, N andQ+
0 the sets of all integers, non-negative integers, positive

integers and non-negative rational numbers respectively. ForN⊆N, lcmN stands for
the least common multiple of all numbers inN. The cardinality of an arbitrary setA
is written as|A|. For setsA1 andA2, we denote bypi : A1×A2→ Ai , for i ∈ {1,2},
the projection mappings. For setsA andB, a mappingϕ : A→ B and a subsetC⊆ A,
the notationϕ|C stands for the restriction ofϕ to C. The symmetric closure of any
binary relationρ is denoted by symρ. For an(m×n)-matrix K, M ⊆ {1, . . . ,m} and
N ⊆ {1, . . . ,n}, we mean byK(M,N) the submatrix ofK consisting of the rows with
indices in the setM and columns with indices in the setN. For a decision problem P,
coP is thecomplementof P, i.e. the problem for which the answer to every instance is
the negation of the original answer.

The neutral element of any monoid is written as 1. A monoid morphismϕ : M→M′

is termednon-erasingwhenϕ(x) 6= 1 for everyx ∈ M \ {1}. We denote byΣ∗ the
monoid ofwords( free monoid) over a finite setΣ . In this context,Σ is often called
analphabetand its elementsletters. Many times in our constructions, we enrich some
alphabet with additional letters; in these situations we always implicitly assume that
all new letters are different from the old ones. Let alph :Σ∗→ 2Σ denote thecontent
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mapping assigning to every wordu ∈ Σ∗ the set of all letters occurring inu. The
symbol� is used for theprefixordering onΣ∗. Let u∈ Σ∗ be any word. We refer to
the first letter ofu as first(u), to its last letter as last(u), to the length ofu as|u| and
to its mirror image as←−u . For X ⊆ Σ , let πX : Σ∗→ X∗ be the projection morphism
defined byπX(x) = x for x∈X and byπX(x) = 1 for x∈ Σ \X. Finally, let|u|X denote
|πX(u)|. In the above notation, we often write instead ofX a list of its elements.

By an (undirected) graphwe mean a pair(V,E), whereV is a finite set of vertices
andE ⊆ V ×V is a symmetric adjacency relation onV. For X ⊆ V, the subgraph
of (V,E) inducedby X is the graph(X,E∩ (X×X)) and we denote it by(X,E).
A clique in the graph(V,E) is a subsetX ⊆V such thatX×X ⊆ E. A path in (V,E)
of lengthn≥ 0 between verticesx,y∈V is a sequencex= z0,z1, . . . ,zn = y of vertices
satisfying(zi−1,zi) ∈ E for every i ∈ {1, . . . ,n}. It is calledsimple if the vertices
z0, . . . ,zn are pairwise distinct. Thedistancebetween two vertices of the graph is the
length of the shortest paths between them. A graph is calledconnectedif every pair
of its vertices is connected by a path. Acycleof lengthn≥ 1 in (V,E) is a sequence
x0,x1, . . . ,xn = x0 of vertices satisfying(xi−1,xi) ∈ E for every i ∈ {1, . . . ,n}. It is
calledsimple if n≥ 3 and the verticesx0, . . . ,xn−1 are pairwise distinct. Atree is
a non-empty acyclic and connected graph.

Forn∈N, n≥ 3, letCn be a graph which forms a chordless cycle onn vertices and
let Pn be a graph forming a simple path onn vertices. We say that a graph isCn-free
if it contains no induced subgraph isomorphic toCn.



Chapter 1

Traces and Codes

This chapter contains the preliminary material. Section1.1 is devoted to the basic
notions and results of trace theory used in this thesis and in Section1.2we deal with
elementary properties of trace morphisms and codings and recall fundamental facts
about their decision problems. In the second section we also introduce the key notion
of our considerations — weak trace morphisms.

1.1 Basic Notions and Properties

Definition 1.1.1. Let Σ be a finite set and letI be a symmetric and reflexive binary
relation onΣ . We callI anindependence relationonΣ and the undirected graph(Σ , I)
an independence alphabet. The complement of this relationD = (Σ ×Σ)\ I is called
adependence relationand the graph(Σ ,D) adependence alphabet.

Remark1.1.2. Usually independence relations are defined as irreflexive, but we adopt
this notation since it faithfully corresponds to the behaviour of weak morphisms.
In fact, the difference between the key notions of strong and weak morphisms lies
exactly in this modification.

For a letterx ∈ Σ , we mean byD(x) the set of all letters fromΣ dependent onx,
i.e.D(x) = {y∈ Σ | (x,y) ∈ D}. ForX ⊆ Σ , we defineD(X) =

⋃
{D(x) | x∈ X}.

For the rest of this chapter, let(Σ , I), (Σ ′, I ′) be a pair of independence alphabets.
The corresponding dependence relations will be denoted byD andD′ and we will
derive their names in this way also further on.

Now we can define the notion of trace monoids, which is a common generalization
of the classical concepts of free and free commutative monoids.

Definition 1.1.3. Let ∼I be the congruence of the free monoidΣ∗ generated by the
relation{(xy,yx) | (x,y) ∈ I}. The quotient monoidΣ∗/ ∼I is denoted byM(Σ , I)

7



8 CHAPTER 1. TRACES AND CODES

and called afree partially commutative monoidor a trace monoid. Elements of this
monoid are calledtraces.

Remark1.1.4. Observe that the above construction establishes (up to isomorphisms)
a one-to-one correspondence between independence alphabets and trace monoids.

For X ⊆ Σ , the submonoid ofM(Σ , I) generated byX is clearly the trace monoid
with independence graph(X, I) and we denote it simply byM(X, I).

Example 1.1.5.Finite direct products of finitely generated free monoids are exactly
trace monoidsM(Σ , I) which have the graph(Σ ,D∪ id

Σ
) transitive. Dually, finite

free products of finitely generated free commutative monoids are just trace monoids
defined by transitive independence alphabets.

A solution of the word problem for trace monoids is provided by the following
so-calledProjection Lemma.

Lemma 1.1.6 ([13]). Let u,v∈ Σ∗. Then u∼I v if and only if

∀x∈ Σ : |u|x = |v|x & ∀(x,y) ∈ D : π
x,y

(u) = π
x,y

(v) .

In particular, trace monoids are cancellative.

As the content and the length of a word and the number of occurrences of a letter
in a word are preserved by the congruence∼I , it makes sense to consider all these
notions also for traces. The same can be deduced for projection morphisms since
u∼I v impliesπX(u)∼I πX(v) for anyX ⊆ Σ by Lemma1.1.6.

Tracess, t ∈ M(Σ , I) are calledindependentif alph(s)× alph(t) ⊆ I \ id
Σ

holds.
Notice that in such a case they satisfyst = ts.

Definition 1.1.7. For s∈M(Σ , I) we define itsinitial alphabetand itsfinal alphabet
as init(s) = {first(u) | u∈ s}, fin(s) = {last(u) | u∈ s} if s 6= 1 and init(1) = fin(1) = /0.

Observe that two occurrences of a letterx ∈ Σ in a traces∈M(Σ , I) can be put
together using the allowed commutations if and only if no letter dependent onx occurs
between them. Thus occurrences ofx in s are partitioned into blocks of mutually
interchangeable occurrences, which can be formally defined as follows.

Definition 1.1.8. Let s∈M(Σ , I) be a trace andn∈N. For a letterx∈ Σ , anx-blockof
lengthn in s is a triple(t,xn, t ′), where the tracest, t ′ ∈M(Σ , I) are such thats= txnt ′,
fin(t)⊆ D(x) andx /∈ init(t ′).

Example 1.1.9.Consider the dependence graph(Σ ,D) = x — y — z— p isomorphic
to the graphP4. Then the trace(xzyxzpxz∼I ) ∈M(Σ , I) contains threez-blocks but
only twox-blocks.
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Clearly each occurrence of a letterx in a traces belongs to exactly onex-block.
In the case of free monoids, let us denote, foru∈ Σ∗ andm∈ N, by u〈m〉 the word
consisting of the firstm blocks ofu.

Using Lemma1.1.6it is easy to see that the following definition is correct.

Definition 1.1.10.Let s∈M(Σ , I). We denote by red(s) the trace inM(Σ , I) obtained
from s by removing, for everyx∈ Σ , from eachx-block all but one occurrence ofx.
We call red(s) thereductof s. If s= red(s), we say thats is reduced.

Example 1.1.11.For the trace introduced in Example1.1.9the definition spells:

red(xzyxzpxz∼I ) = xzyzpxz∼I .

Remark1.1.12. Notice that every reduct is a reduced trace.

The central construction of the paper is based on appending additional letters to
two traces in order to achieve their equality. This can be done if the parts of these
traces which do not belong to their common prefix are independent. Let us state this
well-known fact in more detail. All claims of the next lemma can be easily verified
using Lemma1.1.6.

Lemma 1.1.13.Let u,v∈ Σ∗ satisfy

∀(x,y) ∈ D : π
x,y

(u)� π
x,y

(v) or π
x,y

(v)� π
x,y

(u) . (1.1)

Let u andv be the words resulting from u and v respectively when we take just the
first min{|u|x, |v|x} occurrences of each letter x∈ Σ and denote the words consisting
of the remaining occurrences of letters in u and v by v\u and u\v respectively. Then

u∼I u· (v\u), v∼I v· (u\v), u∼I v, alph(v\u)×alph(u\v)⊆ I \ id
Σ

and consequently u· (u\v)∼I v· (v\u).

Remark1.1.14. For u,v,w, r ∈ Σ∗ satisfyingu∼I v andw∼I r, due to Lemma1.1.6
one can see thatu\w∼I v\r.

From Lemmas1.1.6and1.1.13we immediately obtain the following fact which
will be used implicitly throughout the paper.

Lemma 1.1.15.Let u,v ∈ Σ∗. Then there exist w, r ∈ Σ∗ such that uw∼I vr if and
only if (1.1) is satisfied.

To reveal connections between weak morphisms and general ones we will employ
in Section2.2 the standard decomposition of traces into primitive roots. Let us now
recall basic facts about this construction.



10 CHAPTER 1. TRACES AND CODES

Definition 1.1.16. A traces∈M(Σ , I)\{1} is calledconnectedwhenever the graph
(alph(s),D) is connected. It is calledprimitive if it is connected and for every trace
t ∈M(Σ , I) andn∈ N, the equalitys= tn impliesn = 1.

Proposition 1.1.17 ([19]). Any connected trace is a power of a unique primitive trace.

If a connected traces∈M(Σ , I) is a power of a primitive tracet, thent is referred
to as theprimitive root of s. It is clear that every traces∈M(Σ , I) can be uniquely
decomposed as a product of independent connected traces, which are referred to as
connected componentsof the traces. Let us denote byPR(s) the set of all primitive
roots of connected components ofs.

Example 1.1.18.Let the dependence graph(Σ ,D) be isomorphic to the pathP7 and let
us callxi thei-th letter on this path, for 1≤ i ≤ 7. Then the decomposition of the trace
s= x1x2x5x6x7x1x3x7x2x6x3x5∼I into primitive roots of its connected components can
be written ass= (x1x2x3)

2 · (x5x6x2
7x6x5)∼I and therefore

PR(s) = {x1x2x3∼I ,x5x6x2
7x6x5∼I} .

The fundamental property of primitive roots is that primitive roots of commuting
traces are always either equal or independent:

Proposition 1.1.19 ([19]). Let traces s1,s2 ∈M(Σ , I) satisfy s1s2 = s2s1. Then for all
t1 ∈PR(s1) and t2 ∈PR(s2) either t1 = t2 or alph(t1)×alph(t2)⊆ I \ id

Σ
.

1.2 Trace Morphisms and Codings

Since trace monoids are defined by presentations, every morphism of trace monoids
(briefly calledtrace morphism) ϕ : M(Σ , I)→M(Σ ′, I ′) is uniquely determined by
an arbitrary mappingϕ0 : Σ → (Σ ′)∗ such thatϕ0(x) ∈ ϕ(x) for each letterx ∈ Σ .
Such a mapping always satisfies

∀(x,y) ∈ I : ϕ0(x)ϕ0(y)∼I ′ ϕ0(y)ϕ0(x) . (1.2)

Conversely, any mappingϕ0 : Σ → (Σ ′)∗ satisfying (1.2) extends to a trace morphism.
Often, when considering a morphismϕ : M(Σ , I)→M(Σ ′, I ′), we actually work with
a morphismψ : Σ∗→ (Σ ′)∗ defined by a fixed mappingϕ0, i.e. such a morphismψ
that the diagram

Σ∗
ψ−−−→ (Σ ′)∗

ν

y yν ′

M(Σ , I) −−−→
ϕ

M(Σ ′, I ′)
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commutes, where the mappingsν , ν ′ are the natural morphisms to quotient monoids.
The morphismψ is called alifting of ϕ and we will denote it byϕ too. That is,
we allow ϕ to be applied also to words, the image of any word underϕ is always
considered to be a word and the equality sign between words always means their
equality in a free monoid. We adopt this convention in order to strictly differentiate
algebraic considerations from combinatorics on words.

Let us recall that acodeis a finite set of words satisfying no non-trivial relation.
In other words, a finite subsetC⊆ Σ∗ is a code if and only if the submonoid generated
by C in Σ∗ is free overC, i.e. the morphismϕ : C∗ → Σ∗ defined for allu ∈ C by
the ruleϕ(u) = u is injective. Therefore an injective morphism of free monoids is
sometimes called a coding.

As a natural generalization of the notion of codes to trace monoids we obtain the
notion of trace codes.

Definition 1.2.1. If a submonoidM of M(Σ , I) is isomorphic to a trace monoid, then
its minimal set of generators(M \1)\ (M \1)2 is called atrace code.

Because trace codes are exactly images of sets of generators under injective trace
morphisms, the terminology of the classical theory of codes can be adopted.

Definition 1.2.2. We say that a trace morphismϕ : M(Σ , I)→M(Σ ′, I ′) is acoding
if it is injective.

The following theorem, which was proved by Bruyère and De Felice, shows that in
order to obtain by the above construction a trace coding we have to start with a word
coding on the corresponding free monoids.

Proposition 1.2.3 ([8]). For an arbitrary trace codingϕ, every lifting ofϕ to the
corresponding free monoids is a coding.

But in essence this interesting result says a lot about morphisms of free monoids
rather than about trace morphisms, so we do not have to be conscious of it in our
considerations. In fact, the result is deeply based on the defect effect of non-injective
morphisms, which is a specific property of free monoids.

In connection with decision problems of trace codings, two particular classes of
trace morphisms were already considered:

• strong morphisms, introduced in [10],

• cp-morphisms, which were introduced in [17] as morphisms associated with
clique-preserving morphisms of independence alphabets.

In order to deal with the general case, we have generalized the latter notion and we
refer to the arising morphisms as weak. This approach also suggests us to use an
alternative definition of cp-morphisms.
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Definition 1.2.4. A morphismϕ : M(Σ , I)→M(Σ ′, I ′) is calledstrongif

∀(x,y) ∈ I \ id
Σ

: alph(ϕ(x))∩alph(ϕ(y)) = /0 .

It is calledweakif

∀x∈ Σ : alph(ϕ(x))×alph(ϕ(x))⊆ I ′ .

It is called acp-morphismif it is weak and satisfies∀x ∈ Σ , a ∈ Σ ′ : |ϕ(x)|a ≤ 1,
i.e. every letter is mapped to a reduced trace.

To obtain for strong and weak morphisms descriptions analogous to the above one
for general morphisms, it is enough to replace the condition (1.2) with respectively

∀(x,y) ∈ I \ id
Σ

: alph(ϕ0(x))×alph(ϕ0(y))⊆ I ′ \ id
Σ ′

and

∀(x,y) ∈ I : alph(ϕ0(x))×alph(ϕ0(y))⊆ I ′ .

Some useful properties of strong and weak morphisms are satisfied also by their
common generalization naturally arising from these characterizations.

Definition 1.2.5. A morphismϕ : M(Σ , I)→M(Σ ′, I ′) is termed answ-morphismif

∀(x,y) ∈ I \ id
Σ

: alph(ϕ(x))×alph(ϕ(y))⊆ I ′ .

Remark1.2.6. Notice that every trace morphism from a free monoid is strong and
dually every trace morphism to a free commutative monoid is weak. Further, it is clear
that a composition of strong (weak) morphisms is always strong (weak respectively);
but this is far from being true for sw-morphisms (see Proposition2.2.4below).

The following simple observation suggests how rich the class of strong codings is.

Definition 1.2.7. We say that a morphismϕ : M(Σ , I)→M(Σ ′, I ′) is connectedif for
everyx∈ Σ the traceϕ(x∼I ) is connected.

Lemma 1.2.8 ([10]). Every connected trace coding is strong.

Proof. Let ϕ : M(Σ , I)→ M(Σ ′, I ′) be a connected coding and let(x,y) ∈ I \ id
Σ

.
Then we have|PR(ϕ(x∼I ))| = |PR(ϕ(y∼I ))| = 1. Due to the injectivity ofϕ,
Proposition1.1.19implies alph(ϕ(x))×alph(ϕ(y))⊆ I ′ \ id

Σ ′. Therefore the coding
is strong.

Let us denote the classes of all strong and weak morphisms byS , W respectively.
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Definition 1.2.9. The trace code problemasks to decide for a given trace morphism
ϕ : M(Σ , I)→M(Σ ′, I ′) whether it is a coding.

Let C be an arbitrary class of trace morphisms. Thetrace coding problemfor the
classC (in shortC -TCP) asks to decide for given two independence alphabets(Σ , I)
and(Σ ′, I ′) whether there exists a coding fromM(Σ , I) to M(Σ ′, I ′) belonging toC .
If the classC contains all trace morphisms, then the question is just whetherM(Σ , I)
is isomorphic to a submonoid ofM(Σ ′, I ′) and we call it briefly the trace coding
problem (TCP).

The trace code problem is well-known to be undecidable even for strong morphisms
when both monoids are fixed andM(Σ , I) is free (see e.g. [15]). The undecidability
result in the case of cp-morphisms was established in [16] using substantially more
complex construction; we generalize this statement in Proposition4.2.1, which forms
one step of the proof of the main result. On the other hand, some positive results
were also achieved; most notable are the decidability of the trace code problem for
connected morphisms and for codomain monoids whose independence alphabet is
either a transitive forest [1] or acyclic [28, 32].

However, when we consider the problems of existence of codings, the situation is
entirely different. In the first place, unlike for the trace code problem, it is not clear
whether the complement of the problem is recursively enumerable.

The two classical cases of the TCP are simple: all finitely generated free monoids
can be embedded into the one with two generators and for free commutative monoids
injectivity of a morphism coincides with linear independence of images of letters.
These characterizations were generalized in [7] to all instances of the TCP where the
domain monoid is a direct product of free monoids. In both classical cases, there
exists a strong coding as soon as there exists an arbitrary coding; but a weak coding
between free monoids can be constructed only if the codomain alphabet has at least
the same number of elements as the domain alphabet.

TheS -TCP turned out to be NP-complete due to the following result.

Proposition 1.2.10 ([17]). Let (Σ , I) and (Σ ′, I ′) be independence alphabets and let
H : Σ → 2Σ ′ be any mapping. Then there exists a strong coding fromM(Σ , I) to
M(Σ ′, I ′) satisfyingalph◦ϕ|

Σ
= H if and only if for every x,y∈ Σ :

H(x)×H(y)⊆ I ′ \ id
Σ ′ ⇐⇒ (x,y) ∈ I \ id

Σ
,

H(x)×H(y)⊆ I ′ =⇒ (x,y) ∈ I .

The reason for the relative simplicity of theS -TCP is that a strong coding can
be easily constructed as soon as reasonable contents of images of letters are chosen
(this choice is provided by a mappingH). To see this, notice that in the image of
a letter dependent letters may occur, which enables us to encode all of the information
needed for deciphering whenever we can do it independently for all letters of the
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domain alphabet. And the defining condition of strong morphisms provides us with
this freedom since the only properties we have to satisfy are commutativity and linear
independence of images of independent letters, which are trivial in this case as their
contents are disjoint. On the other hand, if we consider weak morphisms, the image
of any letter consists entirely of independent letters and at the same time images of
independent letters may contain common letters. So we have less opportunities to
encode some information into images of letters under weak morphisms than under
general morphisms and that is why the problem of existence of weak codings becomes
even more complex than the one for general codings (see Theorem5.1).

The main motive for considering weak trace morphisms is that, compared with
general trace morphisms, they possess many properties substantially simplifying their
manipulation. For instance, the following simple observations are very useful.

Lemma 1.2.11.Let ϕ : M(Σ ,Σ ×Σ)→M(Σ ′, I ′) be an arbitrary weak coding from
a free commutative monoid. Then the set A=

⋃
{alph(ϕ(x)) | x∈ Σ} forms a clique

in the graph(Σ ′, I ′) and there exists an injective mappingρ : Σ → A which satisfies
ρ(x) ∈ alph(ϕ(x)) for every x∈ Σ . In particular, |A| ≥ |Σ |.

Proof. As ϕ is an injective linear mapping, it is defined by a matrix with its rank equal
to |Σ |, which allows us to construct a desired mappingρ.

Lemma 1.2.12.Letϕ : M(Σ , I)→M(Σ ′, I ′) be a weak morphism and u∈ Σ∗ a word.

Thenϕ(←−u )∼I ′
←−−
ϕ(u).

Proof. We just calculate

ϕ(←−u ) = ϕ(xn) · · ·ϕ(x1)∼I ′
←−−−
ϕ(xn) · · ·

←−−−
ϕ(x1) =

←−−−−−−−−−
ϕ(x1) · · ·ϕ(xn) =

←−−
ϕ(u) ,

whereu = x1 · · ·xn, n∈ N0 andx1, . . . ,xn ∈ Σ .



Chapter 2

Restricted Classes of Morphisms

In this chapter we concentrate on classes of trace morphisms defined by additional
requirements on contents of images of generators of the domain monoid. Section2.1
is devoted to the study of properties of weak morphisms; we also develop there some
methods of manipulating weak morphisms and codings and introduce the notation
used in the subsequent chapters when constructing counter-examples to injectivity for
weak morphisms. In Sections2.2and2.3we reveal connections between the existence
of general codings and the existence of weak codings and so-called co-strong codings
respectively. We also apply the calculus of weak codings to show in Section2.2 that
in order to decide the existence of codings between trace monoids it is enough to deal
separately with all connected components of the dependence alphabet of the domain
monoid and in Section2.3 that when the dependence alphabet of the domain monoid
is C3-free there exists a co-strong coding between given trace monoids every time an
arbitrary coding exists.

2.1 Weak codings

A trace morphismϕ : M(Σ , I)→M(Σ ′, I ′) is not a coding if and only if there exist
two wordsu,v∈ Σ∗ such thatu �I v andϕ(u)∼I ′ ϕ(v). It is often useful to consider
just minimal wordsu andv satisfying these conditions, i.e. those possessing the least
number|u|+ |v|. For such counter-examples

init(u∼I )∩ init(v∼I ) = fin(u∼I )∩fin(v∼I ) = /0 (2.1)

always holds; otherwise a smaller counter-example can be obtained by cancellation
due to Lemma1.1.6.

If a morphismϕ is a coding, then in particular

∀(x,y) ∈ D : ϕ(xy) �I ′ ϕ(yx) , (2.2)

15
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which is equivalent to saying that the domain dependence relationD is induced by the
dependence relationD′ via the mappingϕ. Observe that a morphismϕ is weak and
satisfies (2.2) if and only if

∀x,y∈ Σ : alph(ϕ(x))×alph(ϕ(y))⊆ I ′ ⇐⇒ (x,y) ∈ I . (2.3)

In this section we investigate properties of counter-examples to injectivity for weak
trace morphisms, introduce some techniques for manipulating weak morphisms and
develop several methods of disproving their injectivity.

Let us start with one observation about the form of counter-examples to injectivity
for morphisms satisfying (2.3).

Lemma 2.1.1.Let ϕ : M(Σ , I)→M(Σ ′, I ′) be a trace morphism satisfying(2.3) and
let u,v∈ Σ∗ be any words such thatϕ(u)∼I ′ ϕ(v). Theninit(u∼I )× init(v∼I )⊆ I.

Proof. Suppose that there exists(x,y) ∈D such thatx∈ init(u∼I ) andy∈ init(v∼I ).
By (2.3) there area∈ alph(ϕ(x)), b∈ alph(ϕ(y)) satisfying(a,b)∈D′. Asϕ is weak,
a∈ init(ϕ(u)∼I ′) andb∈ init(ϕ(v)∼I ′), which contradictsϕ(u)∼I ′ ϕ(v).

The following lemma shows that if a weak morphismϕ is not injective, then it can
be verified by a counter-example of one of two special forms — one of them based
purely on linear dependence of words and the other on independence of letters of the
codomain alphabet.

Lemma 2.1.2.Let ϕ : M(Σ , I)→M(Σ ′, I ′) be a weak trace morphism which is not
a coding. Then at least one of the following cases arises:

(i) There exists X⊆ Σ such that X×X ⊆ I and the system(ϕ(x))x∈X of elements
of the free commutative monoid generated by the set⋃

{alph(ϕ(x)) | x∈ X}

is linearly dependent.

(ii) There exists u∈ Σ∗ such that u�I
←−u , ϕ(u) ∼I ′ ϕ(←−u ), u∼I is connected and

init(u∼I )∩fin(u∼I ) = /0.

Moreover, if D(x) 6= /0 for every x∈ Σ , i.e.Σ = D(Σ), the second claim is always true.

Before presenting the proof of this claim, let us give an example.

Example 2.1.3.Consider the relationD on the alphabetΣ = {x1,x2,x3,x4,x5,x6}
defined by the graph

x1
Q

QQ

x2

�
��

x3 x4 x5 x6
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and let
M(Σ ′, I ′) = {a1,a2}

∗×{b1,b2}
∗×{c1,c2}

∗×{d1,d2}
∗ .

Then one can disprove injectivity of any weak morphismϕ from M(Σ , I) to M(Σ ′, I ′)
with the following contents of images:

alph(ϕ(x1)) = {a1,b1} alph(ϕ(x3)) = {a2,b2,c1} alph(ϕ(x5)) = {c1,d2}
alph(ϕ(x2)) = {a1,b1} alph(ϕ(x4)) = {a1,b1,c2,d1} alph(ϕ(x6)) = {d1} .

Since each of the lettersa2, b2, c2 andd2 occurs just in one of the images of letters,
without loss of generality we can assume thatϕ has the form:

ϕ(x1) = ai
1b j

1 ϕ(x3) = a2b2cm
1 ϕ(x5) = cq

1d2

ϕ(x2) = ak
1bl

1 ϕ(x4) = an
1bo

1c2dp
1 ϕ(x6) = dr

1 .

Let us consider for instance the caseln > ko, jn > io andil > jk. Then the word

u = xr(ln−ko)
1

xq
3xr( jn−io)

2
xr(il− jk)

4
xm

5 xp(il− jk)
6

verifies the condition (ii ) of the lemma. In all the other cases such a wordu can be
constructed similarly — the inequalities determine the positions of the lettersx1, x2
andx4 with respect tox3.

Proof of Lemma2.1.2. We can assume that (2.2) holds, otherwise the condition (ii )
is true. Take some wordsv,w ∈ Σ∗ satisfyingv �I w andϕ(v) ∼I ′ ϕ(w) such that
the number|v|+ |w| is minimal possible. Consider the words= v←−w . Then we have
←−s = w←−v and thereforeϕ(s)∼I ′ ϕ(←−s ) by Lemma1.2.12.

If s�I
←−s then we repeatedly employ cancellation to remove from the words those

letters which are simultaneously initial and final letters of the traces∼I until the
set init(s∼I )∩ fin(s∼I ) is empty. More precisely, for anyx∈ init(s∼I )∩ fin(s∼I ),
if |s|x = 1 thens∼I xt and←−s ∼I x←−t , and if |s|x ≥ 2 thens∼I xtx and←−s ∼I x←−t x,
for some wordt ∈ Σ∗, so we can use thist as a new words; the propertiess�I

←−s and
ϕ(s) ∼I ′ ϕ(←−s ) are preserved thanks to Lemma1.1.6. Now Lemma1.1.6guarantees
the existence of some(x,y) ∈ D such thatπx,y(s) 6= πx,y(←−s ). Let the wordu ∈ Σ∗

represent the connected component ofs∼I which contains the lettersx andy. Then
both u �I

←−u andϕ(u) ∼I ′ ϕ(←−u ) hold by Lemma1.1.6since two dependent letters
from Σ ′ can occur in the images of elements ofΣ under a weak morphism only within
one component. This proves the second condition.

It remains to deal with the casev←−w ∼I w←−v . Due to the minimality ofv andw,
we can use (2.1) to obtainv = w\v andw = v\w, and therefore these words represent
independent traces by Lemma1.1.13. This implies alph(ϕ(v))× alph(ϕ(w)) ⊆ I ′

since the morphismϕ is weak. Hence the set alph(ϕ(v)) = alph(ϕ(w)) forms a clique
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in the graph(Σ ′, I ′), and thus also alph(v)∪alph(w) is a clique in(Σ , I) by (2.3) and
the case (i) arises. Under the additional assumption, we can now take anyx∈ alph(vw)
andy∈ D(x) to obtainvyw�I wyv∼I

←−−vywusing the minimality ofv andw and then
choose the only non-trivial connected component to get the validity of the second
condition as in the previous paragraph.

With Lemma2.1.2in hand, it is easy to find out that the status of the existence of
weak codings often remains unchanged by adding new completely independent letters
into the codomain alphabet.

Lemma 2.1.4. Let (Σ , I) and (Σ ′∪Γ , I ′) be two independence alphabets such that
Σ ′ ∩Γ = /0, Γ × (Σ ′ ∪Γ ) ⊆ I ′ and Σ = D(Σ). Let ϕ : M(Σ , I)→M(Σ ′∪Γ , I ′) be
an arbitrary weak morphism. Thenϕ is a coding if and only if the weak morphism
π

Σ ′ ◦ϕ : M(Σ , I)→M(Σ ′, I ′) is a coding.

Proof. Notice that any counter-example of the second form of Lemma2.1.2for the
morphismπ

Σ ′ ◦ϕ is also a counter-example for the morphismϕ.

In the following, the task of deciding the existence of weak codings between given
trace monoids is decomposed into separate tasks for the connected components of
the domain dependence alphabet. First, we deal with letters of the domain alphabet
independent on all the others.

Lemma 2.1.5.There exists a weak coding

ϕ : M(Σ , I)×{x}∗→M(Σ ′, I ′)

if and only if there exist a letter a∈ Σ ′ and a weak coding

ψ : M(Σ , I)→M(Σ ′ \ ({a}∪D′(a)), I ′) .

Proof. The converse implication of this claim is easily obtained by settingϕ(x) = a
andϕ(y) = ψ(y) for all y ∈ Σ . In order to prove the direct one, observe first that
alph(ϕ(x))×alph(ϕ(s)) ⊆ I ′ for eachs∈M(Σ , I) asϕ is weak. We have to choose
a suitable lettera in alph(ϕ(x)). For the sake of contradiction, let us assume that
for everya∈ alph(ϕ(x)) there exists a non-empty setXa ⊆ Σ such thatXa×Xa ⊆ I
and the system

(
π

Σ ′\{a}(ϕ(y))
)

y∈Xa
is linearly dependent. ProvidedXa was chosen

minimal possible, we can write

π
Σ ′\{a}

(
ϕ

(
∏

y∈Xa

yiay

))
∼I ′ π

Σ ′\{a}

(
ϕ

(
∏

y∈Xa

y jay

))
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for someiay, jay∈N0 satisfyingiay = 0 ⇐⇒ jay 6= 0. If there exista,b∈ alph(ϕ(x))
andz∈ Xb such that{z}×Xa * I , then

ϕ

(
∏

y∈Xa

yiay ·z· ∏
y∈Xa

y jay

)
∼I ′ ϕ

(
∏

y∈Xa

y jay ·z· ∏
y∈Xa

yiay

)
contradicts the injectivity ofϕ. OtherwiseXa×Xb⊆ I holds for alla,b∈ alph(ϕ(x)).
Let us denote

ia =
∣∣∣∣ϕ(∏

y∈Xa

yiay

)∣∣∣∣
a

and ja =
∣∣∣∣ϕ(∏

y∈Xa

y jay

)∣∣∣∣
a

.

Becauseϕ is a coding, we can assume thatia > ja and consider the positive integer
k = ∏a∈alph(ϕ(x))(ia− ja). Then we also get a contradiction with the injectivity ofϕ :

ϕ

 ∏
a∈alph(ϕ(x))

y∈Xa

y
k·|ϕ(x)|a·iay

ia− ja

∼I ′ ϕ

xk · ∏
a∈alph(ϕ(x))

y∈Xa

y
k·|ϕ(x)|a· jay

ia− ja

 .

Thus we can choose a lettera ∈ alph(ϕ(x)) such that, for every subsetX ⊆ Σ

which satisfiesX×X ⊆ I , the system
(
π

Σ ′\{a}(ϕ(y))
)

y∈X is linearly independent. Let
us defineψ(y) = π

Σ ′\{a}(ϕ(y)) for all y ∈ Σ . As for eachy ∈ Σ the emptiness of

the set alph(ϕ(y))∩D′(a) follows from the weakness ofϕ, the weak morphismψ

really leads to the desired monoid. Clearly no counter-example of the form (i) of
Lemma2.1.2exists forψ due to our choice of the lettera. Let a wordu∈ Σ∗ satisfy
the condition (ii ) of Lemma2.1.2for ψ. Thenψ(u)∼I ′ ψ(←−u ) impliesϕ(u)∼I ′ ϕ(←−u )
since{a}× alph(ϕ(u)) ⊆ I ′. But this contradicts the injectivity ofϕ. Henceψ is
a weak coding.

Lemma 2.1.6. There exists a weak coding fromM(Σ , I) to M(Σ ′, I ′) if and only if
there exists a weak codingϕ : M(Σ , I)→M(Σ ′, I ′) such that for every x∈ Σ \D(Σ)
the alphabetΣ ′ contains some letter a satisfying

alph(ϕ(x)) = {a} & ∀y∈ Σ \{x} : {a}×alph(ϕ(y))⊆ I ′ \ id
Σ ′ .

Proof. It is obtained by applying Lemma2.1.5inductively.

Now we can state the general version of the decomposition result.

Proposition 2.1.7.Let(Σi , Ii) for i ∈ {1, . . . ,n} and(Σ ′, I ′) be arbitrary independence
alphabets. Then there exists a weak coding

ϕ :
n

∏
i=1

M(Σi , Ii)→M(Σ ′, I ′)
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if and only if there exist subalphabetsΣ ′i ⊆ Σ ′, for every i∈ {1, . . . ,n}, such that
Σ ′i ×Σ ′j ⊆ I ′ \ id

Σ ′ holds for every i, j ∈ {1, . . . ,n}, i 6= j, and weak codings

ϕi : M(Σi , Ii)→M(Σ ′i , I
′)

for every i∈ {1, . . . ,n}.

Proof. To get the converse implication, it is enough to defineϕ as the product of
all codingsϕi . When considering the direct one, we can assume thatϕ satisfies the
condition of Lemma2.1.6. Let M(Σ , I) denote the domain product monoid, where
Σ is the disjoint union ofΣi andD =

⋃n
i=1Di . Then in particular

∀i ∈ {1, . . . ,n} : D(Σi)⊆ Σi & (Σi \D(Σi))×Σ ⊆ I

andD(Σ) =
⋃n

i=1D(Σi). Let us consider the alphabets

Σ
′
0 =

⋃
{alph(ϕ(x)) | x∈ D(Σ)} and X′ = Σ

′
0∩D′(Σ ′0) .

Applying Lemma2.1.4to the restriction ofϕ to M(D(Σ), I), we obtain a weak coding

ψ = πX′ ◦ϕ|M(D(Σ),I) : M(D(Σ), I)→M(X′, I ′)

satisfyingX′ =
⋃
{alph(ψ(x)) | x∈ D(Σ)}. Now everya∈ X′ appears in the images

of letters underψ only within one connected component of the graph(D(Σ),D);
indeed, ifa ∈ alph(ψ(x))∩alph(ψ(y)) then there exists a letterb ∈ D′(a)∩X′ and
consequently alsoz∈D(Σ) with b∈ alph(ψ(z)), which satisfiesx D zandy D zdue to
the weakness ofψ. Therefore alph(ψ(x))∩alph(ψ(y)) = /0 holds for eachx∈ D(Σi)
andy∈ D(Σ j) wheneveri 6= j. So if we take

Σ
′
i =

⋃
{alph(ψ(x)) | x∈ D(Σi)}∪

⋃
{alph(ϕ(x)) | x∈ Σi \D(Σi)}

and define

ϕi(x) =

{
ψ(x) for x∈ D(Σi) ,

ϕ(x) for x∈ Σi \D(Σi) ,

we reach the desired conclusion due to our initial assumption onϕ.

Lemma2.1.2can be also used to deduce that if a weak morphismϕ is strong too,
then verifying (2.3) suffices for concluding thatϕ is a coding.

Lemma 2.1.8. Every non-erasing strong morphismϕ : M(Σ , I)→M(Σ ′, I ′) which
satisfies(2.3) is a coding. In particular, if|Σ | > 1 then every morphismϕ from Σ∗

to M(Σ ′, I ′) satisfying(2.3) is a coding.
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Proof. We prove that none of the cases of Lemma2.1.2can occur. The first condition
does not hold sinceϕ is non-erasing and contents of images of distinct independent
letters are disjoint becauseϕ is strong. So assume thatu∈ Σ∗ satisfies the case (ii ) of
Lemma2.1.2. Takex∈ init(u∼I ) and lety be the last letter inu such that(x,y) ∈ D.
By (2.3) there exista∈ alph(ϕ(x)) andb∈ alph(ϕ(y)) with (a,b) ∈ D′. Due to the
weakness ofϕ, a∈ init(ϕ(u)∼I ′) = fin(ϕ(u)∼I ′). Becausea /∈ alph(ϕ(y)), there is
a letterzbehind the last occurrence ofy in u satisfyinga∈ alph(ϕ(z)). As ϕ is strong,
either(x,z) ∈D or x = z. But the former case is impossible by the choice ofy and the
latter case impliesx∈ init(u∼I )∩fin(u∼I ), which contradicts the assumptions.

The second claim now follows from Remark1.2.6.

Now we are going to prove one assertion useful for showing the injectivity of
a weak morphism by induction on the structure of the domain dependence alphabet.
First, we state a technical lemma about word morphisms.

Lemma 2.1.9.Let ϕ : Σ∗→ (Σ ′)∗ be a morphism. Let X⊆ Σ , a∈ Σ ′ and u,v∈ Σ∗

satisfyϕ(u) = ϕ(v), |u|x = |v|x for every x∈ X and

∀x∈ X ∀y∈ Σ : alph(ϕ(y)) * {a} =⇒ πx,y(u) = πx,y(v) .

Thenϕ(π
Σ\X(u)) = ϕ(π

Σ\X(v)).

Proof. Observe that after removing thei-th occurrence of a letterx ∈ X from both
wordsu andv, for i ∈ {1, . . . , |u|x}, all assumptions of the lemma remain preserved.
More precisely, if alph(ϕ(x)) * {a} then the occurrences of letters eliminated in this
way from the wordsϕ(u) andϕ(v) are exactly the same and if alph(ϕ(x)) = {a} then
all occurrences ofa eliminated fromϕ(u) andϕ(v) belong to the samea-block.

Lemma 2.1.10.Letϕ : M(Σ , I)→M(Σ ′, I ′) be an sw-morphism and x∈ Σ such that
ϕ|M(Σ\{x},I) is a coding. Let words u,v ∈ Σ∗ satisfyϕ(u) ∼I ′ ϕ(v), |u|x = |v|x and

πx,y(u) = πx,y(v) for all y ∈ D(x). Then u∼I v.

Proof. To concludeu∼I v, it remains to showπ
Σ\{x}(u) ∼I π

Σ\{x}(v). We verify
the factϕ(π

Σ\{x}(u))∼I ′ ϕ(π
Σ\{x}(v)) using Lemma1.1.6, which is enough because

the restrictionϕ|M(Σ\{x},I) is injective. It is clear from the equality|u|x = |v|x that

every letter has the same number of occurrences inϕ(π
Σ\{x}(u)) andϕ(π

Σ\{x}(v)).
Consider(a,b) ∈ D′. If a,b /∈ alph(ϕ(x)) then

π
a,b

(
ϕ

(
π

Σ\{x}
(u)
))

= π
a,b

(ϕ(u)) = π
a,b

(ϕ(v)) = π
a,b

(
ϕ

(
π

Σ\{x}
(v)
))

.

Otherwise saya∈ alph(ϕ(x)). Then for everyy∈ Σ \ {x} such thatb∈ alph(ϕ(y)),
we havey D x sinceϕ is an sw-morphism. Therefore Lemma2.1.9can be applied
to the morphismπa,b◦ϕ : Σ∗→ {a,b}∗ for the set{x}, the lettera and the wordsu

andv. We obtain the desired equalityπa,b

(
ϕ(π

Σ\{x}(u))
)
= πa,b

(
ϕ(π

Σ\{x}(v))
)
.
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Notice that if the morphismϕ is not assumed to be an sw-morphism, Lemma2.1.10
does not hold:

Example 2.1.11.Let

Σ = {x,y,z, p,q, r}, I = id
Σ
∪{(x,y),(y,x)} and

M(Σ ′, I ′) = {a1,a2}
∗×{b1,b2}

∗×{c1,c2}
∗ .

Consider the morphismϕ : M(Σ , I)→M(Σ ′, I ′) given by the rules:

ϕ(x) = a1a2a1 ϕ(y) = a1a2a1b1b2
2c1c2 ϕ(z) = a2a1a2c1

ϕ(p) = a1b1 ϕ(q) = a2a2
1b2c2c2

1c2 ϕ(r) = a1a2b2c2c1 .

It is not hard to verify that the restriction ofϕ to the submonoidM(Σ \{x}, I) is
a coding; this is performed in detail as Example2.1.21. But ϕ is not injective because
ϕ(yzypxqzr) ∼I ′ ϕ(pzxqry2z) holds althoughyzypxqzr�I pzxqry2z. Moreover, the
morphismϕ can be easily modified to ensure that any counter-exampleϕ(u)∼I ′ ϕ(v)
to the injectivity ofϕ, whereu,v∈ Σ∗, satisfies|u|x = |v|x andπx,x(u) = πx,x(v) for
all lettersx∈ D(x); it is sufficient to introduce a new letterx′ into theϕ-image ofx
and new lettersz′, p′, q′ andr ′, all of them dependent exactly onx′, into the images of
the corresponding letters inΣ .

The aim of the following considerations is to describe one method of manipulating
numbers of occurrences of letters in the images under a weak morphism in order to
simplify the morphism before starting any computations.

Definition 2.1.12.For a morphismϕ : M(Σ , I)→M(Σ ′, I ′) and a mappingN : Σ→N,
let ϕN denote the morphism fromM(Σ , I) to M(Σ ′, I ′) defined, for allx∈ Σ , by the
rule ϕN(x) = ϕ(x)N(x).

Lemma 2.1.13.If ϕ : M(Σ , I)→M(Σ ′, I ′) is a coding and N: Σ →N is an arbitrary
mapping, thenϕN is a coding as well.

Proof. It is clear that idNM(Σ ,I) is a coding andϕN = ϕ ◦ idN
M(Σ ,I).

For any alphabetΣ and n ∈ N, let us denote byNn the corresponding constant
mapping, i.e.Nn(x) = n for all x∈ Σ .

As the construction of Definition2.1.12preserves contents of images of letters, it is
clear thatϕN is a weak morphism wheneverϕ is. Now we state a simple observation
and then we use it to prove that for weak morphisms the converse of Lemma2.1.13
also holds.

Lemma 2.1.14.If ϕ : M(Σ , I)→M(Σ ′, I ′) is a weak morphism and n∈N any positive
integer, thenϕNn = ϕ ◦ idNn

M(Σ ,I) = idNn
M(Σ ′,I ′) ◦ϕ.
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Lemma 2.1.15.Let ϕ : M(Σ , I)→M(Σ ′, I ′) be a weak morphism. IfϕN is a coding
for some N: Σ → N, thenϕ is a coding as well.

Proof. Let n = lcm{N(x) | x∈ Σ} and defineN′ : Σ → N by the ruleN′(x) = n/N(x)
for all x∈ Σ . Then the morphismϕNn = ϕN ◦ idN′

M(Σ ,I) is a coding. Since we also have

ϕNn = idNn
M(Σ ′,I ′) ◦ϕ by Lemma2.1.14, this gives us the injectivity ofϕ.

The previous lemma is a typical property of weak morphisms, once again it is not
true in general:

Example 2.1.16.TakeΣ = {x,y,z} andΣ ′ = {a,b}. Let a morphismϕ : Σ∗→ (Σ ′)∗

be given by the rulesϕ(x) = a, ϕ(y) = b, ϕ(z) = ab and considerN(x) = 2 and
N(y) = N(z) = 1. ThenϕN is a coding, butϕ is not.

The following statement asserts that every weak coding can be modified without
violating its injectivity to achieve that in the image of any letter there is at most one
occurrence of an element from a reasonably chosen subset of the codomain alphabet.

Lemma 2.1.17.Let ϕ : M(Σ , I)→M(Σ ′, I ′) be a weak coding and A⊆ Σ ′ such that

∀x∈ Σ : |alph(ϕ(x))∩A| ≤ 1 .

Then there exists a weak codingψ : M(Σ , I)→M(Σ ′, I ′) satisfying

∀x∈ Σ : alph(ψ(x)) = alph(ϕ(x)) & |ψ(x)|A≤ 1

and for all x,y∈ Σ , a,b∈ alph(ϕ(x))∩alph(ϕ(y)) :

|ψ(x)|a
|ψ(y)|a

:
|ψ(x)|b
|ψ(y)|b

=
|ϕ(x)|a
|ϕ(y)|a

:
|ϕ(x)|b
|ϕ(y)|b

.

Proof. Let
n = lcm{|ϕ(x)|A | x∈ Σ , alph(ϕ(x))∩A 6= /0}

and defineN : Σ → N andN′ : Σ ′→ N by the rules:

N(x) =

{
n/|ϕ(x)|A if alph(ϕ(x))∩A 6= /0 ,

1 otherwise,

N′(a) =

{
n for a∈ A ,

1 for a /∈ A .

Let ψ be the morphism given by the formula:

ψ(x) =

{
a·π

Σ ′\A(ϕN(x)) if a∈ alph(ϕ(x))∩A ,

ϕN(x) if alph(ϕ(x))∩A = /0 .
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ThenϕN = idN′
M(Σ ′,I ′) ◦ψ is a coding by Lemma2.1.13and thusψ is also injective.

The remaining conditions are easy to verify.

The following notions are introduced in order to formalize reasoning in the course
of a construction of a counter-example to injectivity.

Definition 2.1.18.Let ϕ : M(Σ , I)→M(Σ ′, I ′) be a morphism. Letu,v∈ Σ∗. We say
that the pair(u,v) is asemi-equalityfor ϕ if init (u∼I )∩ init(v∼I ) = /0 and there exist
wordss, t ∈ (Σ ′)∗ such thatϕ(u)s∼I ′ ϕ(v)t. We call this semi-equalitynon-trivial if
there do not exist wordsw, r ∈ Σ∗ such thatuw∼I vr.

The next definition makes sense thanks to the defining properties of semi-equalities
due to Lemma1.1.15.

Definition 2.1.19. If (u,v) is a semi-equality for a morphismϕ : M(Σ , I)→M(Σ ′, I ′),
then the pair

(u′,v′) =
(
(ϕ(v)\ϕ(u))∼I ′,(ϕ(u)\ϕ(v))∼I ′

)
∈M(Σ ′, I ′)×M(Σ ′, I ′)

is called thestateof (u,v) and the pair(red(u′), red(v′)) thereduced stateof (u,v).

When dealing with semi-equalities, we often omit the reference to the morphism
provided it is clear from the context. Recall that by Lemma1.1.13every state(u′,v′)
satisfies alph(u′)×alph(v′)⊆ I ′ \ id

Σ ′.
The following lemma states that semi-equalities arise as initial parts of minimal

counter-examples to injectivity.

Lemma 2.1.20.Let ϕ : M(Σ , I)→M(Σ ′, I ′) be a morphism and u,v∈ Σ∗ be words
satisfying u�I v andϕ(u)∼I ′ ϕ(v) such that|u|+ |v| is minimal. If w� u and r� v,
then(w, r) is a semi-equality.

All of the information we need to explore possible continuations of a semi-equality
is contained in its state. Let us demonstrate this by an example.

Example 2.1.21.The diagram below shows that the restriction of the morphismϕ

introduced in Example2.1.11to the submonoidM(Σ \{x}, I)∼= {y,z, p,q, r}∗ is really
injective. The idea of the calculation is to find a counter-example to injectivity by
starting from the pair(1,1) and successively adding lettersy, z, p, q andr from the
right to both components to build new semi-equalities with the aim of reaching some
semi-equality possessing the state(1,1). The states of the semi-equalities obtained
by this construction are depicted here together with the letters fromΣ used to acquire
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them; for each state, the underlined component is the one we try to extend in every
possible way without violating (1.1).

(1,1)
(y,p) // (a2a1b2

2c1c2,1)
(1,z) // (b2

2c2,a2)
(1,q) //

(1,r)
��

(b2,a
2
2a2

1c2
1c2)

(1,a2a2
1c2c2

1c2) (q,1)
// (b2,1)

(1,r)
��

(1,q)oo

(1,z)
// (b2,a2a1a2c1)

(z,1)oo (a1b2c1c2,1)

(1,a1a2c2c1)

(r,1)

OO

(p,1) // (b1,a2c2c1)
(q,1) // (a2

1b1b2c1c2,1)

(1,p)

OO

For weak morphisms, Lemma2.1.20can be partially reversed, namely, if we have
a semi-equality whose state consists entirely of independent letters, then it can be
prolonged into a counter-example.

Lemma 2.1.22.Let ϕ : M(Σ , I)→ M(Σ ′, I ′) be a weak morphism such that there
exists a non-trivial semi-equality(u,v) for ϕ with a state(u′,v′) which satisfies

alph(u′v′)×alph(u′v′)⊆ I ′ .

Thenϕ is not a coding.

Proof. Using Lemma1.2.12one calculates

ϕ(u←−v )∼I ′ ϕ(u)
←−−
ϕ(v)∼I ′ ϕ(v)

←−−
ϕ(u)∼I ′ ϕ(v←−u ) ,

where the equivalence in the middle is a consequence of Lemma1.1.13since

(ϕ(v)\ϕ(u))(
←−−−−−−−
ϕ(u)\ϕ(v))∼I ′ (ϕ(u)\ϕ(v))(

←−−−−−−−
ϕ(v)\ϕ(u))

due to the assumption.

Let us now justify the consideration of reduced states. In Section4.4 we need to
find a counter-example to injectivity under certain assumptions. In order to do this,
we construct some semi-equality and then inductively extend it until Lemma2.1.22
can be applied. Because a counter-example has to be found regardless of numbers
of occurrences of letters in the images of elements ofΣ , the reduced state contains
exactly the information common to all the possible cases. The first prerequisite for
this construction is the ability to multiply the lengths of blocks in the state of the
current semi-equality by an arbitrary fixed positive integer.
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Lemma 2.1.23.Let ϕ : M(Σ , I)→M(Σ ′, I ′) be a weak morphism and let(u,v) be
a semi-equality forϕ with a state(u′,v′). Then, for every n∈ N, the pair(

idNn
M(Σ ,I)(u), idNn

M(Σ ,I)(v)
)

is a semi-equality forϕ with the state(
idNn

M(Σ ′,I ′)(u
′), idNn

M(Σ ′,I ′)(v
′)
)

.

Proof. It follows directly from Lemma2.1.14, Remark1.1.14and from the fact

idNn
M(Σ ′,I ′)(ϕ(v))\idNn

M(Σ ′,I ′)(ϕ(u)) = idNn
M(Σ ′,I ′)(ϕ(v)\ϕ(u)) ,

which is easy to verify.

Often we have to append a new pair of elements ofΣ to a semi-equality in order
to remove a given letter from the state, which in our constructions usually results in
a replacement of this letter with another one together with some effect on the rest of
the current state. This situation is described in general by the following lemma.

Lemma 2.1.24.Let ϕ : M(Σ , I)→M(Σ ′, I ′) be a weak morphism and let(u,v) be
a semi-equality forϕ with a state(u′,v′). In addition, let x,y∈ Σ and

a∈ init(v′)∩alph(ϕ(x))\alph(ϕ(y)) (2.4)

be letters satisfying(
alph(u′ ·ϕ(x))\{a}

)
×alph(v′ ·ϕ(y))⊆ I ′ , (2.5)

x∈ D(alph(u)) & y∈ D(alph(v)) . (2.6)

Let m be the length of the first a-block in v′ and n= |ϕ(x)|a. Then the pair(
idNn

M(Σ ,I)(u) ·xm, idNn
M(Σ ,I)(v) ·y

m
)

(2.7)

is a semi-equality forϕ and its state(u,v) satisfies a/∈ init(v).

Proof. Due to the assumption (2.6), the initial alphabets of the new pair are the same
as those of(u,v), which verifies the first condition of Definition2.1.18. We are going
to check the validity of the second condition using Lemma1.1.15. By Lemma2.1.23,
it is enough to verify that (1.1) holds for the traces

u0 = idNn
M(Σ ′,I ′)(u

′) · (ϕ(x))m and v0 = idNn
M(Σ ′,I ′)(v

′) · (ϕ(y))m .

It is clear for letters different froma due to (2.5). Since alph(u′)×alph(v′)⊆ I ′ \ id
Σ ′

andϕ is weak, no letters dependent ona appear inu0, and becausea /∈ alph(ϕ(y)),
the number of occurrences ofa in u0 is equal to the length of the firsta-block in v0.
Hence (1.1) holds also fora anda /∈ init(v) as desired.
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Remark2.1.25. The construction of Lemma2.1.24will be in fact occasionally used
even when the condition (2.5) is not satisfied; in such a case one has to ensure that
(2.7) is really a semi-equality independently.

2.2 Reduction to the Weak Coding Equivalent

In this section we describe the fundamental connection between the problems TCP
andW -TCP. For an arbitrary trace morphismϕ : M(Σ , I)→M(Σ ′, I ′), we consider
for every letterx∈ Σ the decomposition of the imageϕ(x∼I ) into primitive roots of
connected components. By Proposition1.1.19primitive traces do not commute unless
they are equal or independent and therefore the substantial information characterizing
their behaviour is their content. So, we introduce sufficiently many new letters for
each possible content and replace these primitive roots with them. Since in each of
the images there is at most one primitive root with a given content, for fixed alphabets
(Σ , I) and (Σ ′, I ′) we can manage with a finite number of new letters. In this way
we express every morphismϕ as a composition of a weak morphism and a strong
morphism. Clearly, ifϕ is a coding, the weak morphism constructed must be a coding
as well. On the other hand, we can use Proposition1.2.10to find a strong coding for
prolonging any coding to the new codomain monoid into a coding to the original one.

Let us perform this construction in detail. For a graph(V,E), we denote

C (V,E) = {X ⊆V | |X| ≥ 2 and(X,E) is connected} .

Definition 2.2.1. Let (Σ , I), (Σ ′, I ′) be independence alphabets. We extend(Σ ′, I ′)
into a new independence alphabet(Σ ′

Σ
, I ′

Σ
) as follows. Let

Σ
′
Σ

= Σ
′∪ (C (Σ ′,D′)×Σ)

and, for a wordu∈ (Σ ′
Σ
)∗, define itsextended contentealph(u)⊆ Σ ′ as

ealph(u) = (alph(u)∩Σ
′)∪

⋃
{A | (A,x) ∈ alph(u)\Σ

′} .

Finally, for α,β ∈ Σ ′
Σ

, set

(α,β ) ∈ I ′
Σ
⇐⇒ ealph(α)×ealph(β )⊆ I ′ or α = β . (2.8)

Then the pair of independence alphabets(Σ , I), (Σ ′
Σ
, I ′

Σ
) is calledsaturated.

Remark2.2.2. It is easy to verify that ealph(α)∩ealph(β ) 6= /0 implies(α,β ) ∈ D′
Σ

for any distinct elementsα,β ∈ Σ ′
Σ

; therefore the relationI ′
Σ

can be equivalently
defined by the condition

(α,β ) ∈ I ′
Σ
\ id

Σ ′
Σ

⇐⇒ ealph(α)×ealph(β )⊆ I ′ \ id
Σ ′ . (2.9)

Notice also that if a wordu∈ (Σ ′
Σ
)∗ satisfies ealph(u)×ealph(u)⊆ I ′, thenu∈ (Σ ′)∗.
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Remark2.2.3. If M(Σ ′, I ′)∼= ∏n
i=1M(Σ ′i , I

′
i ), wheren∈N, andΣ is an arbitrary finite

alphabet, thenM(Σ ′
Σ
, I ′

Σ
)∼= ∏n

i=1M((Σ ′i )Σ
,(I ′i )Σ

).

As the relation∼I ′
Σ

preserves extended content, the notion of extended content can
be used also for traces.

Proposition 2.2.4.Let ϕ : M(Σ , I)→M(Σ ′, I ′) be any morphism of trace monoids.
Then there exist a weak morphismψ : M(Σ , I)→M(Σ ′

Σ
, I ′

Σ
) and a strong morphism

σ : M(Σ ′
Σ
, I ′

Σ
)→M(Σ ′, I ′) such thatσ ◦ψ = ϕ. Moreover, if the morphismϕ is

strong then the weak morphismψ can be chosen strong too.

Proof. For x∈ Σ let us denotePx = PR(ϕ(x∼I )) and

Qx = {s∈ Px | |alph(s)| ≥ 2} , Rx = {a∈ Σ
′ | (a∼I ′) ∈ Px} .

We construct a weak morphismψ first. For everyA ∈ C (Σ ′,D′) we choose any
mappingeA : Σ → Σ such that for allx,y∈ Σ , x 6= y :

eA(x) = eA(y) ⇐⇒ ∃s∈ Px∩Py : alph(s) = A .

Such mappingseA certainly exist because the defining condition always determines
an equivalence relation onΣ . Now for every letterx∈ Σ , consider the decomposition
of the traceϕ(x∼I ) into primitive roots of its connected components

ϕ(x∼I ) =
(

∏
s∈Qx

sis

)
·
(

π
Rx

(ϕ(x∼I ))
)

and define

ψ(x) =
(

∏
s∈Qx

(
alph(s),ealph(s)(x)

)is) ·( π
Rx

(ϕ(x))
)

.

We prove that this mappingψ really extends to a weak morphism. Let(x,y) ∈ I .
Thenϕ(x)ϕ(y)∼I ′ ϕ(y)ϕ(x) and Proposition1.1.19applied to the tracesϕ(x∼I ) and
ϕ(y∼I ) gives

∀s∈ Px, t ∈ Py : s 6= t =⇒ alph(s)×alph(t)⊆ I ′ . (2.10)

In order to verify alph(ψ(x))×alph(ψ(y)) ⊆ I ′
Σ

, take any elementss∈ Qx, t ∈ Qy,
a∈Rx, b∈Ry. We immediately deduce(a,b)∈ I ′

Σ
and

(
a,
(
alph(t),ealph(t)(y)

))
∈ I ′

Σ

from (2.10). If s 6= t then alph(s)× alph(t) ⊆ I ′ holds by (2.10) and if s = t then
ealph(s)(x) = ealph(t)(y) by the definition ofealph(s). In both cases we obtain((

alph(s),ealph(s)(x)
)
,
(
alph(t),ealph(t)(y)

))
∈ I ′

Σ
.
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Altogether, we get alph(ψ(x))×alph(ψ(y))⊆ I ′
Σ

. Trivially, the morphismψ is also
strong wheneverϕ is.

Now we define a strong morphismσ : M(Σ ′
Σ
, I ′

Σ
)→ M(Σ ′, I ′). For a ∈ Σ ′ let

σ(a) = a and for(A,x) ∈ Σ ′
Σ
\Σ ′ let

σ((A,x)∼I ′
Σ

) =

{
s if ∃y∈ Σ : s∈ Py, alph(s) = A, eA(y) = x ,

1 otherwise .

Notice that the second rule is unambiguous due to the definition ofeA. Since we have
alph(σ(α)) ⊆ ealph(α) for everyα ∈ Σ ′

Σ
, by (2.9) this assignment defines a strong

morphism. Finally, it is clear thatϕ = σ ◦ψ holds.

Proposition 2.2.5.Let (Σ , I), (Σ ′, I ′) be independence alphabets. Then the following
conditions are equivalent.

(i) There exists a coding fromM(Σ , I) to M(Σ ′, I ′).

(ii) There exists a weak coding fromM(Σ , I) to M(Σ ′
Σ
, I ′

Σ
).

(iii) There exists a coding fromM(Σ , I) to M(Σ ′
Σ
, I ′

Σ
).

Proof. (i) =⇒ (ii ). If ϕ : M(Σ , I)→M(Σ ′, I ′) is a coding, by Proposition2.2.4there
is a weak morphismψ : M(Σ , I)→M(Σ ′

Σ
, I ′

Σ
) such thatϕ = σ ◦ψ for some strong

morphismσ : M(Σ ′
Σ
, I ′

Σ
)→M(Σ ′, I ′). Henceψ is also injective.

(ii ) =⇒ (iii ) is trivial.
(iii ) =⇒ (i). Let ψ : M(Σ , I)→M(Σ ′

Σ
, I ′

Σ
) be any coding. Because the mapping

H = ealph|
Σ ′

Σ

: Σ
′
Σ
→ 2Σ ′

satisfies both conditions in Proposition1.2.10due to (2.8) and (2.9), there exists
a strong codingσ : M(Σ ′

Σ
, I ′

Σ
)→M(Σ ′, I ′). Therefore we obtain a desired codingϕ

as the compositionσ ◦ψ.

Example 2.2.6.As an example, let us employ Proposition2.2.5 to characterize up
to isomorphism all trace submonoids of the monoidM(Σ ′, I ′), whereΣ ′ = {a,b,c,d}
and the dependence graph(Σ ′,D′) is a — b — c — d (hence the independence graph
(Σ ′, I ′) is c — a — d — b). By Proposition2.2.5this task is the same as to find those
trace monoidsM(Σ , I) for which a weak codingϕ : M(Σ , I)→M(Σ ′

Σ
, I ′

Σ
) exists.

First observe that the pairs of independent elements ofΣ ′
Σ

are just(a,c), (a,d),
(a,({c,d},x)), (b,d) and (d,({a,b},x)) for everyx ∈ Σ . Since only two elements
of Σ ′

Σ
, namelya andd, are independent on at least two other elements, there can

be only two letters inΣ independent on at least two other letters and their images
can contain only the lettera (d respectively); in particular, the graph(Σ , I) is acyclic.
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Suppose there arex,y,z∈ Σ satisfying alph(ϕ(x)) = {a}, x D y, x D zandy I z. Then
there isα ∈ Σ ′

Σ
independent ond such that alph(ϕ(y))∪ alph(ϕ(z)) ⊆ {d,α} and

α ∈ alph(ϕ(y))∩alph(ϕ(z)). Consequently the wordu = y|ϕ(z)|α xz|ϕ(y)|α verifies the
condition (ii ) of Lemma2.1.2and soϕ is not injective. Next, if there arex,y,z, r ∈ Σ

satisfyingx I y, z I r and {x,y}× {z, r} ⊆ D, then alph(ϕ(xy))∩ alph(ϕ(zr)) = /0.
Indeed, ifα ∈ alph(ϕ(xy))∩alph(ϕ(zr)) holds, then we have alph(ϕ(xy)) = {α,β},
β ∈ alph(ϕ(x))∩alph(ϕ(y)) and alph(ϕ(zr)) = {α,γ} for someβ ,γ ∈ Σ ′

Σ
and thus

the condition (ii ) of Lemma2.1.2holds foru = x|ϕ(y)|
β zy|ϕ(x)|

β .
Altogether, the independence graph(Σ , I) is of one of the following forms:

(i) One connected component of(Σ , I) is a subgraph of a graph of the form

x1

Q
QQ

xn

�
��

ppp x y
�

��
y1

Q
QQ yn

ppp

and the other components are trivial.

(ii) The graph(Σ , I) consists of two connected components with two elements and
arbitrarily many trivial ones.

On the other hand, in both cases some weak codingϕ really exists: it is enough to
define in the first caseϕ(x) = a, ϕ(y) = d, ϕ(xi) = ({c,d},xi) andϕ(yi) = ({a,b},yi)
and in the second case map the letters of the non-trivial components to the words
b, bd, c andac, and for anyz∈ Σ forming a trivial component defineϕ(z) = (Σ ′,z).

Corollary 2.2.7. LetC be an arbitrary class of trace morphisms containing all weak
codings. Then theC -TCP restricted to saturated pairs of independence alphabets is
equivalent to the TCP modulo effective reductions.

Proof. Due to Proposition2.2.5, given an instance of the TCP one can equivalently
consider the corresponding saturated pair, which is easy to construct; and in the case
of saturated pairs there exists a coding if and only if there exists a coding belonging
to the classC .

Now we state the analogue of Proposition2.2.5for strong codings, which provides
a reformulation of Proposition1.2.10characterizing the existence of strong codings
using the notion of saturated pairs.

Proposition 2.2.8.Let (Σ , I), (Σ ′, I ′) be independence alphabets. Then the following
conditions are equivalent.
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(i) There exists a strong coding fromM(Σ , I) to M(Σ ′, I ′).

(ii) There exists a strong and weak coding fromM(Σ , I) to M(Σ ′
Σ
, I ′

Σ
).

(iii) There exists a strong coding fromM(Σ , I) to M(Σ ′
Σ
, I ′

Σ
).

(iv) There exists a mapping H: Σ → 2Σ ′
Σ satisfying for every x,y∈ Σ :

H(x)×H(y)⊆ I ′
Σ
\ id

Σ ′
Σ

⇐⇒ (x,y) ∈ I \ id
Σ

,

H(x)×H(y)⊆ I ′
Σ
⇐⇒ (x,y) ∈ I .

Moreover, if H is any such mapping then every mappingϕ0 : Σ → (Σ ′
Σ
)∗ satisfying

alph(ϕ0(x)) = H(x) for all x ∈ Σ extends to a strong and weak coding fromM(Σ , I)
to M(Σ ′

Σ
, I ′

Σ
).

Proof. This can be proved by the same arguments as Proposition2.2.5; the last claim
and the equivalence of the conditions (ii ) and (iv) follow from Lemma2.1.8.

Notice that in Proposition2.2.5 there is the same domain monoid in each of the
three conditions. This makes it suitable for showing decidability of the TCP for some
classes of instances specified by properties of their domain monoids by means of
proving the corresponding result for weak morphisms, which is the aim of Chapter3.
Let us now illustrate the usage of Proposition2.2.5by transferring Proposition2.1.7
to the case of general codings.

Proposition 2.2.9.Let(Σi , Ii) for i ∈ {1, . . . ,n} and(Σ ′, I ′) be arbitrary independence
alphabets. Then there exists a coding from∏n

i=1M(Σi , Ii) to M(Σ ′, I ′) if and only if
there exist subalphabetsΣ ′i ⊆ Σ ′, for every i∈ {1, . . . ,n}, such thatΣ ′i ×Σ ′j ⊆ I ′ \ id

Σ ′

holds for every i, j ∈ {1, . . . ,n}, i 6= j, and codings

ϕi : M(Σi , Ii)→M(Σ ′i , I
′)

for every i∈ {1, . . . ,n}.

Proof. We have to prove only the direct implication, the converse is clear. LetΣ be
the disjoint union ofΣi . By Proposition2.2.5there exists a weak coding

ψ :
n

∏
i=1

M(Σi , Ii)→M(Σ ′
Σ
, I ′

Σ
) .

Proposition2.1.7provides us with subsetsX′i ⊆ Σ ′
Σ

such thatX′i ×X′j ⊆ I ′
Σ
\ id

Σ ′
Σ

for

every i 6= j and with weak codingsψi : M(Σi , Ii)→M(X′i , I
′
Σ
). Let us consider the

alphabetsΣ ′i =
⋃
{ealph(α) | α ∈ X′i }. ThenΣ ′i ×Σ ′j ⊆ I ′ \ id

Σ ′ for i 6= j due to (2.9)
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andX′i ⊆ (Σ ′i )Σ
⊆ Σ ′

Σ
. Because the relationI ′

Σ
is defined on elements ofΣ ′

Σ
\Σ ′

according to their first components, elements ofΣ ′
Σ
\Σ ′ which have the same first

components are mutually interchangeable in the alphabet(Σ ′
Σ
, I ′

Σ
). Therefore we can

replace second components of all elements ofΣ ′
Σ
\Σ ′ occurring in someψi-images

with letters fromΣi to obtain weak codingsσi : M(Σi , Ii)→M((Σ ′i )Σi
, I ′

Σi
); notice that

the relationsI ′
Σ

andI ′
Σi

coincide on(Σ ′i )Σi
and that there are enough letters in(Σ ′i )Σi

to perform this replacement since the codingsψi are weak and(A,x) D′
Σ

(A,y) for
every(A,x),(A,y) ∈ Σ ′

Σ
\Σ ′ with x 6= y. Applying Proposition2.2.5in the reverse

direction, we get the required codingsϕi : M(Σi , Ii)→M(Σ ′i , I
′).

2.3 Co-strong Codings

Besides strong and weak morphisms, other kinds of trace morphisms can be naturally
defined by introducing certain conditions on contents of images of letters. Studying
restrictions of the TCP to these morphisms may shed some light on how the complex
instances of this problem look like. This point of view, for instance, again underlines
the simplicity of theS -TCP: having an arbitrary additional effective condition on
contents of images under strong morphisms, existence of such codings can be easily
decided using Proposition1.2.10.

In this section we consider the condition obtained by replacing the reference to the
independence relation in the definition of strong trace morphisms with the reference
to the corresponding dependence relation.

Definition 2.3.1. We call a morphismϕ : M(Σ , I)→M(Σ ′, I ′) co-strongif

∀(x,y) ∈ D : alph(ϕ(x))∩alph(ϕ(y)) = /0 .

We denote byC S the class of all co-strong trace morphisms.

Remark2.3.2. Notice that performing the same construction for the definition of weak
morphisms is not interesting with respect to the TCP due to the previously mentioned
property of strong morphisms and Lemma1.2.8.

Let us start with two simple observations about co-strong morphisms.

Lemma 2.3.3. Let ϕ : M(Σ , I)→M(Σ ′, I ′) and ψ : M(Σ ′, I ′)→M(Σ ′′, I ′′) be two
co-strong morphisms. If the morphismψ is in addition strong, then the composition
ψ ◦ϕ is co-strong too.

The next claim can be easily verified by means of Lemma1.1.6.

Lemma 2.3.4. Every co-strong and strong trace morphismϕ which is non-erasing
and satisfies(2.2) is a coding.
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In the following, we prove that the construction of Section2.2 can be performed
as well for the problem of existence of co-strong codings, i.e. that theC S -TCP is
effectively reducible to theC S ∩W -TCP. There are two main differences between
these situations. First, for co-strong codings the new independence alphabet can be
constructed independently of the domain monoid. Second, in this case it is not enough
to consider just one new monoid; we have to introduce a set of monoids such that
every co-strong morphism factorizes through one of them.

For a graph(V,E), we denote

C (V,E) = {X ⊆V | X 6= /0 and(X,E) is connected} .

Definition 2.3.5. Let (Σ , I) be an independence alphabet. We define the independence
relationP(I) on the setC (Σ ,D) by the rule:

(X,Y) ∈P(I) ⇐⇒ X×Y ⊆ I or X = Y .

Remark2.3.6. Notice that the independence graph(C (Σ ′,D′),P(I ′)) is isomorphic
to a subgraph of(Σ ′

Σ
, I ′

Σ
); singletons correspond to the copy ofΣ ′ and each set

A⊆ Σ ′ with |A| ≥ 2 corresponds to(A,x) for an arbitraryx∈ Σ .

Proposition 2.3.7.Letϕ : M(Σ , I)→M(Σ ′, I ′) be a co-strong morphism. Then there
exist a subalphabetΣ1⊆ C (Σ ′,D′) satisfying

∀A,B∈ Σ1 : A∩B 6= /0 =⇒ A = B , (2.11)

a co-strong and weak morphismψ : M(Σ , I)→M(Σ1,P(I ′)) and a co-strong and
strong morphismσ : M(Σ1,P(I ′))→M(Σ ′, I ′) such thatσ ◦ψ = ϕ.

Remark2.3.8. Instead of consideringΣ1 as a subset ofC (Σ ′,D′) we can view it as
a subset ofΣ ′

Σ
; the condition (2.11) should then be rephrased in the form

∀α,β ∈ Σ1 : ealph(α)∩ealph(β ) 6= /0 =⇒ α = β . (2.12)

Proof. It can be directly verified using Proposition1.1.19that the objects defined as
follows possess the required properties. For everyx∈ Σ denotePx = PR(ϕ(x∼I ))
and if the decomposition of the traceϕ(x∼I ) into primitive roots of its connected
components is

ϕ(x∼I ) = ∏
s∈Px

sis ,

then assign:
ψ(x) = ∏

s∈Px

(alph(s))is .

Let the subalphabet be

Σ1 = {alph(s) | ∃x∈ Σ : s∈ Px}

and for everyx∈ Σ ands∈ Px let σ(alph(s)∼P(I ′)) = s.
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Proposition 2.3.9.Let (Σ , I), (Σ ′, I ′) be independence alphabets. Then the following
conditions are equivalent.

(i) There exists a co-strong coding fromM(Σ , I) to M(Σ ′, I ′).

(ii) There exist some subalphabetΣ1⊆ C (Σ ′,D′) satisfying(2.11) and a co-strong
and weak coding fromM(Σ , I) to M(Σ1,P(I ′)).

(iii) There exist some subalphabetΣ1⊆ C (Σ ′,D′) satisfying(2.11) and a co-strong
coding fromM(Σ , I) to M(Σ1,P(I ′)).

Proof. (i) =⇒ (ii ) follows from Proposition2.3.7.
(ii ) =⇒ (iii ) is trivial.
(iii ) =⇒ (i). Let ψ : M(Σ , I)→M(Σ1,P(I ′)) be an arbitrary co-strong coding and

let σ : M(Σ1,P(I ′))→ M(Σ ′, I ′) be any morphism such that alph(σ(A)) = A for
everyA ∈ Σ1. Thenσ is clearly non-erasing, co-strong, strong and satisfies (2.2),
hence it is a coding by Lemma2.3.4. Therefore we obtain a desired co-strong coding
as the compositionσ ◦ψ due to Lemma2.3.3.

Corollary 2.3.10. For an arbitrary classC of co-strong trace morphisms containing
all co-strong and weak codings, there exists an effective reduction of theC S -TCP to
theC -TCP.

Now we are going to show that if the domain dependence graph isC3-free, then one
can construct a co-strong coding whenever there exists an arbitrary coding. First we
prove the analogue of this claim for weak codings.

Lemma 2.3.11.Let(Σ , I) and(Σ ′, I ′) be independence alphabets such that the graph
(Σ ,D) is C3-free. Then there exists a weak coding fromM(Σ , I) to M(Σ ′, I ′) if and
only if there exists a co-strong and weak coding fromM(Σ , I) to M(Σ ′, I ′).

Proof. Let ϕ : M(Σ , I)→M(Σ ′, I ′) be an arbitrary weak coding. If we consider the
decomposition of the domain monoid

M(Σ , I)∼= M(D(Σ), I)×M(Σ \D(Σ), I) ,

then by Proposition2.1.7there exist some subalphabetsΣ ′1,Σ
′
2⊆ Σ ′ of the codomain

alphabet such thatΣ ′1×Σ ′2⊆ I ′ \ id
Σ ′ and weak codingsϕ1 : M(D(Σ), I)→M(Σ ′1, I

′)
andϕ2 : M(Σ \D(Σ), I)→M(Σ ′2, I

′). Without loss of generality, we can in addition
assumeΣ ′1 =

⋃
{alph(ϕ1(x)) | x∈ D(Σ)}. Due to Lemma2.1.4, the weak morphism

πD′(Σ ′1)
◦ϕ1 : M(D(Σ), I)→M(D′(Σ ′1), I

′) is a coding. Moreover, it is also co-strong.

With the aim of showing this fact by contradiction, letx,y∈ Σ satisfy(x,y) ∈ D and
let a∈ alph(ϕ1(x))∩alph(ϕ1(y))∩D′(Σ ′1). Then there is a letterb∈ Σ ′1∩D′(a) and
consequently there isz∈ D(Σ) such thatb ∈ alph(ϕ1(z)). But the weakness of the
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codingϕ1 implies(x,z) ∈ D and(y,z) ∈ D, which is impossible as(Σ ,D) is C3-free.
Since the weak codingϕ2 is trivially co-strong too, we obtain a required co-strong
and weak coding fromM(Σ , I) to M(Σ ′, I ′) as the product ofπD′(Σ ′1)

◦ϕ1 andϕ2.

In order to shift this result to the case of general morphisms we need a technical
lemma.

Lemma 2.3.12.Let(Σ , I) and(Σ ′, I ′) be independence alphabets and letΣ2⊆ Σ ′
Σ

be
a subset such that the graph(Σ2,D

′
Σ
) is C3-free. Then there exist a subsetΣ1⊆ Σ ′

Σ

satisfying(2.12) and a co-strong and strong coding fromM(Σ2, I
′
Σ
) to M(Σ1, I

′
Σ
).

Proof. The construction of the desired coding proceeds inductively with respect to
the number∑α∈Σ2

|ealph(α)| using the following claim.

Claim1. Let Σ2⊆ Σ ′
Σ

be a subset not satisfying (2.12) such that the graph(Σ2,D
′
Σ
)

is C3-free. Then there existΣ ′2⊆ Σ ′
Σ

such that(Σ ′2,D
′
Σ
) is C3-free and

∑
α∈Σ ′2

|ealph(α)|< ∑
α∈Σ2

|ealph(α)|

and a co-strong and strong coding fromM(Σ2, I
′
Σ
) to M(Σ ′2, I

′
Σ
).

Proof. Consider any lettersα,β ∈ Σ2 satisfyingα 6= β and ealph(α)∩ealph(β ) 6= /0.
We distinguish two cases.

First assume ealph(α) = ealph(β ). Thenα = (A,x) andβ = (A,y) for some letters
x,y ∈ Σ , x 6= y, and some subsetA⊆ Σ ′ such that|A| ≥ 2 and the graph(A,D′) is
connected. Hence we can split the setA into disjoint non-empty subsetsB andC such
that both graphs(B,D′) and(C,D′) are connected. Now defineα1 = (B,x) if |B| ≥ 2
andα1 = b if B = {b} and analogouslyβ1 = (C,y) if |C| ≥ 2 andβ1 = c if C = {c}.
Then consider the alphabetΣ ′2 = (Σ2∪{α1,β1})\{α,β}. Since we have(γ,α) ∈ I ′

Σ

and (γ,β ) ∈ I ′
Σ

for everyγ ∈ Σ2 \ {α,β} because(Σ2,D
′
Σ
) is C3-free, the graphs

(Σ2,D
′
Σ
) and(Σ ′2,D

′
Σ
) are easily seen to be isomorphic.

Second, assume ealph(α) 6= ealph(β ); say ealph(α) + ealph(β ). Let us denote by
Bi for i = 1, . . . ,n the connected components of the graph(ealph(β )\ealph(α),D′).
Let x∈ Σ be an arbitrary letter and letβi = (Bi ,x) if |Bi | ≥ 2 andβi = bi if Bi = {bi}.
Take the subalphabetΣ ′2 = (Σ2∪{βi | i = 1, . . . ,n})\{β} and consider the morphism
ϕ : M(Σ2, I

′
Σ
)→M(Σ ′2, I

′
Σ
) defined by the ruleϕ(β ) = ∏n

i=1βi and identical on the
setΣ2\{β}. The graph(Σ ′2,D

′
Σ
) is C3-free because for everyγ ∈ Σ2\{β} we have

(γ,β ) ∈ D′
Σ

whenever(γ,βi) ∈ D′
Σ

for somei ∈ {1, . . . ,n}. Due to the definition
of βi there exist lettersai ∈ ealph(α)∩ealph(β ) andbi ∈ ealph(βi) such thatai D′ bi .
Therefore(α,βi) ∈ D′

Σ
, and since plainly also(α,β ),(β ,βi) ∈ D′

Σ
holds and the

graph(Σ2,D
′
Σ
) is C3-free, it follows thatβi /∈ Σ2. Thusϕ is co-strong and strong.

Now considerγ ∈ Σ2 \ {α,β} satisfying(β ,γ) ∈ D′
Σ

. Then there exists some letter
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b∈ ealph(β )∩D′(ealph(γ)). Because(Σ2,D
′
Σ
) is C3-free,(α,γ) ∈ I ′

Σ
holds. Hence

b /∈ ealph(α) and for a certaini ∈ {1, . . . ,n} we haveb ∈ ealph(βi), consequently
(βi ,γ) ∈ D′

Σ
andϕ(βγ) �I ′

Σ

ϕ(γβ ). That is whyϕ fulfils (2.2). Altogether,ϕ is
a coding by Lemma2.3.4.

Applying Claim1 repeatedly and composing the codings constructed in each step,
we eventually obtain a required subsetΣ1⊆ Σ ′

Σ
satisfying (2.12) and a strong coding

from M(Σ2, I
′
Σ
) to M(Σ1, I

′
Σ
), which is also co-strong due to Lemma2.3.3.

Proposition 2.3.13.Let (Σ , I) and (Σ ′, I ′) be any independence alphabets such that
the graph(Σ ,D) is C3-free. Then there exists a coding fromM(Σ , I) to M(Σ ′, I ′) if
and only if there exists a co-strong coding fromM(Σ , I) to M(Σ ′, I ′).

Proof. If there is a coding fromM(Σ , I) to M(Σ ′, I ′), then by Proposition2.2.5there
is a weak coding fromM(Σ , I) to M(Σ ′

Σ
, I ′

Σ
). Using Lemma2.3.11 we obtain

a co-strong and weak codingϕ : M(Σ , I)→M(Σ ′
Σ
, I ′

Σ
). As ϕ is weak and(Σ ,D) is

C3-free, we in fact haveϕ : M(Σ , I)→M(Σ2, I
′
Σ
) for a certain subsetΣ2⊆ Σ ′

Σ
such

that the graph(Σ2,D
′
Σ
) is C3-free. Now we employ Lemma2.3.12to get a co-strong

and strong codingψ : M(Σ2, I
′
Σ
)→M(Σ1, I

′
Σ
) for some subalphabetΣ1⊆ Σ ′

Σ
which

satisfies (2.12). Then the compositionψ ◦ϕ is a co-strong coding fromM(Σ , I) to
M(Σ1, I

′
Σ
) due to Lemma2.3.3. Finally, according to Remarks2.3.6and2.3.8we can

apply Proposition2.3.9to obtain a co-strong coding fromM(Σ , I) to M(Σ ′, I ′).



Chapter 3

Decidable Cases

In this chapter we show that in some cases the existence of a weak coding between
trace monoidsM(Σ , I) and M(Σ ′, I ′) is equivalent to the existence of a choice of
contents of images of generators of the monoidM(Σ , I) satisfying certain regularity
conditions. This choice will be provided by a mappingf : Σ → 2Σ ′; besides putting
requirements onf assuring that it allows us to define a weak morphism and guarding
against linear dependence on free commutative submonoids, we introduce a condition
ensuring unique decipherability on every submonoid of the monoidM(Σ , I) generated
by a subset ofΣ on which the dependence relation forms a tree. Mappings satisfying
these conditions will be called wlt-mappings.

We start by defining the notion of wlt-mappings and demonstrating some of their
basic properties. In Section3.2 we use wlt-mappings to deal with domain monoids
whose dependence alphabets are acyclic and then in Section3.3 we generalize this
result, in the case of codomain monoids which are direct products of free monoids,
to all C3,C4-free domain dependence alphabets. The final Section3.4 is devoted to
proving that in these results none of the assumptions on instances can be avoided.

3.1 Wlt-mappings

A crucial role in our considerations will be played by those letters of the codomain
alphabet which occur in the image of exactly one generator of the domain monoid.
Recall that according to Lemma2.1.4letters of the codomain alphabet independent on
all letters occurring in the images are not significant for injectivity; that is why in the
following definition of central letters they are excluded. Actually, since the process of
reconstructing a word from its image under a weak coding by means of central letters
is inductive, we have to consider central letters also for each subset of the domain
alphabet.

37
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Definition 3.1.1. Let (Σ , I) and(Σ ′, I ′) be independence alphabets. Letf : Σ → 2Σ ′

be an arbitrary mapping and letx ∈ X ⊆ Σ . The set ofcentral lettersfor X in f (x)
with respect tof is defined as

CX
f (x) = {a∈ f (x) |(∃y∈ X, b∈ f (y) : (a,b) ∈ D′) &

& (∀y∈ X : a∈ f (y) =⇒ x = y)}

and the set of central letters forX with respect tof as the (disjoint) union

CX
f =

⋃
x∈X

CX
f (x) .

Now we are ready to present the definition of wlt-mappings.

Definition 3.1.2. Let (Σ , I) and(Σ ′, I ′) be independence alphabets andf : Σ → 2Σ ′

a mapping. We callf a wlt-mappingfrom (Σ , I) to (Σ ′, I ′) if it satisfies the following
conditions (W), (L) and (T).
(W) — weakness:

For everyx,y∈ Σ : (x,y) ∈ I ⇐⇒ f (x)× f (y)⊆ I ′.
(L) — regularity on linear parts:

For all X ⊆ Σ such thatX×X ⊆ I , there exists an injective mappingρX : X→ Σ ′

satisfying∀x∈ X : ρX(x) ∈ f (x).
(T) — regularity on trees:

For all X ⊆ Σ such that(X,D) is a tree, there exist a letterx∈ X and an injective
mappingσX,x : D(x)∩X→ D′(CX

f (x)) satisfying∀y∈ D(x)∩X : σX,x(y) ∈ f (y).
Such letterx will be calledX-decipheringfor f .

Remark3.1.3. The condition (W) ensures that every morphism constructed according
to the mappingf satisfies (2.3). In what follows, when referring to (W) we mostly
utilize only its direct implication; the converse implication is in fact a special case
of (T) for 2-element subtrees.

Notice that the condition (L) in particular guarantees thatf (x) 6= /0 for everyx∈ Σ ;
this corresponds to the morphism property of being non-erasing.

Remark3.1.4. It is clear from the definition that the restriction of any wlt-mapping
from (Σ , I) to (Σ ′, I ′) to an arbitrary subalphabet ofΣ is again a wlt-mapping.

Example 3.1.5.Take anyn ∈ N, n≥ 3, and let the dependence alphabet(Σ ,D) be
isomorphic toPn with the i-th letter on the path denoted byxi , for i ∈ {1, . . . ,n}.
Further, consider the monoidM(Σ ′, I ′) = {a1,b1}

∗× ·· ·× {an−1,bn−1}
∗. Then the

rulesai ∈ f (xi) andbi ∈ f (xi+1), for eachi ∈ {1, . . . ,n−1}, define a wlt-mappingf
from (Σ , I) to (Σ ′, I ′) where all vertices of every subtreeX of the graph(Σ ,D) are
X-deciphering forf . Now choose any indexk∈ {2, . . . ,n−1} and construct fromf
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a new mappingg : Σ → 2Σ ′ by adding the letterai into f (xi+2) for i ∈ {1, . . . ,k−1}
andbi into f (xi−1) for i ∈ {k, . . . ,n−1}. Theng is also a wlt-mapping from(Σ , I)
to (Σ ′, I ′), but only oneΣ -deciphering letter exists forg, namelyxk. As we will see in
Lemma3.1.13, this behaviour of our wlt-mapping is not just a mere coincidence.

Example 3.1.6.Consider the dependence alphabet(Σ ,D) isomorphic to the graphCn,
wheren≥ 5, and letM(Σ ′, I ′) = {a1,b1}

∗×·· ·×{an−1,bn−1}
∗. It is not hard to show

that there are, up to symmetry, just two wlt-mappings from(Σ , I) to (Σ ′, I ′); namely,
if we denote the letters on the cycle(Σ ,D) by x1, . . . ,xn in a natural order, one of
the mappings is defined by settingai ∈ f (xi) for all i ∈ {1, . . . ,n−1}, b1 ∈ f (xn) and
bi ∈ f (xi−1)∩ f (xi+1) for all i ∈ {2, . . . ,n−1}, and the other one can be obtained by
adding the letterb1 into f (x2).

We start the detailed examination of the notions introduced in the above definitions
with two simple observations.

Lemma 3.1.7.Let (Σ , I), (Σ ′, I ′) be independence alphabets, f: Σ → 2Σ ′ a mapping
satisfying(W) and X⊆ Σ a subset such that the graph(X,D) is C3,C4-free.

(i) Let x,y,z∈ X, y 6= z, be arbitrary letters and let letters a∈ f (x), b∈ f (y) and
c∈ f (z) satisfy(a,b),(a,c) ∈ D′. Then a∈ CX

f (x).

(ii) If letters a∈ f (x) and b∈ f (y), where x,y∈ X, satisfy(a,b) ∈ D′, then either
a∈ CX

f (x) or b∈ CX
f (y).

Proof. (i). Notice that ifa ∈ f (r) for somer ∈ X, then(x,y),(x,z),(r,y),(r,z) ∈ D
due to (W) and thusr = x since(X,D) is C3,C4-free.

(ii ). Assumeb∈ CX
f (y) does not hold. Then there isz∈X, z 6= y, such thatb∈ f (z).

Hencea∈ CX
f (x) by (i).

Lemma 3.1.8.Let (Σ , I) and(Σ ′, I ′) be independence alphabets and f: Σ → 2Σ ′ any
mapping satisfying(W). Let x∈ X ⊆ Σ and let Y⊆ X be the subset consisting of
all elements of X whose distance from the vertex x in the graph(X,D) is at most2.
ThenCX

f (x) = CY
f (x) holds and therefore x is X-deciphering for f if and only if it is

Y-deciphering for f .

Proof. Considera∈ CX
f (x). Then there existy∈ X andb∈ f (y) such that(a,b) ∈D′.

Due to (W) we have(x,y) ∈ D and soy∈Y. Hencea∈ CY
f (x).

Conversely, ifa∈ CY
f (x) then for anyy∈ X with a∈ f (y) we employ the existence

of a letterz∈Y with someb∈ f (z) satisfying(a,b) ∈ D′ to concludex D zandz D y
using (W). Thusy∈Y and consequentlyx = y.
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Remark3.1.9. From Lemma3.1.8one can see that ifX ⊆ Σ is an arbitrary subset and
Y is a connected component of the graph(X,D), thenCX

f (x) = CY
f (x) for all x ∈ Y.

Therefore in the condition (T) of Definition 3.1.2we can equivalently require(X,D)
to be acyclic instead of a tree.

Now we state a lemma which provides two reformulations of the condition (T) of
Definition3.1.2. In contrast to (T), where the mappingsσX,x are defined locally on the
setD(x)∩X, these conditions require the existence of a suitable simultaneous choice
of dependent letters fromΣ ′ for all pairs of dependent letters fromX.

Lemma 3.1.10.If (Σ , I) and(Σ ′, I ′) are independence alphabets and f: Σ → 2Σ ′ is
any mapping satisfying(W), then the following statements are equivalent.

(i) The mapping f satisfies(T).

(ii) For every X⊆ Σ such that(X,D) is a tree, there exists an injective mapping
δX : D∩ (X×X)→ D′ satisfying the conditions:

(a) ∀x,y∈ X, x D y : δX(x,y) = (a,b) =⇒ a∈ f (x), b∈ f (y).

(b) ∀x,y∈ X, x D y : δX(x,y) = (a,b) =⇒ δX(y,x) = (b,a).

(c) The dependence alphabet(Σ ′, Im(δX)) is acyclic.

(d) ∀a∈ Σ ′ \CX
f : |Im(δX)(a)| ≤ 1, i.e. every letter fromΣ ′ with at least two

neighbours in the graph(Σ ′, Im(δX)) is central for X.

(iii) For every X⊆ Σ such that(X,D) is a tree, there exists an injective mapping
τX : {{x,y} ⊆ X | x D y}→ Σ ′ satisfying for all x,y∈ X, x D y:

τX({x,y}) ∈ f (x)∩D′(CX
f (y)) or τX({x,y}) ∈ f (y)∩D′(CX

f (x)) . (3.1)

Proof. (i) =⇒ (ii ). Let f satisfy (T). We construct required mappingsδX inductively
with respect to the cardinality of the setX. So, letX ⊆ Σ be such that(X,D) is a tree.
Choose anX-deciphering letterx∈X for f and defineδX for y∈X, y D x, by the rules
δX(x,y) = (a,σX,x(y)) and δX(y,x) = (σX,x(y),a), wherea ∈ CX

f (x)∩D′(σX,x(y)),
and forz, r ∈ X \{x}, z D r, by the ruleδX(z, r) = δY(z, r), whereY is the connected
component of(X \{x},D) containingz andr.

The validity of the conditions (a) and (b) for δX is clear. In order to show that
δX is injective, assumeδX(y,z) = δX(r,s) = (a,b) for somey,z, r,s∈ X, y D z, r D s.
If a∈ CX

f (x) theny = r = x andb = σX,x(z) = σX,x(s), which impliesz= sdue to the
injectivity of σX,x. Similarly one can deal with the caseb∈ CX

f (x). Finally, if we have
a,b /∈ CX

f (x) theny,z, r,s∈ X \ {x} and sincey D s follows from a ∈ f (y), b ∈ f (s)
anda D′ b using (W), the lettersy, z, r andsbelong to the same connected component
Y of (X \{x},D) and we obtain(y,z) = (r,s) from the injectivity ofδY.



3.1. WLT-MAPPINGS 41

With the aim of proving that the dependence alphabet(Σ ′, Im(δX)) is acyclic by
means of contradiction, let us suppose there is a simple cyclea0,a1, . . . ,an = a0
in (Σ ′, Im(δX)). BecauseσX,x is injective, not all edges of this cycle lie in the set
δX

(
D∩ ((X×{x})∪ ({x}×X))

)
. They also do not all belong to the same relation

δX(D∩ (Y×Y)) for a connected componentY of the graph(X \{x},D) thanks to
the property (c) of δY. Therefore we can assume without loss of generality that for
somei ∈N, 1≤ i ≤ n−1, and some connected componentY of (X \{x},D) we have
(ai ,ai+1), . . . ,(an−1,an) ∈ δX(D∩ (Y×Y)) and(a0,a1),(ai−1,ai) /∈ δX(D∩ (Y×Y)).
Take the lettersy,z∈ X, y D z, andr,s∈ Y, r D s, such thatδX(y,z) = (a0,a1) and
δX(r,s) = (an−1,an), Then the conditions (W) and (a) give y D r and z D s since
a0 D′ an−1 anda1 D′ an. Thusy,z∈ X∩D(Y) ⊆Y∪{x}. The equalityy = x would
imply a0 ∈ CX

f (x) due to the definition ofδX, contradictinga0 ∈ f (s). Hencez= x
andy is the only element ofD(x)∩Y. The same arguments can be applied also to the
pair (ai−1,ai), yielding(ai−1,ai) = δX(x,y) = (a1,a0). In particularai = a0, which is
impossible as the cycle is simple.

It remains to verify (d). Assume(a,b),(a,c) ∈ Im(δX), wherea∈ Σ ′ \CX
f . Then

(a,b) = δX(y,z) and (a,c) = δX(r,s) for somey,z, r,s∈ X, y D z, r D s. Because
a /∈ CX

f , a∈ f (y), b∈ f (z) andc∈ f (s), Lemma3.1.7(i) givesz= s. Sincea /∈ CX
f ,

according to the definition of the mappingδX we have neithery= x nor r = x. If z= x
then σX,x(y) = a = σX,x(r) by the definition ofδX, which meansy = r due to the
injectivity of σX,x and we getb = c. Finally, in the casey,z, r ∈ Y for a connected
componentY of (X \{x},D), eithery = r, immediately leading tob = c, or y 6= r,
which impliesa /∈ CY

f and consequentlyb = c by the condition (d) for δY.

(ii ) =⇒ (iii ). Let X ⊆ Σ be a subset such that(X,D) is a tree. For each non-trivial
connected componentK of the dependence alphabet(Σ ′, Im(δX)) choose and fix an
arbitrary letteraK ∈ K∩CX

f , which always exists due to Lemma3.1.7(ii ). In order to
define the mappingτX, take anyx,y∈ X satisfyingx D y. Then by the property (b) we
have{δX(x,y),δX(y,x)}= {(b,c),(c,b)} for some(b,c)∈D′. LetK be the connected
component of(Σ ′, Im(δX)) containingb andc. Without loss of generality assume that
c is the predecessor ofb on the simple path fromaK to b in the tree(K, Im(δX)) and
defineτX({x,y}) = b. Since eitherc = aK holds orc has at least two neighbours in
the graph(Σ ′, Im(δX)), the choice of the letteraK and the condition (d) imply c∈ CX

f .
Therefore we get (3.1) from (a).

It remains to show that the mappingτX is injective. Let lettersx,y,z, r ∈ X satisfy
τX({x,y}) = τX({z, r}). Then up to symmetryδX(x,y) = δX(z, r) = (τX({x,y}),c),
wherec is the predecessor ofτX({x,y}) on the simple path fromaK to τX({x,y})
in (Σ ′, Im(δX)). The injectivity ofδX now gives(x,y) = (z, r).

(iii ) =⇒ (i). Let X ⊆ Σ be such that(X,D) is a tree and letτX be a mapping which
meets the requirements of (iii ). Since the number of edges in(X,D) is less than the
number of elements ofX, we can choose a letterx∈X satisfyingτX({x,y})∈ f (y) for
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all y∈ D(x)∩X and defineσX,x(y) = τX({x,y}). The injectivity ofσX,x is clear from
the injectivity ofτX and becausef (y)∩D′(CX

f (y)) = /0 due to (W), the condition (3.1)
impliesσX,x(y) ∈ f (y)∩D′(CX

f (x)). Hencex is anX-deciphering letter forf .

The following claim presents a simplification of the conditions of Lemma3.1.10in
the case of codomain monoids which are direct products of free monoids.

Lemma 3.1.11.Let (Σ , I) be an independence alphabet and let the monoidM(Σ ′, I ′)
be isomorphic to the product∏n

i=1(Σ
′
i )
∗ for pairwise disjoint alphabetsΣ ′1, . . . ,Σ

′
n.

Let f : Σ → 2Σ ′ be any mapping satisfying both conditions(W) and (L). Then f is
a wlt-mapping from(Σ , I) to (Σ ′, I ′) if and only if for every subset X⊆ Σ such that
(X,D) is a tree there exists an injective mapping

ξX : {{x,y} ⊆ X | x D y}→ {1, . . . ,n}

satisfying for all x,y∈ X, x D y:

|( f (x)∪ f (y))∩Σ
′
ξX({x,y})|= 2 . (3.2)

Proof. Assuming validity of (W), we prove the equivalence of the condition (ii ) of
Lemma3.1.10and the condition given in this lemma. First notice that whenever
(X,D) is C3-free, the graph(

⋃
f (X),D′) is C3-free too by (W), which means

∀i ∈ {1, . . . ,n} :
∣∣⋃ f (X)∩Σ

′
i

∣∣≤ 2 . (3.3)

In particular, the graph(
⋃

f (X),D′) is acyclic and both conditions (c) and (d) are
immediate consequences of (a).

“=⇒” Let X ⊆ Σ be an arbitrary subset such that(X,D) is a tree and consider
a mappingδX verifying the condition (ii ) of Lemma3.1.10. For anyx,y∈X, x D y, we
haveδX(x,y) = (a,b), wherea,b∈ Σ ′i for somei ∈ {1, . . . ,n}. Then (b) ensures that
we can correctly defineξX({x,y}) = i. The condition (3.2) holds for thisξX thanks
to (3.3) and (a). In order to show the injectivity ofξX, take any lettersx,y,z, r ∈ X
satisfyingx D y, z D r andξX({x,y}) = ξX({z, r}). Now the imagesδX(x,y), δX(z, r),
δX(r,z) belong toΣ ′

ξX({x,y})× Σ ′
ξX({x,y}) as well as to

⋃
f (X)×

⋃
f (X) by (a) and

at the same timeδX(z, r) 6= δX(r,z) due to (b). Therefore the inequality (3.3) gives
δX(x,y) ∈ {δX(z, r),δX(r,z)}, which implies{x,y}= {z, r} asδX is injective.

“⇐=” Assume we have a mappingξX which meets the requirements given in the
lemma and take anyx,y∈ X satisfyingx D y. Due to (3.2) and (W) there exist letters
a∈ f (x)∩Σ ′

ξX({x,y}) andb∈ f (y)∩Σ ′
ξX({x,y}), a D′ b, and we defineδX(x,y) = (a,b).

Then (a) is trivially valid and (b) is clear from (3.2). Finally, the injectivity ofδX
follows from the injectivity ofξX because of (b).
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Remark3.1.12. A significant advantage of the conditions stated in Lemmas3.1.10
and3.1.11is that it suffices to verify the existence ofδX, τX andξX respectively only
for maximal subtrees of(Σ ,D) since the restrictions of these mappings to any subtree
Y of X also satisfy the requirements.

Before proceeding to study relationships between wlt-mappings and weak codings,
let us state a useful consequence of Lemma3.1.10, which essentially says that once
the condition (T) is violated, one cannot put it right by removing letters from the
images. This provides significant help when one tries to verify non-existence of
wlt-mappings.

Lemma 3.1.13.Let f be a wlt-mapping from(Σ , I) to (Σ ′, I ′) and let g: Σ → 2Σ ′ be
any mapping satisfying(W) and f(x) ⊆ g(x) for all x ∈ Σ . Then g is a wlt-mapping
as well.

Proof. It is clear thatgsatisfies (L). We verify the condition (ii ) of Lemma3.1.10for g
using the same mappingsδX as for f . The only non-trivial task is to prove the validity
of (d). Assumea∈ Σ ′ \CX

g for a subtreeX of (Σ ,D) and let(a,b),(a,c) ∈ Im(δX).
Then(a,b) = δX(x,y) and(a,c) = δX(z, r) for certain lettersx,y,z, r ∈ X. Because
a∈ g(x), b∈ g(y), c∈ g(r), a /∈ CX

g andg satisfies (W), Lemma3.1.7(i) gives us that
y = r holds. Ifa∈ CX

f then we havex = z as well and thereforeb = c. And finally in
the casea /∈ CX

f we obtain the desired equalityb= c from the condition (d) for f .

3.2 Acyclic Domain Dependence Alphabets

We start our calculations aiming to deal with instances of the TCP whose domain
monoids have acyclic dependence alphabets by proving that in general the existence
of a wlt-mapping is always necessary for the existence of a weak coding. In view of
Proposition2.2.5, the following claim is a generalization of Proposition 11 from [7],
which states this fact for the simplest non-trivial case whenΣ = {a1, . . . ,ak,b} and
D = sym{(a1,b), . . . ,(ak,b)}. The construction performed in its proof is illustrated
by Example2.1.3.

Lemma 3.2.1. Let ϕ : M(Σ , I)→M(Σ ′, I ′) be any weak coding. Thenalph◦ϕ|
Σ

is
a wlt-mapping from(Σ , I) to (Σ ′, I ′).

Proof. Let us denotef = alph◦ϕ|
Σ

. The condition (W) is clear from (2.3) and (L) is
just a reformulation of Lemma1.2.11. Suppose (T) does not hold. We will show that
ϕ is not a coding. LetX ⊆ Σ be a subset falsifying (T). Take an arbitraryx∈ X. Then
the system (

π
D′(CX

f (x))
(ϕ(y∼I ))

)
y∈D(x)∩X

(3.4)
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of elements of the submonoid ofM(Σ ′, I ′) generated by
⋃

f (D(x)∩X), which is free
commutative, is linearly dependent. Therefore we can splitD(x)∩X into disjoint sets
Lx andRx such that there existny

x ∈ N0, for y∈ D(x)∩X, not all of them equal to 0,
satisfying

∏
y∈Lx

(
π

D′(CX
f (x))

(ϕ(y))
)ny

x

∼I ′ ∏
y∈Rx

(
π

D′(CX
f (x))

(ϕ(y))
)ny

x

. (3.5)

Suppose we have fixed, for everyx ∈ X and y ∈ D(x)∩X, someLx, Rx and ny
x

satisfying (3.5). In addition, since the dependence relation restricted toX is acyclic,
it is easy to fulfil the condition

∀x,y∈ X : y∈ Lx ⇐⇒ x∈ Ry

by interchangingLx with Rx for appropriate lettersx∈ X. Now we choose a subtreeY
of (X,D), |Y| ≥ 2, satisfying the condition

∀x∈Y, y∈ D(x)∩X : ny
x 6= 0 ⇐⇒ y∈Y ; (3.6)

if we understandX as a directed graph, where there is an arrow fromx to y∈ D(x) if
and only ifny

x 6= 0, then we obtainY as a terminal strongly connected component of
this graph. Further, we take numbersmx ∈ N for x∈Y such that

∀x,y,z∈Y : y,z∈ D(x) =⇒
my

mz
=

ny
x

nz
x

; (3.7)

such numbers can be easily constructed inductively while adding vertices of the tree
one by one, namely, when we add to the current subtreeZ ⊆ Y a vertexy ∈ Y \Z
dependent onx∈ Z, then we already havemz = (k/l) ·nz

x for everyz∈ D(x)∩Z and
for fixed integersk, l ∈ N, so it is enough to multiply the valuesmz for all z∈ Z by l
and setmy = k ·ny

x.
Let u ∈ Y∗ be an arbitrary word consisting of exactly onex-block of lengthmx

for each letterx ∈ Y such that for everyx,y ∈ Y, if (x,y) ∈ D, theny precedesx
in u if and only if y ∈ Lx. Clearlyu �I

←−u since|Y| ≥ 2. We will verify by means
of Lemma1.1.6 that ϕ(u) ∼I ′ ϕ(←−u ) holds, thus reaching a contradiction with the
injectivity of ϕ. Let a,b∈

⋃
f (Y) satisfy(a,b) ∈D′. Then at least one of these letters

(saya) belongs toCY
f (x) for a certainx ∈ Y by Lemma3.1.7(ii ). Hence, the trace

ϕ(u) ∼I ′ contains only onea-block and the number of occurrences ofb preceding
(succeeding) this block inϕ(u) ∼I ′ is ∑y∈Lx∩Y(my · |ϕ(y)|b), ∑y∈Rx∩Y(my · |ϕ(y)|b)
respectively. Due to (3.5), (3.6) and (3.7) these two numbers are equal and therefore
πa,b(ϕ(u)) = πa,b(ϕ(←−u )).

To be able to prove that in some cases the existence of a wlt-mapping suffices
for producing a weak coding, we need a procedure converting the local regularity
conditions given in Definition3.1.2 into a global construction fully exploiting their
potential. This is the aim of the following technical lemma.
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Lemma 3.2.2.Let m,n∈ N and let Z⊆ {1, . . . ,m}×{1, . . . ,n} be any subset. Then
there exists an(m×n)-matrix A= (ai j ) overN0 such that

(i) ai j = 0 if and only if(i, j) ∈ Z,

(ii) for every M⊆ {1, . . . ,m} and N⊆ {1, . . . ,n} with |M| = |N|, the submatrix
A(M,N) of A is regular if and only if there exists a bijectionτ : M→ N which
satisfies(i,τ(i)) /∈ Z for all i ∈M.

Proof. Without loss of generality we can assumem≤ n. Consider the increasing
sequenceS of natural numberssk = mm2k

, for k ∈ N0, and complete the matrixA
on non-Z coordinates with arbitrary elements of this sequence, taking each of them
only once. The “only if” part of the condition (ii ) is clear since if there is not such
a bijection, then det(A(M,N)) = 0 due to the first condition. For the converse, let us
consider the productspτ = ∏i∈M aiτ(i) which make up the determinant ofA(M,N),
for all bijectionsτ : M→ N. By the assumption, not all of these products are zero.
Take any two distinct bijectionsσ ,τ : M→ N satisfyingpσ 6= 0 6= pτ . Let k∈ N0 be
the greatest integer such that the numbersk lies in one of the sets{aiσ(i) | i ∈M} and
{aiτ(i) | i ∈M} (say in the former one) but not in the other. Thenk≥ 1 and we can
easily calculatepσ/pτ ≥ sk/sm

k−1 ≥ m!. As there are at mostm! non-zero products
summed in the determinant, the greatest one is bigger than the sum of the others and
thus det(A(M,N)) 6= 0.

In order to employ this lemma for our purposes, we have to understand every weak
morphismϕ : M(Σ , I)→M(Σ ′, I ′) as a(Σ ×Σ ′)-matrix (|ϕ(x)|a)x∈Σ ,a∈Σ ′ over N0.
Since alph◦ϕ|

Σ
= f can be rephrased as

|ϕ(x)|a 6= 0 ⇐⇒ a∈ f (x) ,

a wlt-mapping f just determines non-zero entries of this matrix and the conditions
(L) and (T) provide regularity of certain submatrices whenϕ is constructed using
Lemma3.2.2.

Proposition 3.2.3.Let(Σ , I) and(Σ ′, I ′) be independence alphabets satisfying one of
the following conditions.

(i) M(Σ , I) is a direct product of free monoids.

(ii) The graph(Σ ,D) is acyclic.

Then there exists a weak coding fromM(Σ , I) to M(Σ ′, I ′) if and only if there exists
a wlt-mapping from(Σ , I) to (Σ ′, I ′).
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Remark3.2.4. The first case was already solved for general trace morphisms in [7];
notice that in this case the requirement (T) is redundant.

Proof. The “only if” part is a direct consequence of Lemma3.2.1.
Let f be any wlt-mapping from(Σ , I) to (Σ ′, I ′). We prove the converse implication

in the case (i) first. Let us assumeM(Σ , I) = (Σ1)
∗×·· ·× (Σn)∗. Due to (W) and (L),

we can use Lemma3.2.2to construct some weak morphismϕ : M(Σ , I)→M(Σ ′, I ′)
satisfying alph◦ϕ|

Σ
= f such that for all subsetsX ⊆ Σ with X×X ⊆ I , the system

(ϕ(x))x∈X of elements of the free commutative monoid generated by the set
⋃

f (X)
is linearly independent. This shows that the case (i) of Lemma2.1.2cannot happen.
Because (W) makes the case (ii ) of Lemma2.1.2also impossible by Lemma2.1.8
applied to the monoids(Σi)

∗ for i ∈ {1, . . . ,n} with |Σi | > 1, we conclude thatϕ is
a coding.

In the case (ii ), we employ all conditions of Definition3.1.2and Lemma3.2.2to
construct a weak morphismϕ : M(Σ , I)→M(Σ ′, I ′) such that the same conditions as
in the previous case are satisfied and in addition for allX⊆Σ such that(X,D) is a tree,
there isx∈ X for which the system (3.4) is linearly independent. As these conditions
are valid also for each induced subgraph of(Σ ,D), to prove thatϕ is a coding we can
use induction with respect to the number of vertices of the graph. So, let us assume
thatϕ is injective onM(Y, I) for each proper subsetY of Σ . If the graph(Σ ,D) has
no edges, thenϕ is a coding due to the condition for independence cliques. If it is
not the case, letX be one of its non-trivial connected components and considerx∈ X
such that (3.4) is linearly independent. Letu,v ∈ Σ∗ satisfyϕ(u) ∼I ′ ϕ(v). Since
X is a connected component of(Σ ,D), due to (W) letters fromCX

f (x) occur just in the
image ofx and letters fromD′(CX

f (x)) just in the images of elements ofD(x) ⊆ X.
As CX

f (x) 6= /0, the equality|u|x = |v|x holds. Further we deduce

π
CX

f (x)∪D′(CX
f (x))

(
ϕ

(
π

{x}∪D(x)
(u)
))
∼I ′ π

CX
f (x)∪D′(CX

f (x))

(
ϕ

(
π

{x}∪D(x)
(v)
))

and the independence of the system (3.4) gives usπx,y(u) = πx,y(v) for everyy∈D(x).
Becauseϕ is injective on the submonoidM(Σ \{x}, I), we can apply Lemma2.1.10
to concludeu∼I v. Thusϕ is a coding.

3.3 Encoding into Direct Products of Free Monoids

Now we are going to present a solution of theW -TCP for all instances which have the
dependence alphabet of the domain monoidC3,C4-free and whose codomain monoid
is a direct product of free monoids. Because the property of being a direct product
of free monoids is preserved by the construction of Definition2.2.1, we consequently
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obtain the corresponding positive result for the TCP by applying Proposition2.2.5.
As the following example shows, unlike in the cases covered by Proposition3.2.3,
in this situation it is not true that for every wlt-mappingf there exists a codingϕ such
that alph◦ϕ|

Σ
= f , therefore a modification of the wlt-mapping in order to make it

suitable for a construction of a coding is unavoidable.

Example 3.3.1.On the alphabetΣ = {x,y,z, r,s, t} define the dependence relationD
by the graph

x y
Q

QQ t s

�
��

z r

and let

M(Σ ′, I ′) = {a1,a2}
∗×{b1,b2}

∗×{c1,c2}
∗×{d1,d2}

∗×{e1,e2}
∗ .

Consider the wlt-mappingf from (Σ , I) to (Σ ′, I ′) given by the rules:

f (x) = {a1,b1} f (y) = {a2,b2,c1,d1} f (z) = {a1,c2,e1}
f (r) = {c1,e2} f (s) = {d1,e1} f (t) = {b1,d2} .

When proving that every morphismϕ : M(Σ , I)→M(Σ ′, I ′) satisfying alph◦ϕ|
Σ

= f
fails to be a coding, we can assume

|ϕ(x)|a1
= |ϕ(y)|d1

= |ϕ(z)|a1
= |ϕ(s)|d1

= 1

by Lemma2.1.17and

|ϕ(y)|a2
= |ϕ(y)|b2

= |ϕ(z)|c2
= |ϕ(r)|d2

= |ϕ(t)|e2
= 1

since all of these letters occur only in one of the images. Thus

ϕ(x) = a1bi
1 ϕ(y) = a2b2c j

1d1 ϕ(z) = a1c2ek
1

ϕ(r) = cl
1e2 ϕ(s) = d1em

1 ϕ(t) = bn
1d2

for somei, j,k, l ,m,n∈ N. Thenu = xlmnyklnzlmnr jknt ilmskln satisfiesϕ(u)∼I ′ ϕ(←−u ),
which shows thatϕ is not injective.

Our approach is based on calculating how many of the free submonoids of the
codomain monoid have their elements employed by a given wlt-mapping. We show
that there are in fact always enough letters for constructing some morphism whose
injectivity is easy to prove. Let us first introduce a requirement on wlt-mappings
which is sufficient to avoid counter-examples of the second form of Lemma2.1.2.
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Lemma 3.3.2.Let ϕ : M(Σ , I)→M(Σ ′, I ′) be an arbitrary weak morphism and let
us denote f= alph◦ϕ|

Σ
. If every connected component of the graph(Σ ,D) contains

at most one vertex x∈ Σ such that f(y)∩D′(CΣ
f (x)) = /0 for some vertex y∈ D(x),

then the condition(ii ) of Lemma2.1.2does not hold.

Proof. Assume that a wordu∈ Σ∗ verifies the condition (ii ) of Lemma2.1.2. Then
for everyx∈ init(u∼I ), the last occurrence ofx in u is succeeded by an occurrence
of somey∈ D(x), because init(u∼I )∩fin(u∼I ) = /0. If there exist lettersa∈ CΣ

f (x)
andb∈ f (y)∩D′(a), thenπa,b(ϕ(u)) 6= πa,b(ϕ(←−u )), contradictingϕ(u) ∼I ′ ϕ(←−u ).
Therefore f (y)∩D′(CΣ

f (x)) = /0 holds. Due to the symmetry, the same fact can be
deduced also forx∈ fin(u∼I ). As u∼I is connected, by the assumption of the lemma
this implies that only one element of alph(u) can belong to init(u∼I )∪ fin(u∼I ),
which is impossible since init(u∼I )∩fin(u∼I ) = /0.

For counting of letters in the images we use the following property of graphs with
vertices valuated by non-negative integers.

Lemma 3.3.3.Let (V,E) be a connected undirected graph together with a valuation
η :V→N0 of its vertices. Assume that for every X⊆V such that(X,E) is a tree, there
exists a vertex x∈ X satisfyingη(x) ≥ |EX(x)|, where EX(x) = {y∈ X | (x,y) ∈ E}.
Then∑x∈V η(x)≥ |V|−1.

Moreover, for every undirected graph(V,E), such a valuationη :V→N0 satisfying
the equality∑x∈V η(x) = |V|−1 exists.

Proof. The second claim can be obtained by settingη(x) = 1 for all verticesx ∈ V
except one; then every non-trivial subtree of(V,E) contains at least one leafx with
the valueη(x) = 1.

We are going to prove the first claim through a contradiction. For this purpose,
let us consider some graph(V,E) and its valuationη : V → N0 falsifying the claim
such that the number|η−1(0)| is the smallest possible, whereη−1(0) stands for the
set{x∈V | η(x) = 0}. Clearly |η−1(0)| ≥ 2. Additionally, assume that this graph
possesses the minimal shortest distance between distinct zero-valuated vertices among
such counter-examples. Take some verticesy,z∈V satisfyingη(y) = η(z) = 0 whose
distanced is minimal. Thend≥ 2; otherwiseX = {y,z} contradicts the assumption.
Let s be the successor ofy on some shortest path toz and consider the valuation
ϑ : V → N0 defined by the rulesϑ(y) = 1, ϑ(s) = η(s)− 1≥ 0 andϑ(x) = η(x)
for everyx∈V \ {y,s}. Then eitherϑ(s) ≥ 1 and therefore|ϑ−1(0)| < |η−1(0)| or
ϑ(s) = ϑ(z) = 0 and the distance betweens andz is d− 1. We will show that the
valuationϑ satisfies the assumptions of the lemma, thus contradicting the choice ofη

since∑x∈V ϑ(x) = ∑x∈V η(x).
Let X ⊆ V be such that(X,E) is a tree. It is enough to deal with the cases∈ X.

First assumey∈ X. If y is a leaf ofX, it is a required vertex. Otherwise a required
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vertex can be obtained using the condition forη on the maximal subtree ofX which
contains the vertexy and does not contains. In the casey /∈X, we also distinguish two
situations. IfEX(y) = {s} thenY = X∪{y} is a tree and each vertexx∈Y satisfying
η(x)≥ |EY(x)| lies in X and satisfiesϑ(x)≥ |EX(x)|. If |EX(y)| ≥ 2, take any vertex
t ∈EX(y) having the maximum distance froms in (X,E) and letY be the subtree ofX
consisting of all vertices such that the shortest paths connecting them withs in (X,E)
containt. Then we get a required vertex by applying the condition for the valuationη

to the treeY∪{y}.

Now we are ready to prove the main result of this section.

Proposition 3.3.4.Let(Σ ,D) be an arbitrary C3,C4-free dependence alphabet and let
M(Σ ′, I ′) be a direct product of m free monoids over at least two generators and n free
one-generated monoids. Let M be the number of non-trivial connected components of
the graph(Σ ,D) and let N be the number of trivial ones. Let ai , bi for i ∈ {1, . . . ,m}
and ci for i ∈ {1, . . . ,n} be distinct letters and consider the monoid

M(Σ1, I1) =
m

∏
i=1
{ai ,bi}

∗×
n

∏
i=1
{ci}

∗ .

Then the following statements are equivalent.

(i) There exists a weak coding fromM(Σ , I) to M(Σ ′, I ′).

(ii) There exists a coding fromM(Σ , I) to M(Σ ′, I ′).

(iii) There exists a weak coding fromM(Σ , I) to M(Σ1, I1).

(iv) There exists a wlt-mapping from(Σ , I) to (Σ1, I1).

(v) |Σ |−M−N≤m and|Σ |−M ≤m+n.

Proof. (i) =⇒ (ii ) and (iii ) =⇒ (i) are trivial.
(ii ) =⇒ (iii ). First notice thatM(Σ ′

Σ
, I ′

Σ
) is also a direct product ofm free monoids

over at least two generators andn free one-generated monoids. By Proposition2.2.5
there exists some weak coding fromM(Σ , I) to M(Σ ′

Σ
, I ′

Σ
). And because a weak

morphism from a trace monoid havingC3-free dependence alphabet cannot employ
three mutually dependent letters of the codomain alphabet, the codomain monoid in
the condition (iii ) is sufficient.

(iii ) =⇒ (iv) follows from Lemma3.2.1.
(iv) =⇒ (v). Let f be a wlt-mapping from(Σ , I) to (Σ1, I1). First, we have to

slightly modify f . For everyi ∈ {1, . . . ,m} such thatai ,bi ∈
⋃

f (Σ), we assume that
ai ∈ CΣ

f (x) for a certain letterx ∈ Σ (this is possible due to Lemma3.1.7(ii ) since
ai and bi are interchangeable) and then we addbi into the f -images of all letters
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from D(x) using Lemma3.1.13. Let us now denoteAx = {ai | i = 1, . . . ,m}∩CΣ
f (x)

for everyx∈ Σ .
Let Y be any connected component of the graph(Σ ,D). Consider an arbitrary

subsetX ⊆ Y such that(X,D) is a tree and letx be anX-deciphering letter forf .
If there exists somebi ∈ CX

f (x), then the lettery ∈ X whose f -image containsai is
a leaf of (X,D) thanks to the initial modifications of our wlt-mapping. Otherwise
we haveCX

f (x) ⊆ Ax and consequently|Ax| ≥ |D′(CX
f (x))| ≥ |D(x)∩X| becausex is

X-deciphering forf . In both cases we find a lettery∈ X such that|Ay| ≥ |D(y)∩X|.
Therefore Lemma3.3.3can be employed to conclude∑x∈Y|Ax| ≥ |Y|−1. Summing
these inequalities for all connected components of(Σ ,D), we obtain

|Σ |−M−N≤ ∑
x∈Σ

|Ax| (3.8)

and the first inequality of the condition (v) follows from ∑x∈Σ
|Ax| ≤m, which holds

sinceAx∩Ay = /0 for x 6= y. Next, notice that everyx∈ Σ such thatD(x) = /0 satisfies
f (x)∩{ai ,bi | ai ∈ CΣ

f }= /0. So the number of trivial components of the graph(Σ ,D)
is at mostm+ n−∑x∈Σ

|Ax| by Lemma1.2.11, which gives the second inequality
of (v) due to (3.8).

(v) =⇒ (iii ). Let us first construct a suitable wlt-mappingf from (Σ , I) to (Σ1, I1).
We put each of the lettersai andci into the f -image of at most one element ofΣ to
satisfy the following:

• For every non-trivial connected componentY of the graph(Σ ,D), the image
of all but one element ofY contains exactly one letterai , the remaining one
contains neitherai norci .

• The image of eachx∈ Σ satisfyingD(x) = /0 contains just one letterai or ci .

The condition (v) ensures that this construction can be done. Then for every index
i ∈ {1, . . . ,m} andy ∈ Σ such thatai ∈ f (y), we addbi into f (x) for all x ∈ D(y).
Notice thatf is really a wlt-mapping since for every cliqueX in (Σ , I) one can define
a mappingρX by settingρX(x) equal to the letterai or ci contained inf (x) if such
a letter exists, and equal to somebi if x is the exceptional vertex of a non-trivial
connected component of the graph(Σ ,D), and the condition (T) is valid because
every non-trivial subtree of(Σ ,D) possesses a leaf with a central letter in itsf -image.

Now we use Lemma3.2.2to construct a weak morphismϕ : M(Σ , I)→M(Σ1, I1)
satisfying alph◦ϕ|

Σ
= f in the same way as in the proof of Proposition3.2.3. Clearly

the case (i) of Lemma2.1.2 cannot occur for the morphismϕ. And the case (ii )
of Lemma2.1.2is also impossible by Lemma3.3.2since alla’s used in non-trivial
connected components of(Σ ,D) are central forΣ . Henceϕ is a coding.

The problem of existence of trace codings into direct products of free monoids
(posed in [14]) was already tackled in [17], where it was solved in the case of(Σ ,D)
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being a path or a cycle. Proposition3.3.4settles this problem for all domain monoids
with C3,C4-free dependence alphabets. But as we will see in the next section, in more
general situations the technique of wlt-mappings fails.

3.4 Counter-Examples

The aim of this section is to show that none of the assumptions of Proposition3.3.4
can be removed. The first example demonstrates that the restriction on the codomain
monoid cannot be avoided because the existence of a coding is not guaranteed by
the existence of a wlt-mapping on the corresponding saturated pair of independence
alphabets even for domain monoids which haveC3,C4-free dependence alphabets.

Example 3.4.1.Let

Σ0 = {x1,x2,x3,x4,x5, r}∪{yA,zA | A⊂ {1,2,3,4,5}, |A|= 2}

and consider the alphabet

Σ = Σ0∪
(
{r,yA}×{1,2,3,4}

)
∪
(
{zA}×{1,2}

)
,

whereA always runs through the same values as above. Define a dependence relation
on Σ as follows. Fori = 1, . . . ,5 :

xi D yA ⇐⇒ i ∈ A ,

yA D zA, zA D r, zA D (zA,1), (zA,1) D (zA,2) ,

yA D (yA,1), (yA,1) D (yA,2), yA D (yA,3), (yA,3) D (yA,4) ,

r D (r,1), (r,1) D (r,2), r D (r,3), (r,3) D (r,4) .

The remaining pairs are left independent. The picture of theΣ0-part of the dependence
graph is

x1 x2 x3 x4 x5

y{1,2} y{4,5}

z{1,2} z{4,5}

r
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with at most two simple paths of length 2 attached to each vertex. Let the codomain
monoidM(Σ ′, I ′) be isomorphic toM(Σ ′0, I

′
0)

32, where|Σ ′0| = 4 and the relationI ′0
(and hence alsoD′0) is defined by the graphP4, i.e. the codomain dependence graph
(Σ ′,D′) consists of 32 copies ofP4.

We will prove that there exists a wlt-mapping from(Σ , I) to (Σ ′
Σ
, I ′

Σ
) but still

there is no coding fromM(Σ , I) to M(Σ ′, I ′). In our arguments we implicitly use
Lemma3.2.1and instead of weak morphisms we often talk about the corresponding
wlt-mappings. First observe that everyC3-free subgraph of the graph((Σ ′0)Σ

,(D′0)Σ
)

is isomorphic to some subgraph ofP4 (see Example2.2.6). Because(Σ ,D) isC3-free,
the graph(

⋃
f (Σ),D′

Σ
) is C3-free for every wlt-mappingf from (Σ , I) to (Σ ′

Σ
, I ′

Σ
)

and so we can employ Remark2.2.3to find out that any weak coding fromM(Σ , I) to
M(Σ ′

Σ
, I ′

Σ
) can be turned into a weak coding fromM(Σ , I) to M(Σ ′, I ′) by renaming

letters in the images. Therefore, in order to conclude that a coding fromM(Σ , I)
to M(Σ ′, I ′) does not exist, it is sufficient to verify non-existence of weak codings
between these monoids and then apply Proposition2.2.5.

Consider any wlt-mappingf from (Σ , I) to (Σ ′, I ′). The condition (W) implies that
the letters fromD′(

⋃
f (Σ)) belonging to the same copy ofP4 in (Σ ′,D′) are used

in f -images just in some connected subgraph of(Σ ,D) with maximal distance of its
vertices no more than 3. Consequently, for distinct paths attached to elements ofΣ0 in
the graph(Σ ,D), the pairs of dependent letters fromΣ ′ creating dependences between
the two vertices on these paths come from different copies ofP4. As the number of
attached paths equals to the number of copies ofP4, the set

⋃
f (Σ0)∩D′(

⋃
f (Σ0)) can

contain at most two letters from each copy ofP4. Moreover, as soon as two dependent
letters from one copy ofP4 are used inf -images of some elements ofΣ0, one of them
occurs in the image of the element ofΣ0 the corresponding path in(Σ ,D) leads to
and the other in the images of some of the neighbouring letters. Hence, if a weak
coding fromM(Σ , I) to M(Σ ′, I ′) exists, by Lemma2.1.4there is also a weak coding
from M(Σ0, I) to ({a,b}∗)32 with the number ofa’s from distinct copies of{a,b}∗
occurring in the image of a given element ofΣ0 bounded by the number of 2-element
paths attached to this element in(Σ ,D). From now on, we consider only weak codings
of this form.

Let us now summarize the properties of the restriction of the wlt-mappingf to Σ0
we have discovered so far, together with introducing more transparent notation for
elements ofΣ ′ :

f (xi)⊆ {aA,bA | i ∈ A} f (yA)⊆ {aA,bA,cA}
f (zA)⊆ {aA,bA,cA,d,e} f (r)⊆ {cA,d,e} ,

(3.9)

where the pairs of dependent letters inΣ ′ areaA D′ aA, bA D′ bA, cA D′ cA, d D′ d
ande D′ e. It is not hard to verify that there really exists a wlt-mapping from(Σ , I)
to (Σ ′, I ′) by taking equalities for all of these inclusions and extending toΣ naturally.
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But in the following we prove that none of the morphisms

ϕ : M(Σ0, I)→∏
A

(
{aA,aA}

∗×{bA,bA}
∗×{cA,cA}

∗)×{d,d}∗×{e,e}∗

satisfying alph◦ϕ|
Σ0

= f |
Σ0

is injective.

First observe that (T) is not valid when eithercA /∈ f (yA) or cA /∈ f (r) for someA;
for instance, in the casec{1,2} /∈ f (r) we consider the tree

X = {x1,x2,x3,x4,y{1,3},y{2,4},z{1,2},z{1,3},z{2,4}, r} ,

verify that it is a counter-example for the mappingf defined by taking equalities
in (3.9) exceptf (r) = {cA,d,e | A 6= {1,2}} and apply Lemma3.1.13. Let us denote:

ki j = |ϕ(y{i, j})|c{i, j} ∈ N , l i j = |ϕ(r)|c{i, j} ∈ N .

If the morphismϕ is a coding, then for everyi, j ∈ {1,2,3,4,5}, i 6= j :

|ϕ(xi)|a{i, j} · |ϕ(x j)|b{i, j} 6= |ϕ(x j)|a{i, j} · |ϕ(xi)|b{i, j} . (3.10)

So we can assume that there existαi j ∈ N andβi j ,γi j ∈ Z satisfying

αi j · |ϕ(z{i, j})|a{i, j}+βi j · |ϕ(xi)|a{i, j}+ γi j · |ϕ(x j)|a{i, j} = 0 ,

αi j · |ϕ(z{i, j})|b{i, j}+βi j · |ϕ(xi)|b{i, j}+ γi j · |ϕ(x j)|b{i, j} = 0 .

Now consider the ratios

nA =
|ϕ(zA)|d
|ϕ(zA)|e

∈Q+
0 ∪{∞}

(if both numbers in one of these fractions are zero, the condition (T) is violated).
Whenever two of the ratios corresponding to disjoint sets are equal,d ande behave
like one letter there and (T) can be also considered unsatisfied. Otherwise careful
examination shows that, up to symmetries of the graph(Σ0,D), one of the situations

n{1,2} < n{4,5} < n{1,3} ≤ n{2,3} and n{1,3} ≤ n{2,3} < n{4,5} < n{1,2}

arises. In other words, there existδ ,ε,ζ ∈ N such that

δ · |ϕ(z{1,2})|d + ε · |ϕ(z{1,3})|d = ζ · |ϕ(z{4,5})|d ,

δ · |ϕ(z{1,2})|e+ ε · |ϕ(z{1,3})|e = ζ · |ϕ(z{4,5})|e ;

and similarly for the set{2,3} instead of{1,3}.
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In the case

|ϕ(z{1,2})|a{1,2}
= |ϕ(z{1,2})|b{1,2}

= 0 , (3.11)

we can additionally assumeβ13 6= 0, for if β13 = 0 thenϕ is not injective on the tree

{x3,x4,x5,y{1,2},y{1,3},y{4,5},z{1,2},z{1,3},z{4,5}, r} .

Now define a word

u = xα45pos(−β13)ε
1

·yk13k45l12pos(−sgn(β13))
{1,2}

·xα45pos(−β13)ε
1

·x2α45pos(−γ13)ε
3

·

yk12k45l13
{1,3}

·xα45pos(β13)ε
1

·yk13k45l12pos(sgn(β13))
{1,2}

·xα45pos(β13)ε
1

·

x2α45pos(γ13)ε
3

·z2α13α45δ

{1,2}
·z2α13α45ε

{1,3}
· rk12k13k45 ·z2α13α45ζ

{4,5}
·x2α13pos(β45)ζ

4
·

x2α13pos(γ45)ζ
5

·yk12k13l45
{4,5}

·x2α13pos(−β45)ζ
4

·x2α13pos(−γ45)ζ
5

,

where pos(m) denotesm if m > 0 and 0 otherwise. Then we haveu �I
←−u since

πx1,y{1,3}
(u) 6= πx1,y{1,3}

(←−u ), but at the same timeϕ(u)∼I ′ ϕ(←−u ).
If (3.11) does not hold, due to (3.10) the numbers

m1 =
|ϕ(x1)|a{1,2}

|ϕ(x1)|b{1,2}

m2 =
|ϕ(x2)|a{1,2}

|ϕ(x2)|b{1,2}

m3 =
|ϕ(z{1,2})|a{1,2}

|ϕ(z{1,2})|b{1,2}

in Q+
0 ∪{∞} are correctly defined and by possibly interchanging the indices 1 and 2

we can achieve thatm2 is either strictly larger or strictly smaller than bothm1 andm3.
Under this assumption, let us denote

pi j = |ϕ(xi)|a{i, j} qi j = |ϕ(xi)|b{i, j}
si j = |ϕ(z{i, j})|a{i, j} ti j = |ϕ(z{i, j})|b{i, j}

and consider the numbers

η = (p31q13− p13q31)(p21t12−q21s12)
ϑ = |(p31q13− p13q31)(p21q12− p12q21)|
ι = sgn(η)α45

(
ε(p31t13−q31s13)(p21q12− p12q21)−δη

)
κ = sgn(η)(p31q13− p13q31)(q12s12− p12t12)
λ = sgn(η)(q13s13− p13t13)(p21q12− p12q21) .
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Then the word

u = xα45δ |η |
1

·xα45δ pos(κ)
2

·xα45ε pos(λ )
3

·yk13k45l12
{1,2}

·xpos(ι)
1
·

y2k12k45l13
{1,3}

·xpos(−ι)
1

·yk13k45l12
{1,2}

·xα45δ pos(−κ)
2

·xα45ε pos(−λ )
3

·

zα45δϑ

{1,2}
·zα45εϑ

{1,3}
· r2k12k13k45 ·zα45ζ ϑ

{4,5}
·xpos(β45)ζ ϑ

4
·xpos(γ45)ζ ϑ

5
·

y2k12k13l45
{4,5}

·xpos(−β45)ζ ϑ

4
·xpos(−γ45)ζ ϑ

5

does not satisfyu∼I
←−u becauseπx1,y{1,2}

(u) 6= πx1,y{1,2}
(←−u ). But ϕ(u) ∼I ′ ϕ(←−u ).

Altogether,ϕ is not a coding.

Proposition3.3.4states that a coding from the monoidM(Σ , I) to a direct product
of free monoids exists if and only if the condition (v) holds provided the dependence
alphabet(Σ ,D) is C3,C4-free. On the other hand, it is easy to see that when(Σ ,D)
is eitherC3 or C4, this condition is not necessary for a coding to exist; as for the case
of the graphC4, the submonoid of the monoid{a,b}∗×{c,d}∗ generated by the set
{ac,ac2,bd,bd2} is isomorphic toM(Σ , I). Moreover, in the rest of this section we
show that for domain dependence alphabets which contain subgraphs isomorphic to
eitherC3 or C4, the existence of a wlt-mapping does not guarantee the existence of
a weak coding. Let us start with the graphC3.

Example 3.4.2.Let

Σ = {x,y,z, r,s, t}, I = id
Σ
∪{(x,y),(y,x)} and

M(Σ ′, I ′) = {a1,a2}
∗×{b1,b2}

∗×{c1,c2}
∗ .

First, we demonstrate that wlt-mappings from(Σ , I) to (Σ ′, I ′) are (up to symmetry)
exactly the mappingsf : Σ → 2Σ ′ satisfying

f (x) ∈
{
{a1,b1},{a1,b1,c1}

}
, f (z) = {a2,b2,c2} , f (s) = {a2,b1,c2} ,

f (y) ∈
{
{a1,c1},{a1,b1,c1}

}
, f (r) = {a1,b2,c2} , f (t) = {a2,b2,c1} .

Without loss of generality assumef (x)∪ f (y)⊆ {a1,b1,c1}. Due to the condition of
Lemma3.1.11for X = {x,y,z}, the setf (z) contains (up to symmetry) both letters
a2 andb2. Supposef (z) = {a2,b2}. Then one of the lettersa1 andb1 belongs to
at least two of the setsf (r), f (s) and f (t), saya1 ∈ f (r)∩ f (s). By Lemma3.1.11
for {x,y, r} and{x,y,s} we haveb2,c2 ∈ f (r)∩ f (s), which means thatf (r) = f (s),
contradictingr D s. Therefore eitherf (z) = {a2,b2,c1} or f (z) = {a2,b2,c2}. Using
the same arguments as forz also for r, s and t we deduce thatf is of the required
form.
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Consider any weak morphismϕ : M(Σ , I)→M(Σ ′, I ′) such that alph◦ϕ|
Σ

= f .
We are going to prove that it is not injective. Thanks to symmetries ina1, b1 andc1,
we can assume

|ϕ(x)|b1

|ϕ(y)|b1

≥
|ϕ(x)|a1

|ϕ(y)|a1

≥
|ϕ(x)|c1

|ϕ(y)|c1

.

Then, applying Lemma2.1.17for A = {a1,a2}, we modifyϕ to satisfy

|ϕ(x)|a1
= |ϕ(y)|a1

= |ϕ(s)|a2
= |ϕ(t)|a2

= 1

together with|ϕ(x)|b1
≥ |ϕ(y)|b1

and|ϕ(x)|c1
≤ |ϕ(y)|c1

. If one of these inequalities

holds as an equality, we obtainϕ(xty)∼I ′ ϕ(ytx) andϕ(xsy)∼I ′ ϕ(ysx) respectively.
If it is not the case, we have

ϕ(x) = a1bi
1c j

1 ϕ(y) = a1bk
1cl

1 ϕ(s) = a2bm
1 cn

2 ϕ(t) = a2bo
2cp

1

for some j,k ∈ N0, i, l ,m,n,o, p∈ N and the wordu = xmptm(l− j)sp(i−k)ymp satisfies
ϕ(u)∼I ′ ϕ(←−u ).

Remark3.4.3. Another interesting case of the (W -)TCP which still remains open
is obtained by allowing for domain monoids only free products of free commutative
monoids. In [9] the condition analogous to the existence of a wlt-mapping was proved
accurate for general codings provided all of these free commutative monoids have at
most two generators. But Example3.4.2demonstrates that once we try to generalize
this result to weak morphisms, such a condition becomes insufficient.

Finally, we consider domain dependence alphabets containingC4.

Example 3.4.4.On the alphabetΣ = {x,y,z, p,q, r,s, t} let the dependence relationD
be defined by the diagram

t s r q

x y z p

and let

M(Σ ′, I ′) = {a1,a2}
∗×{b1,b2}

∗×{c1,c2}
∗×{d1,d2}

∗×{e1,e2}
∗ .

By applying the condition of Lemma3.1.11to maximal subtrees of the graph(Σ ,D),
one can show that there exists (up to symmetry) just one wlt-mappingf from (Σ , I)
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to (Σ ′, I ′), namely

f (x) = {a1,b1} , f (y) = {a2,b2,c2} , f (z) = {c1,d1,e1} ,

f (p) = {d2,e2} , f (q) = {d1,e1} , f (r) = {c2,d2,e2} ,

f (s) = {a1,b1,c1} , f (t) = {a2,b2} .

But there is no weak codingϕ : M(Σ , I)→M(Σ ′, I ′) such that alph◦ϕ|
Σ

= f since
we may assume

|ϕ(y)|c2
= |ϕ(z)|c1

= |ϕ(r)|c2
= |ϕ(s)|c1

= 1

due to Lemma2.1.17and then we obtainϕ(ysrz)∼I ′ ϕ(rzys).
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Chapter 4

The General Case

This chapter is devoted to proving the undecidability of the TCP. The proof proceeds
in two steps. In Section4.1 we consider the problem of existence of weak codings
with partially prescribed contents of images of letters and show that many instances
of this problem can be effectively encoded into instances of the trace coding problem.
Then, in Section4.2, we construct a reduction of the PCP to this problem. The proof
of the correctness of the reduction is given in Section4.4 after presenting its main
ideas on a particular instance of the PCP in Section4.3.

4.1 Content Fixation

The aim of this section is to describe how the problem of existence of weak codings
satisfying certain requirements on contents of images of letters can be effectively
reduced to the TCP. We use two mappings to specify these restrictions on contents —
one of them to express which letters are compulsory and the other to express which
are allowed.

Definition 4.1.1. Let µ,ν : Σ → 2Σ ′ be any mappings. We say that a weak morphism
ϕ : M(Σ , I)→M(Σ ′, I ′) is (µ,ν)-weakif it satisfies for allx∈ Σ the condition

µ(x)⊆ alph(ϕ(x))⊆ ν(x) .

We call it ν-weakwhenever alph(ϕ(x))⊆ ν(x) for all x∈ Σ .

First, we are going to show how to specify mandatory letters defined byµ using
only the mappingν . There is nothing to take care of forx∈ Σ such that|ν(x)| = 1
because alph(ϕ(x)) = ν(x) is satisfied for everyν-weak codingϕ. The idea of the
construction is to enrich each of the original alphabets with the same setΘ of new
letters and defineν(y) = {y} for every y ∈ Θ ; since the behaviour of an arbitrary
ν-weak coding on these letters is obvious, they can serve as a skeleton for prescribing

59
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contents of images of other letters. More precisely, to ensure that the image ofx under
everyν-weak coding containsa∈ Σ ′, we introduce a letter(x,a) ∈Θ dependent onx
in the domain alphabet and dependent only on the lettera in the codomain alphabet.
In order to make it possible to extend any(µ,ν)-weak coding to the monoids with
the additional generatorsΘ without violating its injectivity, we add into the codomain
alphabet another set of new lettersΓ , which enables us to encode relative positions of
letters fromΘ in a word from(Σ ∪Θ)∗ with respect to the original lettersΣ .

In addition, we have to ensure that the resulting alphabets satisfy all assumptions
of Proposition4.1.3which provides the second step of the reduction — this is the first
claim of the following proposition.

Proposition 4.1.2.Let (Σ , I) and(Σ ′, I ′) be independence alphabets such that D6= /0
and I is transitive, i.e. the monoidM(Σ , I) is a free product of at least two non-trivial
free commutative monoids. Letµ,ν : Σ → 2Σ ′ be mappings satisfying for all x,y∈ Σ :

x I y, x 6= y =⇒ µ(x) = µ(y) = /0 , (4.1)

ν(x)×ν(x)⊆ I ′ , (4.2)

x I y =⇒ ν(x) = ν(y) . (4.3)

Define new independence alphabets(Σ1, I1) and(Σ ′1, I
′
1) as follows. Let

Γ =
⋃{
{y}×µ(y)× (Σ \{y}) | y∈ Σ

}
,

Θ =
⋃{
{x}×µ(x) | x∈ Σ

}
, Σ1 = Σ ∪Θ , Σ

′
1 = Σ

′∪Θ ∪Γ

and let the independence relations be given by the conditions:

I1∩ (Σ ×Σ) = I I1∩ (Θ ×Σ1) = id
Θ

I ′1∩ (Σ ′×Σ
′) = I ′ Γ × (Σ ′∪Γ )⊆ I ′1

and for all x,y,z∈ Σ , y 6= z, a∈ µ(x), b∈ µ(y), c∈ Σ ′ :

(x,a) I ′1 c ⇐⇒ a 6= c , (4.4)

(x,a) I ′1 (y,b,z) ⇐⇒ (x,a) 6= (y,b) , (4.5)

(x,a) I ′1 (y,b) ⇐⇒ (x,a) = (y,b) . (4.6)

Further, define a mappingν1 : Σ1→ 2Σ ′1 by the rules:

ν1(x) = ν(x)∪
⋃{
{y}×µ(y)×{z} | y,z∈ Σ , y 6= z, z I x

}
,

ν1((x,a)) = {(x,a)} ,

for x∈ Σ and a∈ µ(x). Then the following assertions hold.
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(i) The new independence relation I1 is transitive and the mappingν1 satisfies the
corresponding modifications of(4.2) and (4.3).

(ii) There exists a(µ,ν)-weak coding fromM(Σ , I) to M(Σ ′, I ′) if and only if there
exists aν1-weak coding fromM(Σ1, I1) to M(Σ ′1, I

′
1).

Proof. The first claim is evident. Let us prove the second one.
“=⇒” Let ϕ : M(Σ , I)→M(Σ ′, I ′) be any(µ,ν)-weak coding. For all lettersx∈ Σ

anda∈ µ(x), set

ψ(x) = ϕ(x) · ∏
y∈Σ\{x}
b∈µ(y)

(y,b,x) , ψ((x,a)) = (x,a) .

It is clear that this defines aν1-weak morphismψ : M(Σ1, I1)→M(Σ ′1, I
′
1). In order

to prove thatψ is injective, take two wordsu,v∈ (Σ1)
∗ which satisfyψ(u)∼I ′1

ψ(v).
Thenπ

Σ
(u)∼I1

π
Σ
(v) since

ϕ(π
Σ
(u)) = π

Σ ′(ψ(u))∼I ′ π
Σ ′(ψ(v)) = ϕ(π

Σ
(v)) .

One also derives

π
Θ

(u) = π
Θ

(ψ(u)) = π
Θ

(ψ(v)) = π
Θ

(v) .

For x,y ∈ Σ , x 6= y, a ∈ µ(x), the wordπ(x,a),y(u) can be obtained from the word

π(x,a),(x,a,y)(ψ(u)) by substitutingy for (x,a,y). As the same holds also forv and

because(x,a) D′1 (x,a,y), we haveπ(x,a),y(u) = π(x,a),y(v).
To getu∼I1

v, it remains to showπ(x,a),x(u) = π(x,a),x(v) for all x∈ Σ anda∈ µ(x).
Let us employ Lemma2.1.9for the word morphismπ(x,a),a◦ψ : (Σ1)

∗→{(x,a),a}∗,
the setΣ1\{(x,a),x}, the lettera and the wordsu andv. We obtain

π
(x,a),a

(
ψ

(
π

(x,a),x
(u)
))

= π
(x,a),a

(
ψ

(
π

(x,a),x
(v)
))

andπ(x,a),x(u) = π(x,a),x(v) now follows froma∈ alph(ψ(x)). Henceψ is a coding.

“⇐=” Let ψ : M(Σ1, I1)→M(Σ ′1, I
′
1) be aν1-weak coding. We are going to prove

that the codingσ = ψ|M(Σ ,I) is (µ,ν1)-weak. Consider arbitraryx∈ Σ anda∈ µ(x).
Then alph

(
ψ((x,a))

)
= {(x,a)} sinceψ is aν1-weak coding. Becausex D1 (x,a) and

ψ is a coding, it implies that there isα ∈ alph(ψ(x)) such thatα D′1 (x,a). Since

alph(ψ(x))⊆ ν1(x)⊆ Σ
′∪
⋃{
{y}×µ(y)×{x} | y∈ Σ \{x}

}
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due to the assumption (4.1), using the conditions (4.4) and (4.5) we concludeα = a.
Hencea belongs to alph(σ(x)). This means thatσ is a (µ,ν1)-weak coding from
M(Σ , I) to M(Σ ′∪Γ , I ′1). Therefore the morphismπ

Σ ′ ◦σ : M(Σ , I)→M(Σ ′, I ′) is
a desired(µ,ν)-weak coding by Lemma2.1.4since the factD 6= /0 and the transitivity
of the relationI together implyΣ = D(Σ).

In the rest of this section we show that we can manage our content requirements
even without the mappingν . This time, we add to the original independence alphabets
mutually dependent cliques of independent letters, each of them having sufficiently
distinct size. Then we can employ Lemma1.2.11to verify that images of elements
of a given clique in the domain alphabet under a weak coding use almost exclusively
letters from the clique of the same size in the codomain alphabet. So, in order to deal
with the requirements for a letterx ∈ Σ , we introduce a clique which has all of its
elements independent onx in the domain alphabet and independent exactly on letters
allowed in the image ofx in the codomain alphabet. Because images of independent
letters under a weak morphism always contain only independent ones, this ensures
that prohibited letters are never used.

In effect the construction functions in the same way even if we add new letters
to the codomain alphabet according to Definition2.2.1in order to pass to the TCP.
It is due to the fact that these new letters do not form in the codomain independence
alphabet any cliques bigger than those already existing.

Proposition 4.1.3.Let (Σ , I) and(Σ ′, I ′) be independence alphabets with I transitive
andν : Σ → 2Σ ′ a mapping satisfying(4.2) and (4.3). Let? /∈ Σ be a new letter and
τ : Σ ∪{?} → {1, . . . ,n} a bijection such thatτ(?) = 1. Define new independence
alphabets(Σ1, I1) and(Σ ′1, I

′
1) as follows. Set

Θ =
{
(x, i) | x∈ Σ ∪{?}, i ∈ N, 1≤ i ≤ τ(x) · (|Σ ′|+2)

}
and letΣ1 = Σ ∪Θ andΣ ′1 = Σ ′∪Θ . Let the independence relations be given by the
conditions:

I1∩ (Σ ×Σ) = I , I ′1∩ (Σ ′×Σ
′) = I ′,

for (x, i),(y, j) ∈Θ , x,y∈ Σ ∪{?} :

(x, i) I1 (y, j) ⇐⇒ (x, i) I ′1 (y, j) ⇐⇒ x = y

and for(x, i),(?, j) ∈Θ , x,y∈ Σ , a∈ Σ ′ :

(x, i) I1 y ⇐⇒ x I y (?, j) I1 y

(x, i) I ′1 a ⇐⇒ a∈ ν(x) (?, j) I ′1 a .

Then the following statements are equivalent.
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(i) There exists aν-weak coding fromM(Σ , I) to M(Σ ′, I ′).

(ii) There exists a weak coding fromM(Σ1, I1) to M(Σ ′1, I
′
1).

(iii) There exists a weak coding fromM(Σ1, I1) to M((Σ ′1)Σ1
,(I ′1)Σ1

).

(iv) There exists a coding fromM(Σ1, I1) to M(Σ ′1, I
′
1).

Proof. (i) =⇒ (ii ). Let ϕ : M(Σ , I)→M(Σ ′, I ′) be aν-weak coding. Then we can
extendϕ into a weak morphismψ : M(Σ1, I1)→ M(Σ ′1, I

′
1) by taking the identity

onΘ . Indeed, when verifying that this defines a weak morphism, everything is clear
except for the case of letters(x, i) I1 y with x,y∈ Σ ; for such letters we havex I y and
alph(ψ(y)) = alph(ϕ(y)) ⊆ ν(y) = ν(x) becauseϕ is ν-weak andν satisfies (4.3),
and therefore alph

(
ψ((x, i))

)
×alph(ψ(y))⊆ I ′1.

Let us prove thatψ is a coding. Supposeu,v ∈ (Σ1)
∗, ψ(u) ∼I ′1

ψ(v). It is easy

to see thatπ
Σ
(u) ∼I1

π
Σ
(v) andπ

Θ
(u) ∼I1

π
Θ

(v) since bothϕ and the identity are
injective. Take(x, i) ∈Θ with x∈ Σ . Consider the weak morphisms

ρ : M(Σ ∪{(x, i)}, I1)→M(Σ , I)

identical onΣ and mapping(x, i) to x and

ρ
′ : M(Σ ′∪{(x, i)}, I ′1)→M(Σ ′, I ′)

identical onΣ ′ and mapping(x, i) to ϕ(x) = ψ(x). Notice thatρ ′ is really a weak
morphism because fora I′1 (x, i), wherea∈ Σ ′, we havea∈ ν(x), using (4.2) we get
{a}×ν(x)⊆ I ′ and consequently{a}×alph(ψ(x))⊆ I ′ asϕ is ν-weak.

Then the following diagram commutes.

M(Σ ∪{(x, i)}, I1)
ρ−−−→ M(Σ , I)

ψ

y yϕ

M(Σ ′∪{(x, i)}, I ′1) −−−→
ρ ′

M(Σ ′, I ′)

(4.7)

Let us consider the wordsu = π
Σ∪{(x,i)}(u) andv = π

Σ∪{(x,i)}(v). Since

ψ(u) = π
Σ ′∪{(x,i)}(ψ(u))∼I ′1

π
Σ ′∪{(x,i)}(ψ(v)) = ψ(v) ,

from (4.7) it follows that (ϕ ◦ ρ)(u) ∼I ′ (ϕ ◦ ρ)(v) and henceρ(u) ∼I ρ(v) due to
the injectivity of the morphismϕ. If a letter y ∈ Σ satisfiesy D1 (x, i), theny D x
and thusπx,y(u) = πx,y(v). Therefore Lemma2.1.9can be applied to the morphism
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πx,y◦ρ : (Σ ∪{(x, i)})∗→ {x,y}∗ for the set{x}, the letterx and the wordsu andv.
We obtain

π
x,y

(
ρ

(
π

(Σ∪{(x,i)})\{x}
(u)
))

= π
x,y

(
ρ

(
π

(Σ∪{(x,i)})\{x}
(v)
))

,

which is clearly equivalent toπy,(x,i)(u) = πy,(x,i)(v). Altogether, we have verified the
factu∼I1

v. We conclude thatψ is a coding.
(ii ) =⇒ (iii ) is trivial.
(iii ) =⇒ (i). Let ϕ : M(Σ1, I1)→M((Σ ′1)Σ1

,(I ′1)Σ1
) be an arbitrary weak coding.

First, we need to describe all large cliques in the codomain independence alphabet.
So, consider a cliqueK in the graph((Σ ′1)Σ1

,(I ′1)Σ1
) having at least|Σ ′|+2 elements.

If we choose for everyα ∈ K one element of ealph(α), we get a cliqueK′ in (Σ ′1, I
′
1)

of the same size asK by (2.9). ThereforeK′ contains at least two elements ofΘ .
Moreover, each of these elements is of the form(x, i) for a uniquex∈ Σ ∪{?}, hence
the other elements ofK′ lie in ν(x) (for x = ?, considerν(?) = Σ ′). Since there are
always at least two elements ofΘ in K′, we can also see that for any choice of the
cliqueK′ thisx is the same. Thus, if we write, forx∈ Σ ,

Lx = {(x, i) | i ∈ N, 1≤ i ≤ τ(x) · (|Σ ′|+2)}∪ν(x) ,

L? = {(?, i) | i ∈ N, 1≤ i ≤ |Σ ′|+2}∪Σ
′
Σ1

,

using (4.2) we obtainK ⊆ Lx andK∩Θ 6= /0 for somex∈ Σ ∪{?}.
Now we are going to prove that the set

Kx =
⋃{

alph
(
ϕ((x, i))

)
| i ∈ N, 1≤ i ≤ τ(x) · (|Σ ′|+2)

}
satisfies the conditionsKx⊆ Lx andKx∩Θ 6= /0 for everyx∈ Σ ∪{?}. We proceed by
induction starting from the largest cliques. Assume we are already done with all letters
x ∈ {τ−1(n), . . . ,τ−1(k+1)} and let us considerx = τ−1(k), wherek ∈ {1, . . . ,n}.
By Lemma1.2.11, the setKx is a clique in the graph((Σ ′1)Σ1

,(I ′1)Σ1
) of cardinality

at leastτ(x) · (|Σ ′|+2). Using the results of the previous paragraph, we can see that
Kx ⊆ Ly andKx∩Θ 6= /0, for some lettery ∈ Σ ∪{?}. Due to the cardinality ofKx,
we havey∈ {τ−1(n), . . . ,τ−1(k+1),x}. If y 6= x thenKx∪Ky⊆ Ly, which is a clique
in ((Σ ′1)Σ1

,(I ′1)Σ1
) sincey 6= ?. But this contradicts (2.3) for any (x, i),(y, j) ∈ Θ

because(x, i) D1 (y, j) holds. Thereforey = x and the fact is proved also forx.
For every letterx∈ Σ ∪{?}, asKx∩Θ 6= /0, there exist(x, ix),(x, jx) ∈Θ such that

(x, ix) ∈ alph
(
ϕ((x, jx))

)
. Now consider anyy∈ Σ . Theny I1 (?, j?) andy I1 (y, jy),

which implies
alph(ϕ(y))×{(?, i?),(y, iy)} ⊆ (I ′1)Σ1

,

consequently ealph(ϕ(y))⊆ ν(y) and so alph(ϕ(y))⊆ ν(y) by the assumption (4.2).
Hence, the restrictionϕ|M(Σ ,I) : M(Σ , I)→M(Σ ′, I ′) is a requiredν-weak coding.

(iii )⇐⇒ (iv) follows immediately from Proposition2.2.5.
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4.2 Encoding of the Post’s Correspondence Problem

It is well-known that the coPCP is not recursively enumerable. In this section we
construct a reduction of this problem to the problem of deciding the existence of
(µ,ν)-weak codings. Because our construction should be based only on contents of
images of letters, we have to impose a certain restriction on instances of the PCP
which enables us not to care about the numbers of occurrences of letters in these
images.

Let P denote the following instance of the PCP. Letn∈ N. We are givenn pairs
(w1,w1), . . . ,(wn,wn) of non-empty words over some finite alphabetΞ such that each
two consecutive letters in any product of the wordsw1,w1, . . . ,wn,wn are different.
The problem asks to decide whether there exists a finite sequencei1, . . . , im of integers
from the set{1, . . . ,n} satisfyingw1wi1

wi2
· · ·wim

= w1wi1
wi2
· · ·wim

(observe that we
require the initial pair of a solution to be equal to the first pair on the list).

Notice that this restriction on instances of the PCP causes no loss of generality
since for every instance of the PCP we can obtain an equivalent instance of the above
form by introducing a new letter # intoΞ and performing the substitutionx 7→ x# for
all x∈ Ξ .

For i ∈ {1, . . . ,n} and j ∈ {1, . . . , |wi |} andk ∈ {1, . . . , |wi |}, we refer to thej-th
letter of the wordwi asxi j and to thek-th letter ofwi asxik. For the rest of this section,
when writing indicesi, i j or ik, we implicitly assume that they run through all values
as in the previous sentence.

Now we define two independence alphabets(Σ , I) and(Σ ′, I ′). Let us first introduce
a set of new letters:

Ω = {α,α0,β1, . . . ,β8,γ1,γ2,γ3,δi1,δi2,εi j1,εi j2,ε ik1,ε ik2,

ζi j1,ζi j2,ζ ik1,ζ ik2,ηi j1,ηi j2,ηi j3,η ik1,η ik2,η ik3,ϑi j ,ϑ ik,

ιi ,κ1,κ2,λi j1,λi j2,λi j3,λ ik1,λ ik2,λ ik3,ξi1,ξi2,ξi3} .

The domain alphabetΣ = (Ω \{α0})×{1,2} consists of one pair of letters for each
element of the setΩ \{α0}. Letters from these pairs should appear on opposite sides
of a counter-example to the injectivity of our morphism and correspond there to each
other according to their first coordinates. Let the independence relation be

I = id
Σ
∪
{(

(α,1),(α,2)
)
,
(
(α,2),(α,1)

)}
.

In the desired outcome of our construction, counter-examples to the injectivity
should correspond to solutions of the instanceP. A computation of a solution ofP
will be simulated by appending the pairs of elements ofΣ to an already constructed
semi-equality by means of Lemma2.1.24in the way determined by its state. Just one
pair of letters inΣ is set independent to ensure that there is only one way to start this
computation due to Lemma2.1.1.
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The alphabetΣ ′ is divided into several disjoint subsets according to the role of
letters in the encoding:

Σ
′ = {l1, l2, r1, r2,b,c,d}∪S∪A∪E∪F ∪G∪P∪Q∪Ξ ∪{?}∪Ω .

Letters from the setS= {s,sf,si ,si j ,sik, ti j , t ik}will control a computation during its
initial and its final phase except for the letters, which will keep it from a premature
termination. The process of composing the wordswi andwi in a semi-equality will
be controlled by elements of the setA = {a,ai j ,aik}, whose occurrences characterize
individual steps of a computation: a semi-equality having the letterai j (aik) in its
state will be extended by pairs of elements ofΣ introducingxi j to the left component
(xik to the right one respectively) and a semi-equality witha in the state will allow us
to choose the next pair of words(wi ,wi) or to finish a computation. During an addition
of the pair(wi ,wi), all letters of the wordwi will be placed before proceeding to place
the letters of the wordwi .

The progress of a computation will be determined by dependences betweena’s and
letters from the sets

E = {e,ei j ,eik}, F = { fi , fi j , f ik} andG = {gi ,gi j ,gik} .

More precisely, each of these letters can appear in the images of letters appended
to a semi-equality only if it is independent on the letter fromA in the state of this
semi-equality. The lettere will serve for terminating a computation and the other
elements ofE for introducing letters fromΞ . In the same way, each letter fromF will
be used for manipulating the corresponding letter fromG. Elements ofG will guard
against undesirable letters remaining in the state from one step of a computation to
the next one. Letters fromE\{e} andF are paired with auxiliary letters from the sets

P = {pi j , pik} andQ = {qi ,qi j ,qik} .

The letter? will behave just as the letters of the original alphabetΞ and it will mark
the end of a solution ofP. Letters fromΣ will be placed on the appropriate sides of
a semi-equality thanks tol ’s andr ’s and the pairs of letters inΣ will be fixed using
elements ofΩ .

Dependences between elements ofΣ ′ are set by the following rules; all pairs not
mentioned below are considered independent:

l1 D′ l2, r1 D′ r2, b D′ c, b D′ d ,

pi j D′ ei j , pik D′ eik, qi D′ fi , qi j D′ fi j , qik D′ f ik ,

I ′∩S2 = idS, I ′∩ (Ξ ∪{?})2 = id
Ξ∪{?} ,

I ′∩Ω
2 = id

Ω
∪sym({α,α0}×{β1,β2,β3,β4}) ,
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I ′∩(A∪E∪F ∪G)2 = idA∪E∪F∪G∪sym{(e,a),(ei j ,ai j ),(eik,aik),

( fi ,a),( fi j ,ai j ),( f ik,aik),(gi ,a),(gi ,ai|wi |
),(gi j ,ai j ),(gi j ,ai j−1),

(gik,aik),(gik,aik−1),(gi , fi),(gi j , fi j ),(gik, f ik)} ,

whereai0 = a andai0 = ai|wi |
.

Now let us construct mappingsµ,ν : Σ → 2Σ ′. For each elementω ∈ Ω \ {α0},
the images of(ω,1) and(ω,2) underµ andν are together understood as one rule for
a computation. In fact, we cannot fix contents of images completely since we have to
satisfy all assumptions of Proposition4.1.2which should be applied to every instance
produced here in order to prolong the reduction to the TCP. As the desired contents
are given byν , let us defineν first.

The following rules guarantee that a computation starts correctly and that we can
remove control letters at the end of a successful computation:

ν((α,1)) = {l1, r1,b,s1,a11,α} ν((α,2)) = {l1, r1,b,s1,a11,α}
ν((β1,1)) = {l2, r1,α0,β1} ν((β1,2)) = {l2, r2,β1}
ν((β2,1)) = {l2,α0,β2} ν((β2,2)) = {l2, r2,α,β2}
ν((β3,1)) = {l1, r2,α0,β3} ν((β3,2)) = {l2, r2,β3}
ν((β4,1)) = {r2,α0,β4} ν((β4,2)) = {l2, r2,α,β4}
ν((β5,1)) = {l2,sf,β5} ν((β5,2)) = {r2,s1,β5}
ν((β6,1)) = {l2,s1,β6} ν((β6,2)) = {r2,sf,a,β6}
ν((β7,1)) = {l2,c,β7} ν((β7,2)) = {r2,b,β7}
ν((β8,1)) = {l2,b,β8} ν((β8,2)) = {r2,d,β8}
ν((γ1,1)) = {l2,sf,γ1} ν((γ1,2)) = {l1,sf,γ1}
ν((γ2,1)) = {r1,sf,γ2} ν((γ2,2)) = {r2,sf,γ2}
ν((γ3,1)) = {a11,sf,γ3} ν((γ3,2)) = {a,sf,γ3} .

The next family of rules serves for the initial placement ofp’s andq’s:

ν((δi1,1)) = {l2,c,si ,δi1} ν((δi1,2)) = {r2,d,si+1,qi ,δi1}
ν((δi2,1)) = {l2,c,si ,qi ,δi2} ν((δi2,2)) = {r2,d,si+1,δi2}

ν((εi j1,1)) = {l2,si j ,εi j1} ν((εi j1,2)) = {r2,si j+1, pi j ,εi j1}
ν((εi j2,1)) = {l2,si j , pi j ,εi j2} ν((εi j2,2)) = {r2,si j+1,εi j2}
ν((ε ik1,1)) = {l2,sik,ε ik1} ν((ε ik1,2)) = {r2,sik+1, pik,ε ik1}
ν((ε ik2,1)) = {l2,sik, pik,ε ik2} ν((ε ik2,2)) = {r2,sik+1,ε ik2}
ν((ζi j1,1)) = {l2, ti j ,ζi j1} ν((ζi j1,2)) = {r2, ti j+1,qi j ,ζi j1}
ν((ζi j2,1)) = {l2, ti j ,qi j ,ζi j2} ν((ζi j2,2)) = {r2, ti j+1,ζi j2}
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ν((ζ ik1,1)) = {l2, t ik,ζ ik1} ν((ζ ik1,2)) = {r2, t ik+1,qik,ζ ik1}
ν((ζ ik2,1)) = {l2, t ik,qik,ζ ik2} ν((ζ ik2,2)) = {r2, t ik+1,ζ ik2} ,

where we use the notation

sn+1 = s11, si|wi |+1 = si+11, sn+11 = s11, si|wi |+1 = si+11, sn+11 = t11,

ti|wi |+1 = ti+11, tn+11 = t11, t i|wi |+1 = t i+11, tn+11 = s .

The main cycle inserting letters fromΞ is performed by the rules:

ν((ηi j1,1)) = {l2,s, pi j ,xi j ,ηi j1} ν((ηi j1,2)) = {r2,s,ei j ,ηi j1}
ν((ηi j2,1)) = {l2,s,ei j ,ηi j2} ν((ηi j2,2)) = {r2,s, pi j ,ηi j2}
ν((ηi j3,1)) = {l2,s, pi j ,ηi j3} ν((ηi j3,2)) = {r2,s,ei j ,ηi j3}
ν((η ik1,1)) = {l2,s, pik,η ik1} ν((η ik1,2)) = {r2,s,eik,xik,η ik1}
ν((η ik2,1)) = {l2,s,eik,η ik2} ν((η ik2,2)) = {r2,s, pik,η ik2}
ν((η ik3,1)) = {l2,s, pik,η ik3} ν((η ik3,2)) = {r2,s,eik,η ik3}
ν((ϑi j ,1)) = {l2,s,ai j+1,xi j ,ϑi j} ν((ϑi j ,2)) = {r2,s,ai j ,gi j+1,ϑi j}
ν((ϑ ik,1)) = {l2,s,aik+1,ϑ ik} ν((ϑ ik,2)) = {r2,s,aik,gik+1,xik,ϑ ik}

ν((ιi ,1)) = {l2,s,ai1, ιi} ν((ιi ,2)) = {r2,s,a,gi1, ιi} ,

whereai|wi |+1 = ai1, ai|wi |+1 = a, gi|wi |+1 = gi1 andgi|wi |+1 = gi , which corresponds to
the desired order of introducing letters fromΞ . Later we will also employ the notation
fi|wi |+1 = f i1 and f i|wi |+1 = fi . A computation of a solution ofP is successful if we
can eventually use one of the following rules:

ν((κ1,1)) = {l2,s,?,κ1} ν((κ1,2)) = {r2,sf,e,?,κ1}
ν((κ2,1)) = {l2,sf,?,κ2} ν((κ2,2)) = {r2,s,e,?,κ2} .

Finally, for manipulating letters fromG we need the rules:

ν((λi j1,1)) = {l2,s,gi j ,qi j ,λi j1} ν((λi j1,2)) = {r2,s, fi j ,λi j1}
ν((λi j2,1)) = {l2,s, fi j ,λi j2}, ν((λi j2,2)) = {r2,s,qi j ,λi j2}
ν((λi j3,1)) = {l2,s,qi j ,λi j3} ν((λi j3,2)) = {r2,s, fi j ,λi j3}

ν((λ ik1,1)) = {l2,s,gik,qik,λ ik1} ν((λ ik1,2)) = {r2,s, f ik,λ ik1}
ν((λ ik2,1)) = {l2,s, f ik,λ ik2} ν((λ ik2,2)) = {r2,s,qik,λ ik2}
ν((λ ik3,1)) = {l2,s,qik,λ ik3} ν((λ ik3,2)) = {r2,s, f ik,λ ik3}
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ν((ξi1,1)) = {l2,s,gi ,qi ,ξi1} ν((ξi1,2)) = {r2,s, fi ,ξi1}
ν((ξi2,1)) = {l2,s, fi ,ξi2} ν((ξi2,2)) = {r2,s,qi ,ξi2}
ν((ξi3,1)) = {l2,s,qi ,ξi3} ν((ξi3,2)) = {r2,s, fi ,ξi3} .

The mappingµ : Σ → 2Σ ′ is defined by the same rules as the mappingν except for
µ((α,1)) = µ((α,2)) = /0.

Let ϕ be the(µ,ν)-weak morphism fromM(Σ , I) to M(Σ ′, I ′) determined by the
conditionsϕ((α,1)) = l1ba11α, ϕ((α,2)) = r1bs1α and for all ω ∈ Ω \ {α,α0},
z∈ Σ ′ andh∈ {1,2} :

|ϕ((ω,h))|z =

{
1 if z∈ ν((ω,h)) ,

0 otherwise .

Now we are ready to formulate the result, which will be proved in Section4.4.

Proposition 4.2.1.Let P, (Σ , I), (Σ ′, I ′), µ, ν andϕ be as defined above. Then the
following statements are equivalent.

(i) P has no solution.

(ii) ϕ is a coding.

(iii) There exists a(µ,ν)-weak coding fromM(Σ , I) to M(Σ ′, I ′).

This proposition is the last item we need to construct a reduction of the coPCP to
the TCP, thereby proving that the TCP is undecidable.

Proposition 4.2.2.There exists an effective reduction of the coPCP to the TCP.

Proof. As the first step, we use Proposition4.2.1to reduce the coPCP to the problem
of deciding the existence of(µ,ν)-weak codings. Since every instance (consisting
of alphabets(Σ , I) and(Σ ′, I ′) and mappingsµ andν) constructed there satisfies all
assumptions of Proposition4.1.2, we can employ this claim to prolong the reduction
to the problem of deciding the existence ofν-weak codings. Finally, Proposition4.1.3
can be applied to all instances of this problem obtained in Proposition4.1.2and we
get a reduction to the TCP.

Observe that Proposition4.2.1immediately implies that injectivity is not decidable
for cp-morphisms because for every instanceP of the PCP we have constructed the
cp-morphismϕ being a coding if and only ifP possesses no solution. This result
was first announced in [17] and proved in [16].

Corollary 4.2.3 ([16]). The restriction of the trace code problem to cp-morphisms is
undecidable.
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4.3 Example of the Encoding

Before proceeding to prove Proposition4.2.1, let us demonstrate its basic principles
by an example.

Consider the alphabetΞ = {x,y,z,#} and the instanceP of the PCP consisting
of the pairs(x#y#,x#) and (z#,y#z#). Further, letψ : M(Σ , I)→ M(Σ ′, I ′) be the
(µ,ν)-weak morphism defined by the same rules asϕ except for:

ψ((α,1)) = l31bs1a5
11α

2
ψ((α,2)) = l1r1b2s1a11α

ψ((γ1,1)) = l2s3
f γ1 ψ((κ1,2)) = r2sfe?κ

2
1

ψ((η241,1)) = l2sp3
24η241 ψ((η242,2)) = r2sp2

24η242

ψ((ϑ22,1)) = l2sa21#
2
ϑ22

We will use the solution(x#y#)(z#) = (x#)(y#z#) of the instanceP to show that the
morphismψ is not a coding. Let us take the semi-equality

(
(α,1),(α,2)2

)
, whose

state is(l1a3
11, r

2
1b3s1). We are going to successively append elements ofΣ from the

right to this semi-equality preserving the property that no letter fromΩ occurs in
its state until we reach a semi-equality satisfying the assumptions of Lemma2.1.22.
During the whole construction we will be interested only in the state of the current
semi-equality, which contains enough information to verify that the next addition does
not violate the definition of semi-equalities and to calculate the new state.

First we add the pair
(
(β8,1)3,(β8,2)3

)
to removeb’s from the state (in such a case

let us simply say that we add the pairβ 3
8 ); the resulting state is(l1l32a3

11, r
2
1r3

2d3s1).
Then we use the pairδ11 to replaces1 with s2. We get the state(l1l42ca3

11, r
2
1r4

2d4s2q1).
Similarly, appendingδ21 now produces(l1l52c2a3

11, r
2
1r5

2d5s11q1q2) and we continue in
this way withε111, ε121, ε131, ε141, ε211, ε221, ε111, ε121, ε211, ε221 andε231, thus
obtaining the state

(l1l16
2 c2a3

11, r
2
1r16

2 d5s24p11p12p13p14p21p22p11p12p21p22p23q1q2) .

Since the images of(η241,1) and(η242,2) underψ differ from the images underϕ,
we have to be more careful with introducing the letterp24 to the state. Later we will
see that the right choice is to append the pairε242, which leads to the state

(l1l17
2 c2a3

11p24, r
2
1r17

2 d5t11p11· · · p23q1q2) .

Now we deal withζ ’s in the same way as withε ’s to reach the state

(l1l29
2 c2a3

11p24, r
2
1r29

2 d5sp11· · · p23q1q2q11· · ·q22q11· · ·q24) .

As the letter fromS in the current state iss, we can start composing the solution
of P using the rules containings. First we replace the lettera11 with a12 by adding
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the pairϑ 3
11. We obtain the state

(l1l32
2 c2a3

12p24x
3, r2

1r32
2 d5sg3

12p11· · · p23q1 · · ·q24) .

Now we have to remove all occurrences ofg12. In order to do this, we employ the
pair λ121 exchangingq12 for f12 :

(l1l33
2 c2a3

12p24x
3, r2

1r33
2 d5s f12g

2
12p11· · · p23q1q2q11q13· · ·q24) .

Then we perform this exchange in the reverse direction usingλ122 :

(l1l34
2 c2a3

12p24x
3, r2

1r34
2 d5sg2

12p11· · · p23q1 · · ·q24) .

Repeating the last two steps twice more, we eliminate also the remaining occurrences
of g12 and we get the state

(l1l38
2 c2a3

12p24x
3, r2

1r38
2 d5sp11· · · p23q1 · · ·q24) .

In the same way we now append the pairsϑ 3
12, λ131, λ132, ϑ 3

13, λ141, λ142, ϑ 3
14, λ 111

andλ 112 to reach the state

(l1l65
2 c2a3

11p24x
3#3y3#3, r2

1r65
2 d5sp11· · · p23q1 · · ·q24) ,

where the reduct of the projection of the first component toΞ is x#y#, which is just
the wordw1.

Similarly as before, we addϑ
3
11, λ 121, λ 122 andϑ

3
12 to remove from the state the

letters corresponding to the wordw1 :

(l1l77
2 c2a3p24y

3#3, r2
1r77

2 d5sg3
1p11· · · p23q1 · · ·q24) .

Then we eliminateg1 using the pairsξ11 andξ12 and start introducing the second pair
of words ofP, as suggested by the chosen solution, by appendingι3

2 . The resulting
state is

(l1l86
2 c2a3

21p24y
3#3, r2

1r86
2 d5sg3

21p11· · · p23q1 · · ·q24) .

After employing the pairsλ211, λ212, ϑ 3
21, λ221, λ222, ϑ 3

22, λ 211 andλ 212, we end up
with the state

(l1l110
2 c2a3

21p24y
3#3z3#6, r2

1r110
2 d5sp11· · · p23q1 · · ·q24)

and the subsequent addition ofϑ
3
21 λ 221, λ 222, ϑ

3
22, λ 231, λ 232, ϑ

3
23, λ 241 andλ 242

transforms it into

(l1l137
2 c2a3

24p24#
6, r2

1r137
2 d5sp11· · · p23q1 · · ·q24) .
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In the next step of our construction we have to replace three occurrences ofa24 in
the state witha and simultaneously remove six occurrences of the letter #. This cannot

be achieved by simply appendingϑ
3
24, therefore we have to modify the state before

proceeding to use the pairϑ 24. First we add the pairη242 by means of Lemma2.1.24,
where we takep24 as the distinguished letter in (2.4). Since the lengths of all blocks
in the current state are multiplied by 2 due to Lemma2.1.23, we reach the state

(l21l275
2 c4a6

24e24#
12, r4

1r275
2 d10s2p2

11· · · p2
23q

2
1 · · ·q2

24) .

Then we appendη241 in order to exchangee24 for p24 :

(l21l276
2 c4a6

24p3
24#

11, r4
1r276

2 d10s2p2
11· · · p2

23q
2
1 · · ·q2

24) .

When performing this replacement of lettersp24 ande24, the ratio of the number of
occurrences ofa24 in the state to the number of occurrences of # increases, so we
repeat it until these numbers are equal. More precisely, in each step of the iteration
the lengths of all blocks in the state are multiplied by 2 and the appropriate number of
the pairsη242 andη241 is added, producing in sequence the following states:

(l41l555
2 c8a12

24e
3
24#

22, r8
1r555

2 d20s4p4
11· · · p4

23q
4
1 · · ·q4

24)

(l41l558
2 c8a12

24p9
24#

19, r8
1r558

2 d20s4p4
11· · · p4

23q
4
1 · · ·q4

24)

(l81l1125
2 c16a24

24e
9
24#

38, r16
1 r1125

2 d40s8p8
11· · · p8

23q
8
1 · · ·q8

24)

(l81l1134
2 c16a24

24p27
24#

29, r16
1 r1134

2 d40s8p8
11· · · p8

23q
8
1 · · ·q8

24)

(l16
1 l2295

2 c32a48
24e

27
24#

58, r32
1 r2295

2 d80s16p16
11· · · p16

23q
16
1 · · ·q16

24)

Now there are exactly 10 redundant occurrences of # in the state, which is already less
than the current number of occurrences ofe24. Therefore we append only 10 copies
of the pairη241 and finish the replacement using the pairη

17
243 instead. This leads to

the state
(l16

1 l2322
2 c32a48

24p47
24#

48, r32
1 r2322

2 d80s16p16
11· · · p16

23q
16
1 · · ·q16

24)

and we finally apply the pairϑ
48
24 and the pairsξ 16

21 andξ 16
22 three times to obtain

(l16
1 l2466

2 c32a48p47
24, r

32
1 r2466

2 d80s16p16
11· · · p16

23q
16
1 · · ·q16

24) .

Notice that the construction we have just employed would not work if the letter
p24 were placed on the other side of the state. In fact, in such a case the pairsη241
andη242 would have to be applied in the reverse order, thus if the replacement were
performed iteratively, the ratio of the number of occurrences ofa24 to the number of
occurrences of # would converge to 3/5.

Up to now, it has never been possible to use the rules containingκ ’s — either
because the letter fromA in the state was dependent one or because some letters
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from Ξ , which are dependent on?, were present in the state. But the current state
allows us to append the pair

(
(κ1,1)16,(κ1,2)8

)
to replaces with sf :

(l16
1 l2482

2 c32a48p47
24?

8, r32
1 r2474

2 d80s8
f e8p16

11· · · p16
23q

16
1 · · ·q16

24) .

Finally, we employ the pairsγ16
1 andγ32

2 to reach a semi-equality with the state

(l2498
2 c32s24

f a48p47
24?

8, r2506
2 d80e8p16

11· · · p16
23q

16
1 · · ·q16

24) ,

which satisfies the assumptions of Lemma2.1.22. This shows thatψ is not a coding.

4.4 Proof of Proposition4.2.1

Let us start with one useful observation. In this proof we deal solely with weak
morphismsψ : M(Σ , I)→M(Σ ′, I ′) satisfying

∀ω ∈Ω \{α,α0}, h∈ {1,2} :
∣∣∣ π
Ω\{α,α0}

(
ψ((ω,h))

)∣∣∣= 1 . (4.8)

Because all letters in the setΩ \ {α,α0} are mutually dependent, if wordsu,v∈ Σ∗

satisfyψ(u) ∼I ′ ψ(v) for such a morphismψ, letters fromΣ on the same position
in the wordsπ

Σ\{(α,1),(α,2)}(u) andπ
Σ\{(α,1),(α,2)}(v) have the same element ofΩ

on their first coordinate. This allows us to consider only those semi-equalities which
respect these pairs. More precisely, the word morphismπ

Ω\{α,α0}
◦ψ : Σ∗→Ω ∗ will

be always equal to the morphismτ defined by the ruleτ|
Σ

= π
Ω\{α} ◦p1 and we call

a semi-equality(u,v) for ψ balancedwheneverτ(u) = τ(v). Conversely, the state
of any balanced semi-equality for a morphism satisfying (4.8) contains no letter from
the setΩ \{α,α0}.

Since the implication (ii ) =⇒ (iii ) is trivial, it is enough to prove the validity of the
implications (i) =⇒ (ii ) and (iii ) =⇒ (i).

4.4.1 Implication (i) =⇒ (ii )

Suppose that the morphismϕ is not a coding and letu,v∈ Σ∗, u �I v, ϕ(u)∼I ′ ϕ(v),
be a counter-example with minimal|u|+ |v|. We have to construct a solution toP.
In order to do this, we are going to study balanced semi-equalities forϕ arising from
the pair(u,v) by Lemma2.1.20, starting from the shortest ones.

First, one has to verify thatϕ satisfies (2.3). Since theϕ-images of(ω1,h1) and
(ω2,h2) for h1,h2 ∈ {1,2}, ω1,ω2 ∈ Ω \ {α0}, ω1 6= ω2, contain different letters
from Ω , most of which are dependent, it consists of checking the condition for every
pair (ω,1), (ω,2) with ω ∈Ω \{α,α0} and a few pairs ofα ’s andβ ’s.
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By Lemma2.1.1we have, up to symmetry,u = (α,1)h1u1 andv = (α,2)h2v1 for
someh1,h2 ∈ N andu1,v1 ∈ Σ∗ such that

p1(first(u1)) = p1(first(v1)) 6= α .

If h1 andh2 differ, thenα occurs in the state of the semi-equality
(
(α,1)h1,(α,2)h2

)
.

Thusp1(first(u1)) ∈ {β1,β2,β3,β4} because the other elements ofΩ \ {α,α0} are
dependent onα, so they would violate (1.1) for prefixes of the wordsϕ(u) andϕ(v).
But this is also impossible sincel1 andr1 occur in the state and eitherl2 or r2 is present
in both ϕ(first(u1)) andϕ(first(v1)). Thereforeh1 = h2 holds and the reduced state
corresponding to the initial blocks ofα ’s is (l1a11, r1s1).

Observe that after the initialα ’s, letters fromΣ usingr2 (l2 respectively) in their
images cannot occur in the wordu (v) until the letterr1 (l1) is removed from the
right (left) side of the state. Asϕ(first(u1)) contains eithers1 or no letter fromS,
it is just a matter of verification (to deal withβ6, β7 andβ8 one has to employ also
the lettersa, b, c, d in the reasoning) to see that the pair(first(u1),first(v1)) is either(
(δ11,1),(δ11,2)

)
or
(
(δ12,1),(δ12,2)

)
. And after at least one of these pairs either

the letters1 no longer occurs in the state or only other pairs ofδ1’s follow by the same
arguments and using the factc,d ∈D′(b) to excludeα ’s. Actually, the occurrences of
the lettersc andd in the state prevent us fromα ’s occurring inu andv also further on.

In the proof of this implication, none of the arguments makes use of elements of
the setP∪Q; therefore when writing states we will omit them even though they are
often present and distributed somehow to both sides of the state.

The reduced state after the pairs ofδ1’s is (l1l2ca11, r1r2ds2). Similarly as before,
one can argue that the next pairs in(u,v) are in sequence

δ2’s, . . . ,δn’s,ε11’s, . . . ,εn|wn|’s,ζ11’s, . . . ,ζ n|wn|’s

due to the changes of the first letter fromS in the state. After these pairs, the reduced
state is(l1l2ca11, r1r2ds). It is easy to see that only pairs of letters usings can follow
in (u,v) until the first occurrence ofκ ’s because in the image of each of these letters
there is exactly one occurrence ofs, so the number ofs’s in the state does not change.
Moreover, eventually some pair ofκ ’s has to follow; otherwisel1 andr1 would never
be removed from the state.

Now we want to describe balanced semi-equalities appearing beforeκ ’s are used.
We define three special forms of these semi-equalities based on which letter fromA
occurs in their state and we show that after every semi-equality of one of these forms
another one can be found. We also determine which semi-equalities allow the addition
of a pair ofκ ’s. The projection of the image of such a semi-equality toΞ is a key to
a solution ofP.

Let us consider balanced semi-equalities possessing the following projections of
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their reduced states toΣ ′ \Ξ and projections of theirϕ-images toΞ :

(l1l2cai l j [ fi l j ], r1r2ds[gi l j ]) (w′0 · · ·w′l−1 ·w′l 〈 j−1〉,w′0 · · ·w′l−1) , (4.9)

(l1l2cai l k
[ f i l k

], r1r2dsgi l k
) (w′0 · · ·w′l ,w′0 · · ·w′l−1 ·w′l 〈k−1〉) , (4.10)

(l1l2ca[ fi l ], r1r2dsgi l
) (w′0 · · ·w′l ,w′0 · · ·w′l ) , (4.11)

for somel ∈N and some wordsw′l ′,w
′
l ′ ∈ Ξ∗ satisfying red(w′l ′) = wi

l ′
, red(w′l ′) = wi

l ′

for l ′ ∈ {0, . . . , l}, wherei l ′ ∈ {1, . . . ,n}, i0 = 1, and letters in square brackets do not
have to occur. Notice that the semi-equality obtained above is of the form (4.9).

Let us have an arbitrary balanced semi-equality forϕ of the form (4.9) arising from
the pair(u,v) and consider the first balanced semi-equality after this one such that its
state(u′,v′) satisfiesai l j /∈ init(u′). The only pair which employs elements ofA and

which can occur when passing between these semi-equalities is
(
(ϑi l j ,1),(ϑi l j ,2)

)
and it is also the last one since it removesai l j . Therefore the letterai l j is replaced
with ai l j+1 in the reduced state. As long asai l j is an initial letter on the left side of the

state, due to the definition of the relationI ′ no other elements ofE∪F ∪G thanei l j ,
fi l j , gi l j andgi l j+1 can be used in the images of letters ofv.

From the above considerations we deduce that several occurrences of the letterxi l j

are introduced into the image of the left side of the semi-equality by occurrences of
the pair

(
(ϑi l j ,1),(ϑi l j ,2)

)
and possibly also of the pair

(
(ηi l j1,1),(ηi l j1,2)

)
and no

more changes in the projection toΞ are done. These considerations further imply that
gi l j+1 cannot be inserted by letters ofu and thus it is never present on the left side of
the state in the course of passing between these semi-equalities. Because the last pair
insertsgi l j+1 into v′, there can be only letters independent ongi l j+1 on the left side
of the state at that moment; observe thatfi l j+1 is the only letter inE∪F ∪G which

satisfies this. And since the last pair inserts alsoai l j+1 into u′, none of the lettersei l j ,

fi l j andgi l j can occur inv′. Altogether, the new semi-equality has the desired form

(l1l2cai l j+1[ fi l j+1], r1r2dsgi l j+1) (w′0 · · ·w′l−1 ·w′l 〈 j〉,w′0 · · ·w′l−1) .

For a semi-equality of the form (4.10), everything is similar to the previous case
and we reach a semi-equality of the form

(l1l2cai l k+1[ f i l k+1], r1r2dsgi l k+1) (w′0 · · ·w′l ,w′0 · · ·w′l−1 ·w′l 〈k〉) .

It remains to deal with the case (4.11). First notice that, unlike in the previous cases,
a pair ofκ ’s may be appended here sincea is the only letter inA independent one.
Suppose it does not happen. Again, we consider the next balanced semi-equality
such that its state(u′,v′) satisfiesa /∈ init(u′). But this time one can use any pair
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(ιi ,1),(ιi ,2)

)
, wherei ∈ {1, . . . ,n}, for manipulating letters fromA. All letters from

the setE∪F ∪G excepte, fi , gi andgi1 are prohibited to occur in the state on the
right due to the occurrences ofa on the left. This means that the projection of the
image of the semi-equality toΞ is not modified and nogi1 is inserted to the left.
Let

(
(ιi l+1

,1),(ιi l+1
,2)
)

be the first pair ofι ’s used. Once this pair is added, there are
some occurrences ofgi l+11 on the right side of the state and they do not vanish by the

previous considerations. Because(gi l+11,ai1) ∈ D′ for i 6= i l+1, only this pair ofι ’s is
allowed also further on. Hence we can finish the reasoning in the same way as in the
first case to deduce that the new semi-equality is of the form (4.9):

(l1l2cai l+11[ fi l+11], r1r2dsgi l+11) (w′0 · · ·w′l ,w′0 · · ·w′l ) .

As we have seen, the state of every balanced semi-equality withoutκ ’s contains
a letter fromA on the left. Since the first pair ofκ ’s introduces the first occurrences
of e and puts them on the right, it can be used just when the only letter fromA in
the state isa. From the preceding arguments we can conclude that in such a case the
projection of the image of the semi-equality toΞ is (w′0w′1w′2 · · ·w′m,w′0w′1w′2 · · ·w′m)
for somem∈ N0. Because the pair ofκ ’s introduces? for the first time to both sides
of the semi-equality, its state contains no letters fromΞ . Hence the sequencei1, . . . , im
is a solution ofP since we have

w1wi1
wi2
· · ·wim

= red(w′0w′1w′2 · · ·w′m)

= red(w′0w′1w′2 · · ·w′m)
= w1wi1

wi2
· · ·wim

due to our assumption on instances of the PCP.

4.4.2 Implication (iii ) =⇒ (i)

Assume thatψ : M(Σ , I)→M(Σ ′, I ′) is a (µ,ν)-weak morphism and the sequence
i1, . . . , im is a solution ofP. We have to find a counter-example to the injectivity
of ψ. By Lemma2.1.17it is sufficient to do this forψ satisfying (4.8). Under this
assumption, it makes sense to consider only balanced semi-equalities forψ as in the
first part of the proof. The main course of the proof is a gradual construction of
two wordsu,v ∈ Σ∗ satisfyingu �I v andψ(u) ∼I ′ ψ(v). In every step we extend
an already constructed balanced semi-equality by appending new pairs fromΣ using
Lemma2.1.24.

In order to get an initial semi-equality, we have to consider the numbers

N1l = |ψ((α,1))|l1 N1r = |ψ((α,1))|r1
N1α

= |ψ((α,1))|α
N2l = |ψ((α,2))|l1 N2r = |ψ((α,2))|r1

N2α
= |ψ((α,2))|α
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and their ratios

Nl =
N1l

N2l
Nr =

N1r

N2r
Nα =

N1α

N2α

.

If more than one numerator or more than one denominator are equal to zero, then
ψ((α,1)), ψ((α,2)) respectively, commutes with eitherψ((β1,2)) or ψ((β2,1)) or
ψ((β4,1)) in M(Σ ′, I ′) andψ is not injective. Otherwise ifNl = Nr or N1r = N2r = 0,
then we have

ψ
(
(α,1)N2l (β1,2)(α,2)N1l

)
∼I ′ ψ

(
(α,2)N1l (β1,2)(α,1)N2l

)
.

In the same way we get a counter-example for the two symmetric cases using(β2,1)
and(β4,1). So the above ratios are pairwise different numbers inQ+

0 ∪{∞}. Suppose
thatNr < Nl < Nα holds. If we consider the semi-equality(

(α,1)N2l ,(α,2)N1l
)

,

we can employ Lemma2.1.24to add some occurrences of the pair
(
(β1,1),(β1,2)

)
in

order to replacer1 in the state of this semi-equality withr2. Then we do the same with
the pair

(
(β2,1),(β2,2)

)
to removeα from the state and we obtain a semi-equality

which satisfies the assumptions of Lemma2.1.22, thus showing thatψ is not a coding.
Since the caseNα < Nl < Nr can be handled similarly and the same can be shown also
if the medium ratio isNr using

(
(β3,1),(β3,2)

)
and

(
(β4,1),(β4,2)

)
, the medium

one must beNα . In particular, 0< Nα < ∞ holds and the letterα is contained in both
imagesψ((α,1)) andψ((α,2)).

Let us start with the semi-equality(
(α,1)N2α ,(α,2)N1α

)
(4.12)

and denote its state by(u′,v′). Due to the inequalities between the ratios, the letters
l1 andr1 occur in the state on different sides. Without loss of generality, let us assume
that l1 ∈ alph(u′). If s1 /∈ alph(u′v′) then

ψ
(
(α,1)N2α (γ1,2)(α,2)N1α

)
∼I ′ ψ

(
(α,2)N1α (γ1,2)(α,1)N2α

)
.

In the cases1 ∈ alph(u′), we have to use Lemma2.1.24three times. First, we append
the pair

(
(β5,1),(β5,2)

)
to (4.12) to reach a state without occurrences ofs1. Then we

remove the lettersl1 andr1 from the state using
(
(γ1,1),(γ1,2)

)
and

(
(γ2,1),(γ2,2)

)
and finally we apply Lemma2.1.22to get a counter-example to the injectivity ofψ.
Thuss1 ∈ alph(v′). If a11 /∈ alph(u′), we perform the same construction with the pair(
(β6,1),(β6,2)

)
and all pairs ofγ ’s. Thereforea11∈ alph(u′). If either b∈ alph(u′)

or b∈ alph(v′), we remove it from the state using
(
(β7,1),(β7,2)

)
or
(
(β8,1),(β8,2)

)
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respectively. Altogether, we obtain a balanced semi-equality for the morphismψ with
the reduced state(l1[l2][c]a11, r1[r2][d]s1).

Now we add to this semi-equality in sequence some pairs of

δ1’s, . . . ,δn’s,ε11’s, . . . ,εn|wn|’s,ζ11’s, . . . ,ζ n|wn|’s

using Lemma2.1.24to replace the letter fromS in the current state with the next one.
In every step of this sequence we have to choose one of two pairs of letters which
can be used; in fact, each of them inserts some occurrences of a letter fromP∪Q to
a different side of the state. In the case ofε ’s, we denote

Ji j = |ψ((ηi j1,2))|ei j
· |ψ((ηi j2,2))|pi j

Ki j = |ψ((ηi j2,1))|ei j
· |ψ((ηi j1,1))|pi j

and we append the pair
(
(εi j1,1),(εi j1,2)

)
if Ji j ≥ Ki j and the pair

(
(εi j2,1),(εi j2,2)

)
otherwise. The reason for this choice is the following. In the next part of the proof,
we are going to employ an iterative addition of the pairs

(
(ηi j1,1),(ηi j1,2)

)
and(

(ηi j2,1),(ηi j2,2)
)

by means of Lemma2.1.24, replacing the letterpi j in the state
with ei j and vice versa. But this construction will function properly only if during the
iteration the ratios of the number of occurrences of the letterpi j in the state to the
numbers of occurrences of other letters do not decrease. This is achieved by inserting
the letterpi j to the appropriate side of the state at the beginning of the construction,
thus determining the order in which the pairs ofη ’s will be appended. The choices
for δ ’s, ε ’s, ζ ’s andζ ’s should be decided in the same way by comparing the numbers
of occurrences of the correspondingf ’s andq’s (e’s andp’s, f ’s andq’s, f ’s andq’s
respectively) in the images of the correspondingξ ’s (η ’s, λ ’s andλ ’s respectively).

The reduced state of the non-trivial balanced semi-equality obtained in this way is
(l1l2ca11, r1r2ds) with letters fromP∪Q distributed to both sides as chosen above.
After every step of our construction, letters fromP∪Q will occur on the same sides
as in this state and they will be independent on all letters in the state. Again, we
omit these letters when describing states, but this time we have to be conscious of the
fact just mentioned. Actually, each of these letters is dependent on exactly one letter
in Σ ′, so we do not have to take care of its occurrences in the current state unless the
corresponding dependent letter fromE∪F is also in the state.

We are going to gradually construct the following balanced semi-equalities (using
the same notation as in the first part of the proof):

(l1l2c[s]ai l j , r1r2d[s]) (w′0 · · ·w′l−1 ·w′l 〈 j−1〉,w′0 · · ·w′l−1) , (4.13)

(l1l2c[s]ai l k
, r1r2d[s]) (w′0 · · ·w′l ,w′0 · · ·w′l−1 ·w′l 〈k−1〉) , (4.14)

(l1l2c[s]a, r1r2d[s]) (w′0 · · ·w′l ,w′0 · · ·w′l ) , (4.15)
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for everyl ∈ {0, . . . ,m}, j ∈ {1, . . . , |wi l
|} andk∈ {1, . . . , |wi l

|}, and for some words

w′l ′,w
′
l ′ ∈ Ξ∗, for l ′ ∈ {0, . . . , l}, such that red(w′l ′) = wi

l ′
and red(w′l ′) = wi

l ′
, where

i0 = 1 and if we denote by(w,w) the projection of the semi-equality toΞ , it satisfies
either w = w, or w ≺ w together with first(w\w) 6= last(w), or dually w ≺ w and
first(w\w) 6= last(w). Observe that each block in the projection toΞ corresponds to
a unique letter of the wordw1wi1

wi2
· · ·wim

due to our assumption on instances of
the PCP and the last condition actually states that the corresponding blocks on the
opposite sides of the projection toΞ have the same length. Let us remark that we do
not require the wordsw′l ′ andw′l ′ for distinct semi-equalities to be equal.

Since forl = m any state of the form (4.15) contains no letters fromΞ , we can use
one of the pairs ofκ ’s to exchanges for sf if there is some in the state, then the pairs
of γ ’s to removel1 andr1 and finally Lemma2.1.22to get a counter-example.

To finish the proof, it remains to construct the desired semi-equalities. All of the
following manipulations are based purely on ratios between the lengths of blocks in
the state, which allows us to modify the current semi-equality arbitrarily provided we
do not affect the ratios having impact on some step of the construction. We show how
to proceed from the state (4.13); the cases of (4.14) and (4.15) are similar.

Our first task is to introducexi l j . If w′0 · · ·w′l−1 ·w′l 〈 j−1〉 �w′0 · · ·w′l−1 then we just

add the pair
(
(ϑi l j ,1),(ϑi l j ,2)

)
by means of Lemma2.1.24to replace occurrences

of ai l j in the state withai l j+1. If it is not the case, thexi l j -block corresponding in the
image of the semi-equality to the block we are going to build is already present in
the wordw′0 · · ·w′l−1 and we have to insert exactly the number ofxi l j ’s to match this
existing block. LetLx be the length of this block andLa be the number of occurrences
of ai l j in the state.

First suppose that

Lx

La
≥
|ψ((ϑi l j ,1))|xil j

|ψ((ϑi l j ,2))|ail j

. (4.16)

The following arguments employ the construction of Lemma2.1.24although the
assumption (2.5) is not satisfied. Asxi l j will be the only letter violating (2.5), it will
suffice to take care of this single letter in order to ensure that the construction really
produces a semi-equality. We would like to add the pair

(
(ϑi l j ,1),(ϑi l j ,2)

)
to replace

ai l j with ai l j+1 and at the same time match the correspondingxi l j -blocks. This can
be done directly if (4.16) is satisfied as an equality. In the case the inequality is
strict, we insert new occurrences ofxi l j to the left prior to appendingϑ ’s as follows.
If Ji l j ≥ Ki l j then pi l j occurs in the state on the right thanks to the choice ofε ’s and

we can repeatedly append the pairs
(
(ηi l j1,1),(ηi l j1,2)

)
and

(
(ηi l j2,1),(ηi l j2,2)

)
to

replacepi l j with ei l j and vice versa. (IfJi l j < Ki l j , these pairs have to be appended in
the reverse order.) Let us calculate the state resulting from performing this exchange
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M times.
First of all, we can assume thatLa = |ψ((ϑi l j ,2))|ail j

and that|ψ((ηi l j1,1))|xil j

dividesLx−|ψ((ϑi l j ,1))|xil j
; in order to satisfy these two conditions it is enough to

replace each letter in the semi-equality with its

|ψ((ηi l j1,1))|xil j
· |ψ((ϑi l j ,2))|ail j

copies

using Lemma2.1.23and to consider instead of the pair
(
(ϑi l j ,1),(ϑi l j ,2)

)
its(

|ψ((ηi l j1,1))|xil j
·La
)
-th power.

For every letter, the number of its occurrences coming from the state of the original
semi-equality is multiplied by(Ki l j)

M due to the modification of the semi-equality
performed in Lemma2.1.24. On the other hand, the number of occurrences ofpi l j in

the resulting state isLp · (Ji l j)
M, whereLp is their number in the original state. We are

interested mainly in the firstxi l j -block on the right side of the state. Every iteration
inserts new occurrences of the letterxi l j to the left. Their number is determined by
the current number ofpi l j ’s in the state and subsequently it is multiplied by the same
amount as for all letters in the semi-equality. Thus the resulting length of this block is

L′x = Lx · (Ki l j)
M−

−Lp · |ψ((ηi l j1,1))|xil j
· |ψ((ηi l j2,1))|eil j

·
M−1

∑
N=0

(Ji l j)
N · (Ki l j)

M−N−1 .

Our goal is to make (4.16) an equality in the new semi-equality. Due to our initial
assumption onLa, this can be written as

L′x = (Ki l j)
M · |ψ((ϑi l j ,1))|xil j

. (4.17)

Since the inequalityJi l j ≥ Ki l j implies

M−1

∑
N=0

(Ji l j)
N · (Ki l j)

M−N−1≥M · (Ki l j)
M−1 ,

one can see that ifM is sufficiently large, thenL′x is even smaller than the number
requested in (4.17). By our assumption onLx, the difference between the length of the
first xi l j -block in the state and the number in (4.17) is after every step of the iteration

divisible by |ψ((ηi l j1,1))|xil j
, which is exactly the amount inserted to the image of

a semi-equality by a single pair
(
(ηi l j1,1),(ηi l j1,2)

)
. Therefore, if we consider the
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step of the iteration during whichL′x lowers under the desired value, we can construct
a balanced semi-equality where the ratio of the length of the firstxi l j -block in the
state to the number of occurrences ofai l j satisfies (4.16) as an equality by appending

appropriately less number of the pairs
(
(ηi l j1,1),(ηi l j1,2)

)
in this step. Then we add

to the resulting semi-equality the pairs
(
(ηi l j3,1),(ηi l j3,2)

)
and

(
(ηi l j2,1),(ηi l j2,2)

)
using Lemma2.1.24to replace all remaining occurrences ofpi l j in the state withei l j

and back without further changing this ratio. This makes the semi-equality suitable
for the addition ofϑ ’s replacingai l j with ai l j+1 and simultaneously matching the
xi l j -blocks.

Now suppose that (4.16) is not valid. Then thexi l j -block we want to match is not
long enough to allow appending of the required number ofϑ ’s. Let us consider the
initial part of the current semi-equality where building of this block started, which is
a balanced semi-equality of the form (4.14):

(l1l2c[s]ai
l̂
k, r1r2d[s]) (w′0 · · ·w′l̂ ,w

′
0 · · ·w′l̂−1

·w′
l̂
〈k−1〉) , (4.18)

for certainl̂ ∈ {0, . . . , l −1} andk ∈ {1, . . . , |wi
l̂
|} satisfying in particularxi

l̂
k = xi l j .

In order to achieve the validity of the condition (4.16), we have to modify the step
of the construction corresponding to the semi-equality (4.18) by the same means as
above usingη ’s instead ofη ’s to increase the length of thexi

l̂
k-block in proportion to

the number ofai
l̂
k’s in the state. Let us verify that such a modification produces the

desired outcome.
First observe that during the addition ofη ’s the lengths of all blocks in the state are

multiplied by the same positive integerK except for the blocks ofl2, r2, s, pi
l̂
k and the

block ofxi
l̂
k under consideration. The pairs appended to the semi-equality (4.18) when

building the semi-equality (4.13) do not employ in their images letters dependent on
l2, r2, s andpi

l̂
k; as for the letterpi

l̂
k, it is due to the fact thate’s are introduced only

when we adjust the number of occurrences of some letter fromΞ on the right to match
the corresponding block on the left, which was not yet carried out for elements ofΞ

on the right inserted after the semi-equality (4.18). The length of the modified block
of xi

l̂
k has also no impact on these additions since the corresponding letters on the left

are not inserted. Therefore it suffices to append to the modified semi-equality (4.18)
the same pairs as we did for the original one, taking each of themK-times.

From the calculations performed previously for a similar situation, we can see that
by iterating the addition ofη ’s the ratio of the length of thexi

l̂
k-block to the number

of occurrences ofai
l̂
k converges to infinity. Further, the number of occurrences ofai l j

in the state of the modified semi-equality (4.13) is obtained as a constant multiple of
the number of occurrences ofai

l̂
k in the state of the modified semi-equality (4.18),
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where the constant is determined by the ratios between the numbers of occurrences
of letters fromA in the images ofϑ ’s, ϑ ’s andι ’s. Altogether, since the length of the
xi

l̂
k-block in the two modified semi-equalities is the same, if we perform sufficiently

many iterations, the modified semi-equality (4.13) satisfies (4.16).
After introducingxi l j , the semi-equality state is

(l1l2c[s]ai l j+1, r1r2d[s]gi l j+1) (w′0 · · ·w′l−1 ·w′l 〈 j〉,w′0 · · ·w′l−1) .

For removing occurrences ofgi l j+1 from the state we can employ the same method as

for the previous matching of correspondingxi l j -blocks usingλi l j+1’s instead ofηi l j ’s,

whereλi l |wil
|+1 = λ i l 1

. We obtain either the next state of the form (4.13) or a state of

the form (4.14) if j = |wi l
|.

Obviously, in this way some semi-equality of each of the forms (4.13), (4.14)
and (4.15) for every admissiblej, k andl will be eventually constructed.



Chapter 5

Conclusions

In this thesis we have introduced the notion of weak morphisms of trace monoids
which appears to be a useful tool for exploring decidability issues of trace codings.
This is already suggested by the following claim obtained due to Corollary2.2.7.

Theorem 5.1. If C is any class of trace morphisms containing all weak codings, then
there exists an effective reduction of the TCP to theC -TCP.

The next result, which immediately follows from Proposition2.2.9, was proved by
shifting calculations to the case of weak codings.

Theorem 5.2. The TCP is effectively reducible to instances with domain monoids
defined by connected dependence alphabets.

By examining all subtrees of domain dependence graphs we have achieved several
positive results for theW -TCP.

Theorem 5.3.TheW -TCP restricted to instances with independence alphabets(Σ , I)
and(Σ ′, I ′) satisfying one of the following conditions is decidable.

(i) M(Σ , I) is a direct product of free monoids.

(ii) The graph(Σ ,D) is acyclic.

(iii) The graph(Σ ,D) is C3,C4-free andM(Σ ′, I ′) is a direct product of free monoids.

Proof. Since there are only finitely many candidates for wlt-mappings for every pair
of independence alphabets and all the conditions of Definition3.1.2 can be easily
verified, this claim is a direct consequence of Propositions3.2.3and3.3.4.

Because the reduction described in Proposition2.2.5preserves the domain monoid,
we immediately deduce the following statements about general codings.
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Corollary 5.4 ([7]). The restriction of the TCP to instances whose domain monoids
are direct products of free monoids is decidable.

Corollary 5.5. The TCP restricted to instances with domain monoids defined by
acyclic dependence alphabets is decidable.

Using Proposition3.3.4we can partially answer the question of Diekert [14] asking
for the number of free monoids needed for encoding a given trace monoid into their
direct product.

Theorem 5.6. Let (Σ ,D) be a C3,C4-free dependence alphabet. Then there exists
a coding fromM(Σ , I) to ({a,b}∗)m if and only if m≥ |Σ | −M, where M is the
number of non-trivial connected components of the graph(Σ ,D).

On the other hand, as we have shown, our methods become insufficient for domain
dependence alphabets containing cycles. This contrasts with Proposition3.3.4which
asserts that in the case of codings into direct products of free monoids this limit moves
as far as one could expect in view of the fact that subtrees of the domain dependence
alphabet cannot capture enough properties of a morphism when each of two dependent
letters occurs in the images of at least two generators of the domain monoid.

As for the general case of the TCP, Proposition4.2.2shows that it is not decidable.

Theorem 5.7.The TCP is not recursively enumerable.

The same assertion for certain classes of trace morphisms immediately follows due
to Theorem5.1.

Corollary 5.8. If C is any class of trace morphisms containing all weak codings, then
theC -TCP is not recursively enumerable.

Notice that the above results tell us nothing about the recursive enumerability of
the coTCP, which remains a challenging open question.

An important special case of the TCP where the methods presented in this thesis
fail to produce positive results is the restriction to domain monoids which are free
products of free commutative monoids. Moreover, as all domain monoids resulting
from applying Propositions4.2.1and4.1.2are of this form, we can conclude that the
existence problem forν-weak codings is undecidable in this case.
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Théor. Appl.19(1) (1985) 21–32.

[14] V. Diekert, Research topics in the theory of free partially commutative monoids,
Bull. Eur. Assoc. Theor. Comput. Sci. EATCS40 (1990) 479–491.

[15] V. Diekert, Y. Métivier, Partial commutation and traces, in: G. Rozenberg,
A. Salomaa (Eds.),Handbook of Formal Languages, vol. 3, Springer, Berlin,
1997, pp. 457–533.

[16] V. Diekert, A. Muscholl, Code problems on traces, in: W. Penczek, A. Szalas
(Eds.),Proc. 21st Internat. Sympos. on Mathematical Foundations of Computer
Science (MFCS’96), Lecture Notes in Comput. Sci., vol. 1113, Springer, Berlin,
1996, pp. 2–17.

[17] V. Diekert, A. Muscholl, K. Reinhardt, On codings of traces, in: E.W. Mayr,
C. Puech (Eds.),Proc. 12th Annu. Sympos. on Theoretical Aspects of Computer
Science (STACS’95), Lecture Notes in Comput. Sci., vol. 900, Springer, Berlin,
1995, pp. 385–396.

[18] V. Diekert, G. Rozenberg (Eds.),The Book of Traces, World Scientific, Singa-
pore, 1995.

[19] C. Duboc, On some equations in free partially commutative monoids,Theoret.
Comput. Sci.46 (1986) 159–174.

[20] C.C. Elgot, J.E. Mezei, On relations defined by generalized finite automata,IBM
J. Res. Dev.9(1) (1965) 47–68.

[21] A. Gibbons, W. Rytter, On the decidability of some problems about rational
subsets of free partially commutative monoids,Theoret. Comput. Sci.48(2–3)
(1986) 329–337.

[22] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall Internat.
Ser. Comput. Sci., Prentice Hall, Englewood Cliffs, New Jersey, 1985.

[23] H.J. Hoogeboom, A. Muscholl, The code problem for traces — improving the
boundaries,Theoret. Comput. Sci.172(1997) 309–321.



BIBLIOGRAPHY 87

[24] G. Hotz, V. Claus,Automatentheorie und Formale Sprachen III, Bibliographi-
sches Institut, Mannheim, 1972.

[25] O.H. Ibarra, Reversal-bounded multicounter machines and their decision prob-
lems,J. ACM25(1) (1978) 116–133.

[26] M. Kunc, The trace coding problem is undecidable, in: F. Orejas, P.G. Spirakis,
J. van Leeuwen (Eds.),Proc. 28th Internat. Colloq. on Automata, Languages
and Programming (ICALP’01), Lecture Notes in Comput. Sci., vol. 2076,
Springer, Berlin, 2001, pp. 603–614.

[27] M. Kunc, Undecidability of the trace coding problem and some decidable cases,
submitted.

[28] Y. Matiyasevich, Mots et codes: cas décidables et ind́ecidables du problème
du codage pour les monoı̈des partiellement commutatifs,Quadrature27 (1997)
23–33.

[29] A. Mazurkiewicz, Concurrent program schemes and their interpretations,
DAIMI Rep. PB 78, Aarhus Univ., 1977.

[30] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Comput.
Sci., vol. 92, Springer, Berlin, 1980.

[31] R. Morin, On regular Message Sequence Chart languages and relationships
to Mazurkiewicz trace theory, in: F. Honsell, M. Miculan (Eds.),Founda-
tions of Software Science and Computation Structures, Proc. 4th Internat. Conf.,
FOSSACS’01, Lecture Notes in Comput. Sci., vol. 2030, Springer, Berlin, 2001,
pp. 332–346.

[32] A. Muscholl, Decision and complexity issues on concurrent systems, Habilitati-
onsschrift, Stuttgart Univ., 1999.
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