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Decidability of the finite power property for regular languages.

Classical solutions.

Appropriate syntactic semigroup.

Generalization to rational languages in monoids defined by

confluent regular systems of deletions.



finite alphabet A = {a, b, . . .}

A∗ . . . the monoid of finite words over A with concatenation

Regular languages:

L ⊆ A∗ definable by a finite automaton

Equivalently, recognizable by a finite semigroup S:

homomorphism σ : A∗ → S

σ(u) = σ(v) =⇒ (u ∈ L ⇐⇒ v ∈ L)

Operations on languages:

concatenation KL = {uv | u ∈ K, v ∈ L }

iteration L+ =
⋃∞

n=1 Ln (subsemigroup of A∗ generated by L)

L∗ = L+ ∪ {ε}, ε . . . empty word

Finite power property (FPP):

L+ = L ∪ L2 ∪ · · · ∪ Ln for some positive integer n

Brzozowski 1966:

Does a given regular L have the FPP?

Solved independently by Hashiguchi 1979 and Simon 1978.



Classical Solutions

Simon:

automata with weights in the semiring (N ∪ {0,∞}, min, +)

Example:

L = a{a2}∗ has the FPP: L+ = {a}+ = L ∪ L2

automaton for L: •
a

•

a

•

a

automaton for L+ with weights: •
a|0

•

a|0

ε|1

•

a|0

Hashiguchi: direct combinatorial argument on automata

based on the pigeon hole principle

Let us uncover the algebraic background of Hashiguchi’s argument.

First steps: Kirsten 2002



Some Basics on Structure of Finite Semigroups

S finite semigroup

Quasi-order ≤JS
on S:

s ≤JS
t ⇐⇒ ∃x, y ∈ S ∪ {1} : s = x · t · y

Green relation JS: equivalence relation associated with ≤JS

s JS t ⇐⇒ generate the same ideal of S

≤JS
determines a partial order of J -classes

s ∈ S idempotent: s · s = s

J -class J regular: contains an idempotent

J regular ⇐⇒ ∃s, t ∈ J : s · t ∈ J



Example of a Syntactic Monoid

A = {a, b}

K= {a} ∪ bA∗aA∗

does not have the FPP (a+ ⊆ K+)

L = {b}+ ∪ aA+

has the FPP (L+ = L ∪ {b}+aA+ = L ∪ L2)

K and L recognized by the monoid:

1

β

γ

δ

α

ε

a

aA+

bA∗aA∗

{b}+



The Appropriate Semigroup

L ⊆ A+ regular

homomorphism σ : A∗ → S recognizing L, L+ and {ε}

Define a mapping τ : A∗ → ℘(S3)

τ(w) = { (σ(x), σ(y), σ(z)) | x, y, z ∈ A∗, w = xyz }

Kernel of τ is a congruence of A∗ =⇒ τ(A∗) is a monoid.

T = τ(L+) subsemigroup of τ(A∗).



Algebraic Characterization of the FPP

Theorem: The following conditions are equivalent:

1. L has the FPP.

2. ∀w ∈ L+∃n ∈ N : wn ∈ L ∪ L2 ∪ · · · ∪ Ln.

3. Every regular J -class of T contains some element of τ(L).

4. w ∈ L+, J -class of τ(w) in T regular =⇒

∃y ∈ L, x, z ∈ L∗ : w = xyz & σ(y) JS σ(w).

5. L+ = L ∪ L2 ∪ · · · ∪ L(j+1)h

.

j . . . maximal size of a J -class of S

h . . . length of the longest chain of J -classes in T

Proof:

2 =⇒ 3: direct calculation for w ∈ L+ with τ(w) idempotent

(common refinement of two decompositions wn ∈ Lm, m ≤ n)

4 =⇒ 5: induction with respect to J -classes of T

(based on length of words; maximality of decompositions)



Monoids Defined by Confluent Deletions

R ⊆ A+ regular

R = {w → ε | w ∈ R } confluent rewriting system

norm(w) . . . normal form of w ∈ A∗ with respect to R

G = (norm(A∗), ·) u · v = norm(uv)

Rational languages in G: norm(L), where L is regular in A∗

Example: Free group over A = {a, b, . . .}:

Take a disjoint copy A′ = {a′, b′, . . .}.

R = {xx′, x′x | x ∈ A } ⊆ (A ∪ A′)∗

L = {ε} corresponds to “Dyck language” with symmetric brackets

d’Alessandro and Sakarovitch 2003:

The FPP for rational languages in free groups is decidable.

(involved reduction to boundedness of distance automata)



A Generalization

Theorem: The FPP is uniformly decidable for rational languages

in finitely generated monoids defined by a confluent regular system

of deletions.

Rational monoids:

β : A+ → A+ rational function, β ◦ β = β

M = (β(A+), ·) u · v = β(uv)

• regular languages behave as in A∗

• can be algorithmically manipulated

The characterization of the FPP holds for monoids M satisfying:

1. Well defined length of elements: ℓ : M \ {0} → N0

x · y 6= 0 =⇒ ℓ(x · y) = ℓ(x) + ℓ(y)

2. Each two decompositions x · y = z · t 6= 0 have a common

refinement.

3. {0} and {1} are regular.



Proof of the Generalization

We construct for each regular language L ⊆ norm(A∗)

a different rational monoid satisfying the previous conditions.

homomorphism σ : A∗ → S recognizing L, norm(A∗) and {ε}

M =
(

(S × norm(A∗) × S) ∪ {1, 0}, ·
)

(p, u, q) · (r, v, s) =














(p, uv, s) if uv ∈ norm(A∗)

and ε ∈ norm(σ−1(q)L∗σ−1(r)) ,

0 otherwise.

K = { (σ(x), y, σ(z)) | x, y, z ∈ A∗, y 6= ε, xyz ∈ L }

L has the FPP in G ⇐⇒ K has the FPP in M



Conclusion

Known positive results on the FPP can be obtained by

a transparent algebraic construction.

Open questions

1. Application to star height and related problems?

2. The FPP for recognizable relations
n
⋃

i=1

Ki × Li, where Ki and Li regular


