
The Simplest Language Where
Equivalence of Finite Substitutions Is Undecidable

Michal Kunc

Masaryk University Brno



Outline

Our result — infinite systems of equalities between finite languages.

Interpretations of the result:

• equivalence of finite substitutions on a regular language

• equivalence of finite transducers

• systems of language equations

Main ideas of the proof.



The Result

Basic notions:

finite alphabetA = {a, b, . . . } of letters

word over A . . . finite sequence of letters from A

A∗ . . . the monoid of words overA with the operation of concatenation

K,L ⊆ A∗ languages overA

K · L = {uv | u ∈ K, v ∈ L }

Kn = K · · ·K
︸ ︷︷ ︸

n

℘f(A
∗) . . . the monoid of all finite languages overA

Theorem:

There exists no algorithm deciding whether given finite languagesK , L andM satisfy

Kn ·M = Ln ·M for every non-negative integer n.



Equivalence of Finite Substitutions on a Regular Language

Finite substitution:

A, B . . . finite alphabets

Any mapping ϕ : A→ ℘f(B
∗) uniquely extends to a homomorphism ϕ : A∗ → ℘f(B

∗).

R ⊆ A∗ fixed regular language (defined by a finite automaton)

Instance:
ϕ, ψ : A∗ → ℘f(B

∗) finite substitutions

Question:
Does ϕ(u) = ψ(u) hold for all u ∈ R?

Trivially decidable if R is finite.



Equivalence of Finite Substitutions on a Regular Language R

Easily decidable if R employs only one letter a:

R eventually periodic, p period of R

an ∈ R arbitrary

ϕ(an) = ψ(an) =⇒ ϕ(anp) = (ϕ(an))p = (ψ(an))p = ψ(anp)

sufficient to test for the first n periods of R

Our result:

Equivalence of finite substitutions on a∗b is undecidable.

(ϕ(a) = K , ψ(a) = L, ϕ(b) = ψ(b) = M )

Previous results:

Lisovik 1997: undecidable on a{b, c}∗d

Karhumäki & Lisovik 2003: undecidable on ab∗c



Finite Transducer

A input alphabet,B output alphabet

• non-deterministic finite automaton with each transition labelled by both input and output word

• defines a binary relation betweenA∗ and B∗

Example: A = {a, b}, B = {c, d}

•

ab|c

ab2|d

b|c2
•

ba|d

a|c

the relation contains, e.g., (ab3a, c3d) and (ab3a, dc3)



Equivalence Problem for Finite Transducers

Instance:
finite transducers A and B

Question:
Do A and B define the same relation?

• Griffiths 1968: undecidable in general

• many positive and negative results for special cases

• Ibarra 1978, Lisovik 1979: undecidable for one-letter input alphabet

Our result:

Equivalence problem for two-state finite transducers with unary input alphabet and all transitions

starting in the initial state is undecidable.

•

a|K

a|M • •

a|L

a|M •



Equations over Words

• concatenation as operation, letters as constants

• finitely many variables

• for variables words are substituted

• for instance, solutions of equation xba = abx are exactly x = a(ba)n, where n ∈ N0

• PSPACE algorithm deciding satisfiability, EXPTIME algorithm finding all solutions

(Makanin 1977, Plandowski 2006)

• Conjecture: Satisfiability problem is NP-complete.

Every (infinite) rational system of word equations (defined by a finite transducer) is

algorithmically equivalent to some of its finite subsystems.

(Culik II & Karhumäki 1983, Albert & Lawrence 1985, Guba 1986)



Equations over Finite Languages

• concatenation of languages as operation, finite languages as constants

• finitely many variables X , Y , Z , . . .

• for variables either finite or arbitrary languages are substituted

Singleton constants:
• satisfiability-equivalent to equations over words

(shortlex-minimal words of an arbitrary language solution form a word solution)

Satisfiability of language equations by arbitrary languages is undecidable for
• equations with finite constants, union and concatenation

• systems of equations with regular constants and concatenation (MK 2007)

(K ·X = X · L, A∗ ·X = A∗)

Open questions:
• satisfiability of equations over finite languages with concatenation (and union)

• satisfiability of equations with finite constants and concatenation

What about infinite systems?



Rational Systems of Equations over Finite Languages

Our result:

There exists no algorithm deciding whether given finite languages form a solution of the rational

system {XnZ = Y nZ | n ∈ N }.

Consequences:

• Satisfiability of rational systems of equations over finite languages is undecidable.

(even without variables: {KnM = LnM | n ∈ N })

• Rational systems of equations over finite languages need not be equivalent to finite systems.



Proof

• the same general idea as for ab∗c by Karhumäki and Lisovik

• reduction of the universality problem for blind counter automata with all states final

Blind counter automata:

• introduced by Greibach 1978

• non-deterministic finite automaton over {a, b} + one counter assuming arbitrary integer values

• transitions read letters and possibly modify the counter value by one

• no information about the current value of the counter available to the automaton

• acceptance by zero-valued counter

Universality problem:
Does a given blind counter automaton accept all words?

undecidable even for automata with all states final (Lisovik 1991)



Proof

For each blind counter automaton we construct finite languagesK , L andM such that

KnM = LnM ⇐⇒ the automaton accepts all words of length n.

• alphabet . . . letters a, b and many additional auxiliary letters

• all computations of the automaton encoded into both KnM and LnM

Representation of transitions:

• w . . . certain fixed word containing only auxiliary letters

• computations of the automaton encoded as words of the form {(wa)3, (wb)3}∗

• one copy of (wa)3 stands for one transition reading a

• states and transitions represented by cutting w at certain points

•M serves for completing the final unfinished copy of w



Representation of the counter:

• number of copies of (wa)3 and (wb)3 in a word from KnM depends on:

the number of transitions

the final value of the counter

• one transition represented by:

one word from K . . . counter not modified

one half of a word from K . . . decrementation

one and a half word from K . . . incrementation

• computation of length n returns counter to zero ⇐⇒

⇐⇒ the corresponding word from {(wa)3, (wb)3}n belongs to KnM

• L ⊇ K such that LnM contains in addition all words from {(wa)3, (wb)3}n

How is this achieved?

• L contains initial words for building words from {(wa)3, (wb)3}n

• in the case of the language ab∗c, these words can be put into the image of a

• in our case, these additional initial words can occur inside of LnM

• many auxiliary words for compensating undesired occurrences (shifting by several letters)


