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Outline:

1. Proving regularity of maximal solutions

• by constructing finite recognizers.

• using well quasi-orders.

2. Systems with inequalities XK ⊆ LX .

3. Proof of non-regularity of the solution.



finite alphabet A = {a, b, . . . }

A∗ . . . the monoid of finite words over A

finite set of variables V = {X1, . . . , Xn}

Explicit polynomial equations:

Xi = Pi, i = 1, . . . , n

Pi ⊆ (A ∪ V)∗ finite

components of smallest solutions . . . context-free languages

Example: X = {c, aXb} =⇒ X = {akcbk | k ∈ N0}

Example: X ∪ Y = A∗

every language is a component of a minimal solution



Constructing finite recognizers

Pj ⊆ Lj

Pj ⊆ (A ∪ V)∗ arbitrary, Lj ⊆ A∗ regular

Conway 1971

maximal solutions:

• regular

• for given Lj : finitely many, computable

• for context-free Pj : algorithmically regular

Example: X · Y ⊆ L

∼ . . . congruence of A∗ of finite index recognizing L,

i.e. u ∼ v =⇒ (u ∈ L ⇐⇒ v ∈ L)

Every solution contained in a solution recognized by ∼ :

M · N ⊆ L =⇒ (M ∼) · (N ∼) ⊆ L

K0 ∪ K1X1 ∪ · · · ∪ KnXn ⊆ L0 ∪ L1X1 ∪ · · · ∪ LnXn

Ki arbitrary, Li regular

MK 2005

largest solutions:

• regular

• for given Li: finitely many, computable

• for context-free Ki: algorithmically regular



Well quasi-orders

Wqo ≤ on A∗ contains neither
r

r

r

p
p
p

nor r r r p p p

Monotone: u ≤ v & ũ ≤ ṽ =⇒ uũ ≤ vṽ

Example: (scattered) subword partial order

Theorem: Ehrenfeucht, Haussler, Rozenberg 1983

L ⊆ A∗ is regular ⇐⇒ L is upward closed with respect to

a monotone well quasi-order on A∗

Example:

Congruence of finite index is a monotone wqo.

upward closed = recognized by the congruence



Applying well quasi-orders to inequalities

Method:

Construct a wqo on A∗ such that every solution is contained

in an upward closed solution.

Restriction on constants:

Pj ⊆ Qj

Pj ⊆ (A ∪ V)∗ arbitrary

Qj . . . regular expression over variables and languages

recognizable by finite simple semigroups

L recognizable by a finite simple semigroup ⇐⇒

minimal automaton of L does not contain

•
a

• b

•

•
a

• b

MK 2004: all maximal solutions regular



Inequalities XK ⊆ LX

has largest solution:

MiK ⊆ LMi =⇒ (
⋃

Mi)K ⊆ L(
⋃

Mi)

K arbitrary, L regular

MK 2004

largest solution:

• regular

• for context-free K : algorithmically recursive



Rules of the game

XK ⊆ LX

position: w ∈ A∗

attacker: u ∈ K , w−→wu

defender: v ∈ L, wu = vw̃, wu−→ w̃

largest solution = all winning positions for the defender

Example: L = {a, ab, abcde, bc, c, cd, da}, w = abcd,

∼ congruence of finite index recognizing L

abcd ∼ ( )

bcd ∼ (a) (ab) cd ∼

d ∼ (a, bc) d ∼ (ab, c) (ab, cd) 1



Quasi-ordering of labelled trees

w ≤ v . . . defender’s winning strategies for w can be

used also for v

Example:
s

s < r

t t t

p q p q

Largest solution is upward closed with respect to ≤

Kruskal 1960: ≤ is a wqo



Systems with inequalities XK ⊆ LX

Theorem 1:
There exists a finite language K and star-free languages L, M

such that the largest solution of the system

XK ⊆ LX, X ⊆ M

is not recursively enumerable.

Theorem 2:
There exist finite languages K , P and star-free languages L, R

such that the largest solution of the system

XK ⊆ LX, XP ⊆ RX

is not recursively enumerable.

Systems XK ⊆ LX , PX ⊆ XR

MK 2005:

There exists a finite language L such that the largest solution

of XL = LX is not recursively enumerable.



System XK ⊆ LX , X ⊆ M

largest solution S non-regular

M . . . admissible positions of the game

Alphabet:

B = {a, b, c}, B̂ = {â, b̂, ĉ}, A = B ∪ B̂

Testing equality of two counters:

simultaneous decrementation and zero test

Configurations: bb̂(aâ)mcĉ(aâ)n

m, n . . . values of the counters

Languages:

K = {aâ, bb̂, cĉ}

L = {aâ, bb̂aâ, cĉaâ, bb̂cĉb} ∪ B̂B

∪ cA∗a ∪ bA∗a ∪ A+bA∗b ∪ A+cA∗c

M = (BB̂)+ ∪ B̂



m < n =⇒ bb̂(aâ)mcĉ(aâ)n /∈ S

By induction on m:

Basis: By contradiction:

bb̂cĉ(aâ)n ∈ S =⇒ bb̂cĉ(aâ)n · bb̂ ∈ SK ⊆ LS ⊆ LM

Induction step:

Hypothesis: bb̂(aâ)m−1cĉ(aâ)n−1 /∈ S

By contradiction: bb̂(aâ)m

cĉ(aâ)n

∈ S

bb̂aâ(aâ)m−1
cĉ(aâ)n

· bb̂

(aâ)m−1
cĉ(aâ)n

bb̂ ∈ S

m − 1 times

(aâ)m−1
cĉ(aâ)n

bb̂ · (aâ)m−1

m − 1 times

cĉ(aâ)n

bb̂(aâ)m−1
∈ S

...

bb̂(aâ)m−1
cĉ(aâ)n−1

∈ S



bb̂(aâ)ncĉ(aâ)n ∈ S

un,k = (aâ)kbb̂(aâ)ncĉ(aâ)n−k

vn,k = (aâ)kcĉ(aâ)n+1bb̂(aâ)n−k

un,0 −→ vn−1,n−1 −→ · · · −→ vn−1,0 −→

−→ un−1,n−1 −→ · · · −→ un−1,0

N = B̂ ∪ {un,k, vn,k | 0 ≤ k ≤ n} is a solution

NK ⊆ LN : B̂K ⊆ B̂B · B̂ ⊆ LN

k > 0 =⇒ un,k · aâ = aâ · un,k−1 ∈ LN

un,0 · aâ ∈ bA∗a · B̂ ⊆ LN

n > 0 =⇒ un,0 · bb̂ = bb̂aâ · vn−1,n−1 ∈ LN

u0,0 · bb̂ = bb̂cĉb · b̂ ∈ LN

k > 0 =⇒ un,k · bb̂ ∈ A+bA∗b · B̂ ⊆ LN

un,k · cĉ ∈ A+cA∗c · B̂ ⊆ LN

Together:

1. m < n =⇒ bb̂(aâ)mcĉ(aâ)n /∈ S

2. bb̂(aâ)ncĉ(aâ)n ∈ S

Pumping lemma =⇒ S is not regular.



System XK ⊆ LX , XP ⊆ RX

Ã = A ∪ {d}

N ⊆ Ã∗ such that â ∈ N

N is a solution of XK ⊆ LX , X ⊆ M ⇐⇒

N is a solution of XK ⊆ LX , Xdâ ⊆ MdX

Proof of ⇐= :

NKn ⊆ LnN for arbitrarily large n =⇒ N ⊆ A∗

Ndâ ⊆ MdN =⇒ N ⊆ M

Open questions

1. Regularity of solutions of similar systems of inequalities,

for instance:

KXL ⊆ MX

XK ⊆ LX, XK ⊆ MX

KX ⊆ LX, XM ⊆ XN

2. Existence of algorithms for computing largest solutions.


