Language Equations

Michal Kunc

Masaryk University Brno

First Something Different — Word Equations

• operation: concatenation

constants: letters

variables stand for words

- ullet for instance, solutions of equation xba=abx are exactly $x=a(ba)^n$, where $n\in\mathbb{N}_0$
- PSPACE algorithm deciding satisfiability, EXPTIME algorithm finding all solutions (Makanin 1977, Plandowski 2006)
- satisfiability-equivalent to language equations with singleton constants and concatenation as the only operation:

shortlex-minimal words of an arbitrary language solution form a word solution

Overview

- General properties.
- Equations with one-sided concatenation.
- Explicit systems of equations. (basic models of computation, semantics of grammars)
- Inequalities with constant sides.
- General implicit equations. (surprising computational completeness)

Language Equations — Basic Elements

set of variables $\mathcal{V} = \{X_1, \dots, X_n\}$ finite alphabet $A = \{a, b, \dots\}$

 $A^{st}\ldots$ the monoid of finite words over A with the operation of concatenation

 $L \subseteq A^* \dots$ language over A

 $\wp(A^*)$... the set of all languages over A

operations: usually extended from operations $A^* \times A^* \to \wp(A^*)$ defined on words

concatenation: $u \cdot v = \{uv\}$ $(K \cdot L = \{uv \mid u \in K, v \in L\})$

union: $u \cup v = \{u, v\}$

intersection: $u \cap v = \begin{cases} \{u\} & \text{if } u = v \\ \emptyset & \text{if } u \neq v \end{cases}$

shuffle: $u \coprod v = \{ u_1 v_1 \dots u_k v_k \mid u_1 \dots u_k = u, \ v_1 \dots v_k = v \}$

all such n-ary operations f are monotone:

$$K_1 \subseteq L_1 \& \ldots \& K_n \subseteq L_n \implies f(K_1, \ldots, K_n) \subseteq f(L_1, \ldots, L_n)$$

Language Equations — Definition

$$\varphi(X_1,\ldots,X_n)=\psi(X_1,\ldots,X_n)$$

arphi, ψ . . . expressions using variables, constant languages and language operations

solutions:
$$(L_1,\ldots,L_n)\in\wp(A^*)^n$$
 such that $\varphi(L_1,\ldots,L_n)=\psi(L_1,\ldots,L_n)$

ordering of solutions by componentwise inclusion:

$$(K_1,\ldots,K_n) \leq (L_1,\ldots,L_n) \iff K_1 \subseteq L_1,\ldots,K_n \subseteq L_n$$

The Basic Property

$$f \colon \wp(A^*)^n \to \wp(A^*) \text{ continuous:}$$

$$\forall \ell \in \mathbb{N} \ \exists m \in \mathbb{N} \ \forall K_1, \dots, K_n, L_1, \dots, L_n \subseteq A^* \colon$$

$$K_i \cap A^{\leq m} = L_i \cap A^{\leq m} \implies f(K_1, \dots, K_n) \cap A^{\leq \ell} = f(L_1, \dots, L_n) \cap A^{\leq \ell}$$

Continuous operations: Boolean operations, concatenation, shuffle, ...

Non-continuous operations: typically erasing operations, e.g. erasing homomorphisms

Proposition: If all operations are continuous, then every solution is contained in a maximal solution and contains a minimal solution.

→ describing languages as largest and smallest solutions of systems of equations

Main questions to study:

- expressive power, properties of solutions
- decidability of existence and uniqueness of solutions
- algorithms for finding minimal and maximal solutions

Equations with One-Sided Concatenation

One-Sided Concatenation — Explicit Systems

Example:

$$X_1 = \{\varepsilon\} \cup X_2 \cdot a \qquad X_2 = X_1 \cdot b \cup X_2 \cdot a$$

regular languages = components of smallest (largest, unique) solutions of explicit systems

$$X_i = K_i \cup \bigcup_{j=1}^n X_j \cdot L_{j,i} \qquad i = 1, \dots, n$$

of left-linear equations with finite constants K_i and $L_{j,i}$

Systems correspond to non-deterministic automata with arcs labelled with constant languages.

In general: Components of smallest solutions are rational combinations of constant languages.

Additionally intersection allowed: alternating finite automata.

One-Sided Concatenation — Implicit Systems

Inequalities with one-sided concatenation, Boolean operations and regular constants: basic properties can be expressed using formulae of monadic second-order theory of the infinite |A|-ary tree

Example: $\{b\} \cup Xa \subseteq X \cup Xba$

$$X \text{ is a solution } \iff X(b) \land \left(\forall x \colon X(x) \implies (X(xa) \lor \exists y \colon X(y) \land x = yb) \right)$$

$$X \text{ minimal } \iff \forall Y \colon (Y \text{ is a solution } \land \forall x \colon Y(x) \implies X(x)) \implies \\ \iff (\forall x \colon X(x) \implies Y(x))$$

minimal solutions: $\bullet = "X \text{ holds"} \circ = "X \text{ does not hold"}$

Rabin 1969 \implies algorithmically solvable using tree automata

One-Sided Concatenation — Complexity of Decision Problems

Inequalities with one-sided concatenation, Boolean operations and regular constants:

basic decision problems are EXPTIME-complete

(Aiken & Kozen & Vardi & Wimmers 1994,

Baader & Küsters & Narendran & Okhotin 2001–2006)

The set of all solutions represented by an NFA $\mathcal{A}=(Q,I,F,\delta)$ computable in EXPTIME:

- $r: A^* \to Q$ run of $A: r(\varepsilon) \in I, (r(w), a, r(wa)) \in \delta$
- ullet solutions are exactly languages $L(r) = \{ w \in A^* \mid r(w) \in F \}$

One-Sided Concatenation — Non-regular Constants

$$K_0 \cup X_1K_1 \cup \cdots \cup X_nK_n \subseteq L_0 \cup X_1L_1 \cup \cdots \cup X_nL_n$$
 K_j arbitrary, L_j regular

largest solution: (MK 2005)

- regular
- ullet for context-free K_j : algorithmically regular
- direct construction of the automaton accepting the solution

Explicit Systems of Equations

Explicit Systems of Equations

$$X_1 = \varphi_1(X_1, \dots, X_n)$$

$$\vdots$$

 $X_n = \varphi_n(X_1, \dots, X_n)$

notation:

$$X=(X_1,\ldots,X_n),\quad \varphi=(\varphi_1,\ldots,\varphi_n)$$
 system of equations $X=\varphi(X)$

 φ_i monotone and continuous \implies system possesses the least and the greatest solution $\lim_{k\to\infty} \varphi^k(\emptyset,\ldots,\emptyset)$ $\lim_{k\to\infty} \varphi^k(A^*,\ldots,A^*)$

Concatenation and Union — Context-Free Languages

Example: Dyck language of correct bracketings over $A = \{(,)\}$:

context-free grammar: $X_1 \longrightarrow \varepsilon \mid X_2 X_1 \qquad X_2 \longrightarrow (X_1)$

system of language equations: $X_1 = \{\varepsilon\} \cup X_2 \cdot X_1$ $X_2 = \{(\} \cdot X_1 \cdot \{)\}$

Ginsburg & Rice 1962:

context-free languages = components of smallest (largest, unique) solutions of explicit systems

$$X_i = S_{i,1} \cup \cdots \cup S_{i,k_i} \qquad i = 1, \dots, n$$

of polynomial equations with $S_{i,j} \in (A \cup \mathcal{V})^*$

Concatenation, Union and Intersection — Conjunctive Languages

Okhotin 2001–today:

- analogy of alternating machines for context-free grammars
- we can specify that a word satisfies certain syntactic conditions simultaneously
- parsing using standard techniques
- \subseteq DTIME $(n^3) \cap$ DSPACE(n)

Linear Concatenation, Union and Intersection

 $X_i = \varphi_i$ φ_i constructed from elements of A^* and $A^*\mathcal{V}A^*$ using union and intersection

Okhotin 2004:

systems define exactly languages accepted by one-way real-time cellular automata

Examples:

 $\{\,wcw\mid w\in\{a,b\}^*\,\}$, $\{\,a^nb^nc^n\mid n\in\mathbb{N}\,\}$, all computations of a Turing machine

Conjunctive Languages over Unary Alphabet

alphabet $A = \{a\}$

Language $L \subseteq \{a\}^*$ represents the set $\{k \mid a^k \in L\}$ of non-negative integers. concatenation = elementwise addition

Context-free unary languages are regular, i.e. ultimately periodic.

Systems of equations with addition, union and intersection:

- allow manipulating integers in positional notation e.g. binary notation of $\{ a^{2^n} \mid n \in \mathbb{N} \}$ is regular 10^*
- smallest solutions are (as sets of numbers) in EXPTIME and can be EXPTIME-complete (Jeż & Okhotin 2008)
- unary notation of any linear conjunctive language can be represented (Jeż & Okhotin 2010) (in particular, unary representation of valid computations of a Turing machine)

Explicit Systems with Concatenation and All Boolean Operations

In general, powerful enough to express implicit equations \implies computationally universal.

Boolean grammars (Okhotin 2004–2007):

- semantics defined only for some systems
- generalization of conjunctive languages
- standard parsing techniques still available
- used to give a formal specification of a simple programming language

Equations with concatenation and any clone of Boolean operations:

Okhotin 2007: exactly seven classes of languages

Largest and smallest solutions w.r.t. lexicographical ordering:

Okhotin 2005: number of variables corresponds to the levels of arithmetical hierarchy

Equations with Constant Sides

Inequalities with Constant Sides — Examples

Minimal deterministic automaton of a language L:

state reached by $w \in A^* =$ largest solution of the inequality $w \cdot X_w \subseteq L$

$$X_w \stackrel{a}{\to} X_{wa}$$

initial state $X_{arepsilon}$

final states X_w , where $w \in L$

Universal automaton of a language L

= smallest non-deterministic automaton admitting morphism from every automaton accepting L

state = maximal solution of the inequality $X \cdot Y \subseteq L$

$$(X,Y) \stackrel{a}{\to} (X',Y') \iff aY' \subseteq Y \iff Xa \subseteq X'$$

(X,Y) initial state $\iff \varepsilon \in X$

$$(X,Y)$$
 final state $\iff \varepsilon \in Y$

Systems of Inequalities with Constant Sides — General Results

 $\bigcup P_i \subseteq L_i \qquad L_i \subseteq A^*$ regular constant, $P_i \subseteq (A \cup \mathcal{V})^*$ arbitrary

maximal solutions:

(Conway 1971)

- finitely many, all of them regular
- for context-free expressions $\bigcup P_i$: algorithmically regular
- ullet $\sigma\colon A^* o M$ homomorphism recognizing all languages L_i

(i.e.
$$L_i = \sigma^{-1}(F_i)$$
 for some $F_i \subseteq M$)

 $\implies \sigma$ recognizes all components of maximal solutions

Systems of equations with constant sides:

 $\varphi_i(X_1,\ldots,X_n)=L_i$ $L_i\subseteq A^*$ regular constant, φ_i regular expression

- satisfiability by arbitrary (finite) languages is EXPSPACE-complete (Bala 2006)
- ullet Is satisfiability decidable if φ_i can contain intersection?

Implicit Equations

First Something Simple — Checking Validity for All Languages

Does $\varphi(L_1,\ldots,L_n)=\psi(L_1,\ldots,L_n)$ hold for arbitrary (regular) languages L_1,\ldots,L_n ?

- trivially decidable with union, concatenation, Kleene iteration and regular constants:
 treat variables as letters and compare regular languages
- decidable also with the shuffle operation (Meyer & Rabinovich 2002)
- open problems for expressions with intersection

Implicit Equations — Undecidability of Solvability

Equations with finite constants, union and concatenation:

Context-free languages X and Y defined by explicit systems.

Add equation X = Y to test for equivalence.

Systems of equations with regular constants and concatenation (MK 2007):

$$XK = LX, A^*X = A^*$$
 $K, L \subseteq A^*$ regular

(conjugacy via languages containing the empty word)

Implicit Equations — Computational Universality

Components of unique (smallest, largest) solutions =

= recursive (recursively enumerable, co-recursively enumerable) languages.

Universality of simple systems of equations:

Unary alphabet, concatenation, union and finite constants (Jeż & Okhotin 2008):

• Computations of a Turing machine encoded in the unary notation in a very special way and the accepted language extracted using language equations.

Unary alphabet, concatenation and regular constants (Jeż & Okhotin 2009):

- encoding of languages, which allows using concatenation to compute both concatenation and union
- Lehtinen & Okhotin 2009: XXK = XXL, XM = N, K, L finite, M, N regular

Two-letter alphabet, concatenation and finite constants (MK 2007):

 $\bullet XL = LX$, with L finite

→ All basic decision problems are undecidable for very simple equations.

Commutation — Example of Computational Universality

Every co-recursively enumerable language can be encoded into the largest solution of a system of any of the following forms, with regular constants K, L, M and N: (MK 2005)

$$XK\subseteq LX$$
, $X\subseteq M$
$$XK\subseteq LX$$
, $XM\subseteq NX$
$$XL=LX$$
, with L finite

Game corresponding to equation XL = LX:

position: $w \in A^*$

attacker: chooses $u \in L$

plays either $w \longrightarrow wu$ or $w \longrightarrow uw$

defender: chooses $v \in L$ so that $wu = v\tilde{w}$, $uw = \tilde{w}v$, respectively

plays $wu \longrightarrow \tilde{w}$, $uw \longrightarrow \tilde{w}$, respectively

largest solution = all winning positions of the defender

Commutation — Example of Non-regular Solution

$$A = \{a, b, c, e, \hat{e}, f, \hat{f}, g, \hat{g}\}$$

$$L = \{c, ef, ga, e, fg, \hat{f}\hat{e}, a\hat{g}, \hat{e}, \hat{g}\hat{f}, fgba\hat{g}\} \cup cM \cup Mc \cup A^*bA^*bA^* \cup (A \setminus \{c\})^*b(A \setminus \{c\})^* \setminus N$$

$$M = efga^+ba^* \cup ga^*ba^*\hat{g}\hat{f} \cup a^*ba^*\hat{g}\hat{f}\hat{e} \cup fga^*ba^*\hat{g}$$

$$N = \{efg, fg, g, \varepsilon\} \cdot a^*ba^* \cdot \{\varepsilon, \hat{g}, \hat{g}\hat{f}, \hat{g}\hat{f}\hat{e}\}$$

encodes simultaneous decrementation of two counters and zero-test

Configuration: $[[[e]f]g]a^{\mathbf{m}}ba^{\mathbf{n}}[\hat{g}[\hat{f}[\hat{e}]]]$

Commutation — Simultaneous Decrementation of Both Counters

Attacker forces defender to remove one a on each side:

Commutation — Encoding Games (Jeandel & Ollinger 2008)

Example:

position of the game: a node of the graph and a word

labels of attacker's nodes: allowed words

labels of edges: words to be added by attacker or removed by defender

- when attacker modifies on one side, defender has to modify on the other
- bipartite graph for each type of edges
- at most one common node for any two connected components of different types
- only one type of edges leading from each of attacker's nodes
- non-empty labels of edges only around one attacker's node for each type of edges

Implicit Equations — Rational Infinite Systems of Equations

rational system = defined by a finite transducer

Every rational system of word equations is algorithmically equivalent to its finite subsystem

⇒ satisfiability decidable. (Culik II & Karhumäki 1983, Albert & Lawrence 1985, Guba 1986)

Do given finite languages form a solution of the system $\{X^nZ=Y^nZ\mid n\in\mathbb{N}\}$? undecidable (Lisovik 1997, Karhumäki & Lisovik 2003, MK 2007)

Implicit Equations — Tractable Cases

$$\dots \subseteq \dots XLY \dots$$

We need to classify words according to their decompositions with respect to constant languages on the right.

Well-quasiorders (wqo) — Powerful Tool for Proving Regularity

Quasiorder \leq on A^* is a wqo, if it contains neither infinite descending chains nor infinite antichains \bullet \bullet \bullet \cdots

Equivalent definitions:

- ullet Every upward closed language over A is finitely generated.
- There is no infinite ascending sequence of upward closed languages.

Example: "scattered subword" ordering

Ehrenfeucht & Haussler & Rozenberg 1983:

 $L \subseteq A^*$ is regular $\iff L$ is upward closed with respect to a monotone wqo on A^* .

Generalizes recognition by finite monoids:

- Congruence of finite index is a monotone wqo.
- upward closed = recognized by the congruence

Applying wgos to language inequalities:

Construct a wqo on A^* such that every solution is contained in an upward closed solution.

Quasiorder Classifying Words According to Their Decompositions

 $\sigma\colon A^* o M$... homomorphism recognizing constant languages on the right

Definition (Bucher & Ehrenfeucht & Haussler 1985):

$$w \leq_{\sigma} v \iff w = a_1 \cdots a_m, \quad a_j \in A,$$

 $v = v_1 \cdots v_m, \quad v_j \in A^+,$
 $\sigma(a_1) = \sigma(v_1), \dots, \sigma(a_m) = \sigma(v_m)$

 \leq_{σ} is the derivation relation of the rewriting system

$$\{a \rightarrow v \mid a \in A, v \in A^*, \sigma(a) = \sigma(v)\}$$

Example: $\sigma \colon \{a,b\}^* \to (\{0,1\},+)$ (two-element group) $\sigma(a)=1, \sigma(b)=0$

Implicit Inequalities with Restrictions on Constants

Theorem: (MK 2005)

 $\sigma\colon A^* \to M$ homomorphism

$$\varphi_i(X_1,\ldots,X_n)\subseteq \psi_i(X_1,\ldots,X_n)$$
 (infinite) system of inequalities

- all operations monotone
- in φ_i all K-ary operations $f\colon (\wp(A^*))^K \to \wp(A^*)$ satisfy: $f((\langle L_k \rangle_{\leq_\sigma})_{k \in K}) \subseteq \langle f((L_k)_{k \in K}) \rangle_{\leq_\sigma} \text{ for all } L_k \subseteq A^* \qquad (\langle L \rangle_{\leq_\sigma} \text{ upward closure})$
- in ψ_i all K-ary operations $f\colon (\wp(A^*))^K\to\wp(A^*)$ satisfy: $f((\langle L_k\rangle_{\leq_\sigma})_{k\in K})\supseteq \langle f((L_k)_{k\in K})\rangle_{\leq_\sigma}$ for all $L_k\subseteq A^*$

Then all maximal solutions are recognized by \leq_{σ} .

Examples of admissible operations:

- anywhere: concatenation, Kleene iteration, shuffle, (infinitary) union, constants recognized by σ , constants $A^{\geq n}$ and $\{\varepsilon\}$.
- on the right: (infinitary) intersection.
- on the left: arbitrary constants.

Implicit Inequalities — Regularity of Maximal Solutions (MK 2005)

minimal deterministic automata of constant languages do not contain the pattern

 $\implies \leq_{\sigma}$ is a wqo \implies all maximal solutions are regular

Example: L admissible constant language \implies every union of powers of L is regular. (largest solution of the inequality $X\subseteq\bigcup_{n\in N}L^n$, for $N\subseteq\mathbb{N}$)

Corollary:

The class of polynomials of group languages is closed under taking maximal solutions of all such systems.

Semi-commutation Inequalities

 $XK \subseteq LX$ K arbitrary, L regular

largest solution:

- always regular (MK 2005)
- for context-free K: algorithmically recursive
- ullet if K and L finite and all words in K longer than all in L: algorithmically regular (Ly 2007)

Game: position: $w \in A^*$

attacker: chooses $u \in K$

plays $w \longrightarrow wu$

defender: chooses $v \in L$ so that $wu = v\tilde{w}$

plays $wu \longrightarrow \tilde{w}$

largest solution = all winning positions of the defender

Semi-commutation — Encoding Defender's Strategies

 $w \in A^* \dots$ initial word of the game

Labelled tree:

- ullet defender moves along the edges = removes prefixes of w
- ullet label $=\sigma$ -image of the current remainder of w, where $\sigma\colon A^* o M$ recognizes L

Example: w = abcd, $L = \{a, ab, abcde, bc, c, cd, da\}$

Semi-commutation — Well-quasiordering Labelled Trees

 $w \leq v \dots$ winning strategies of the defender for w can be used also for v

Example:

Largest solution is upward closed with respect to \leq .

Kruskal 1960: \leq is wqo.

Implicit Equations — Tractable Cases for "Simple" Equations

Positive results for commutation equations XL = LX:

- three-element languages, regular codes (Karhumäki & Latteux & Petre 2005)
- binary languages closed under factors (Frid 2009)

Open questions for commutation:

• Conjecture:

(Ratoandromanana 1989)

Among codes, equation XY = YX has only solutions of the form $X = L^m$, $Y = L^n$. Equivalently: Every code has a primitive root.

Decidability results for conjugacy equations XK = LX:

 conjugacy of finite bifix codes via any non-empty language (Cassaigne & Karhumäki & Salmela 2007)

Open decision problems for conjugacy:

- existence of a non-empty solution
- solvability with finite constants
- existence of a regular or finite solution

Open Questions

Explicit systems:

- methods for proving non-representability of languages by context-free, conjunctive and Boolean grammars
- closure of conjunctive languages under complementation

General solvability questions:

- equations with concatenation and finite constants
- equations with concatenation (and union) over finite or regular languages

Simple implicit systems:

• regularity of solutions of other simple systems, for example:

$$KXL \subseteq MX$$

 $KX \subseteq LX, XM \subseteq XN$

existence of algorithms for finding solutions, which are already known to be regular

Other operations:

- ullet existence of non-trivial shuffle decompositions $X \coprod Y = L$ of a regular language L
- existence of non-trivial unambiguous decompositions of regular languages