
Language Equations

Michal Kunc

Masaryk University Brno

First Something Different — Word Equations

• operation: concatenation

• constants: letters

• variables stand for words

• for instance, solutions of equation xba = abx are exactly x = a(ba)n, where n ∈ N0

• PSPACE algorithm deciding satisfiability, EXPTIME algorithm finding all solutions

(Makanin 1977, Plandowski 2006)

• satisfiability-equivalent to language equations with singleton constants and

concatenation as the only operation:

shortlex-minimal words of an arbitrary language solution form a word solution

Overview

• General properties.

• Equations with one-sided concatenation.

• Explicit systems of equations. (basic models of computation, semantics of grammars)

• Inequalities with constant sides.

• General implicit equations. (surprising computational completeness)

Language Equations — Basic Elements

set of variables V = {X1, . . . , Xn}

finite alphabetA = {a, b, . . . }

A∗ . . . the monoid of finite words over A with the operation of concatenation

L ⊆ A∗ . . . language over A

℘(A∗) . . . the set of all languages overA

operations: usually extended from operationsA∗ ×A∗ → ℘(A∗) defined on words

concatenation: u · v = {uv} (K · L = {uv | u ∈ K, v ∈ L })

union: u ∪ v = {u, v}

intersection: u ∩ v =







{u} if u = v

∅ if u 6= v

shuffle: u v = {u1v1 . . . ukvk | u1 . . . uk = u, v1 . . . vk = v }

all such n-ary operations f are monotone:

K1 ⊆ L1 & . . . &Kn ⊆ Ln =⇒ f(K1, . . . , Kn) ⊆ f(L1, . . . , Ln)

Language Equations — Definition

ϕ(X1, . . . , Xn) = ψ(X1, . . . , Xn)

ϕ, ψ . . . expressions using variables, constant languages and language operations

solutions: (L1, . . . , Ln) ∈ ℘(A
∗)n such that ϕ(L1, . . . , Ln) = ψ(L1, . . . , Ln)

ordering of solutions by componentwise inclusion:

(K1, . . . , Kn) ≤ (L1, . . . , Ln) ⇐⇒ K1 ⊆ L1, . . . , Kn ⊆ Ln

The Basic Property

f : ℘(A∗)n → ℘(A∗) continuous:

∀ℓ ∈ N ∃m ∈ N ∀K1, . . . , Kn, L1, . . . , Ln ⊆ A
∗ :

Ki ∩A
≤m = Li ∩A

≤m =⇒ f(K1, . . . , Kn) ∩A
≤ℓ = f(L1, . . . , Ln) ∩A

≤ℓ

Continuous operations: Boolean operations, concatenation, shuffle, . . .

Non-continuous operations: typically erasing operations, e.g. erasing homomorphisms

Proposition: If all operations are continuous, then every solution is contained in a maximal

solution and contains a minimal solution.

 describing languages as largest and smallest solutions of systems of equations

Main questions to study:

• expressive power, properties of solutions

• decidability of existence and uniqueness of solutions

• algorithms for finding minimal and maximal solutions

Equations with One-Sided Concatenation

One-Sided Concatenation — Explicit Systems

Example:

q1
b

q2
a

a

X1 = {ε} ∪X2 · a X2 = X1 · b ∪X2 · a

regular languages = components of smallest (largest, unique) solutions of explicit systems

Xi = Ki ∪
n
⋃

j=1

Xj · Lj,i i = 1, . . . , n

of left-linear equations with finite constantsKi and Lj,i

Systems correspond to non-deterministic automata with arcs labelled with constant languages.

In general: Components of smallest solutions are rational combinations of constant languages.

Additionally intersection allowed: alternating finite automata.

One-Sided Concatenation — Implicit Systems

Inequalities with one-sided concatenation, Boolean operations and regular constants:

basic properties can be expressed using formulae of monadic second-order theory

of the infinite |A|-ary tree

Example: {b} ∪Xa ⊆ X ∪Xba

X is a solution ⇐⇒ X(b) ∧
(

∀x : X(x) =⇒ (X(xa) ∨ ∃y : X(y) ∧ x = yb)
)

X minimal ⇐⇒ ∀Y : (Y is a solution ∧ ∀x : Y (x) =⇒ X(x)) =⇒

=⇒ (∀x : X(x) =⇒ Y (x))

minimal solutions: • = “X holds” ◦ = “X does not hold”

a∗ ∪ b : •
a b

•
a b

•
a b

• ◦ ◦ ◦

ba∗ : ◦
a b

◦
a b

•
a b

◦ ◦ • ◦

Rabin 1969 =⇒ algorithmically solvable using tree automata

One-Sided Concatenation — Complexity of Decision Problems

Inequalities with one-sided concatenation, Boolean operations and regular constants:

basic decision problems are EXPTIME-complete

(Aiken & Kozen & Vardi & Wimmers 1994,

Baader & Küsters & Narendran & Okhotin 2001–2006)

The set of all solutions represented by an NFAA = (Q, I, F, δ) computable in EXPTIME:

• r : A∗ → Q run ofA: r(ε) ∈ I , (r(w), a, r(wa)) ∈ δ

• solutions are exactly languages L(r) = {w ∈ A∗ | r(w) ∈ F }

One-Sided Concatenation — Non-regular Constants

K0 ∪X1K1 ∪ · · · ∪XnKn ⊆ L0 ∪X1L1 ∪ · · · ∪XnLn

Kj arbitrary, Lj regular

largest solution: (MK 2005)

• regular

• for context-freeKj : algorithmically regular

• direct construction of the automaton accepting the solution

Explicit Systems of Equations

Explicit Systems of Equations

X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

notation:

X = (X1, . . . , Xn), ϕ = (ϕ1, . . . , ϕn)

system of equationsX = ϕ(X)

ϕi monotone and continuous =⇒ system possesses the least and the greatest solution

limk→∞ ϕk(∅, . . . , ∅) limk→∞ ϕk(A∗, . . . , A∗)

Concatenation and Union — Context-Free Languages

Example: Dyck language of correct bracketings over A = {(,)}:

context-free grammar: X1 −→ ε | X2X1 X2 −→ (X1)

system of language equations: X1 = {ε} ∪X2 ·X1 X2 = {(} ·X1 · {)}

Ginsburg & Rice 1962:

context-free languages = components of smallest (largest, unique) solutions of explicit systems

Xi = Si,1 ∪ · · · ∪ Si,ki
i = 1, . . . , n

of polynomial equations with Si,j ∈ (A ∪ V)∗

Concatenation, Union and Intersection — Conjunctive Languages

Okhotin 2001–today:

• analogy of alternating machines for context-free grammars

• we can specify that a word satisfies certain syntactic conditions simultaneously

• parsing using standard techniques

• ⊆ DTIME(n3) ∩DSPACE(n)

Linear Concatenation, Union and Intersection

Xi = ϕi ϕi constructed from elements of A∗ and A∗VA∗ using union and intersection

Okhotin 2004:

systems define exactly languages accepted by one-way real-time cellular automata

←− input word

←− output value

Examples:

{wcw | w ∈ {a, b}∗ }, { anbncn | n ∈ N }, all computations of a Turing machine

Conjunctive Languages over Unary Alphabet

alphabetA = {a}

Language L ⊆ {a}∗ represents the set { k | ak ∈ L } of non-negative integers.

concatenation = elementwise addition

Context-free unary languages are regular, i.e. ultimately periodic.

Systems of equations with addition, union and intersection:

• allow manipulating integers in positional notation

e.g. binary notation of { a2
n

| n ∈ N } is regular 10∗

• smallest solutions are (as sets of numbers) in EXPTIME and

can be EXPTIME-complete (Jeż & Okhotin 2008)

• unary notation of any linear conjunctive language can be represented (Jeż & Okhotin 2010)

(in particular, unary representation of valid computations of a Turing machine)

Explicit Systems with Concatenation and All Boolean Operations

In general, powerful enough to express implicit equations =⇒ computationally universal.

Boolean grammars (Okhotin 2004–2007):

• semantics defined only for some systems

• generalization of conjunctive languages

• standard parsing techniques still available

• used to give a formal specification of a simple programming language

Equations with concatenation and any clone of Boolean operations:

Okhotin 2007: exactly seven classes of languages

Largest and smallest solutions w.r.t. lexicographical ordering:

Okhotin 2005: number of variables corresponds to the levels of arithmetical hierarchy

Equations with Constant Sides

Inequalities with Constant Sides — Examples

Minimal deterministic automaton of a language L:

state reached by w ∈ A∗ = largest solution of the inequality w ·Xw ⊆ L

Xw
a
→ Xwa

initial state Xε

final states Xw, where w ∈ L

Universal automaton of a language L

= smallest non-deterministic automaton admitting morphism from every automaton accepting L

state = maximal solution of the inequalityX · Y ⊆ L

(X, Y)
a
→ (X ′, Y ′) ⇐⇒ aY ′ ⊆ Y ⇐⇒ Xa ⊆ X ′

(X, Y) initial state ⇐⇒ ε ∈ X

(X, Y) final state ⇐⇒ ε ∈ Y

Systems of Inequalities with Constant Sides — General Results

⋃

Pi ⊆ Li Li ⊆ A
∗ regular constant, Pi ⊆ (A ∪ V)∗ arbitrary

maximal solutions: (Conway 1971)

• finitely many, all of them regular

• for context-free expressions
⋃

Pi: algorithmically regular

• σ : A∗ →M homomorphism recognizing all languages Li

(i.e. Li = σ−1(Fi) for some Fi ⊆M)

=⇒ σ recognizes all components of maximal solutions

Systems of equations with constant sides:
ϕi(X1, . . . , Xn) = Li Li ⊆ A

∗ regular constant, ϕi regular expression

• satisfiability by arbitrary (finite) languages is EXPSPACE-complete (Bala 2006)

• Is satisfiability decidable if ϕi can contain intersection?

Implicit Equations

First Something Simple — Checking Validity for All Languages

Does ϕ(L1, . . . , Ln) = ψ(L1, . . . , Ln) hold for arbitrary (regular) languages L1, . . . , Ln?

• trivially decidable with union, concatenation, Kleene iteration and regular constants:

treat variables as letters and compare regular languages

• decidable also with the shuffle operation (Meyer & Rabinovich 2002)

• open problems for expressions with intersection

Implicit Equations — Undecidability of Solvability

Equations with finite constants, union and concatenation:

Context-free languagesX and Y defined by explicit systems.

Add equationX = Y to test for equivalence.

Systems of equations with regular constants and concatenation (MK 2007):

XK = LX,A∗X = A∗ K,L ⊆ A∗ regular

(conjugacy via languages containing the empty word)

Implicit Equations — Computational Universality

Components of unique (smallest, largest) solutions =

= recursive (recursively enumerable, co-recursively enumerable) languages.

Universality of simple systems of equations:

Unary alphabet, concatenation, union and finite constants (Jeż & Okhotin 2008):

• Computations of a Turing machine encoded in the unary notation in a very special way

and the accepted language extracted using language equations.

Unary alphabet, concatenation and regular constants (Jeż & Okhotin 2009):

• encoding of languages, which allows using concatenation to compute both

concatenation and union

• Lehtinen & Okhotin 2009: XXK = XXL,XM = N , K , L finite, M , N regular

Two-letter alphabet, concatenation and finite constants (MK 2007):

•XL = LX , with L finite

 All basic decision problems are undecidable for very simple equations.

Commutation — Example of Computational Universality

Every co-recursively enumerable language can be encoded into the largest solution of a system

of any of the following forms, with regular constantsK , L, M andN : (MK 2005)

XK ⊆ LX , X ⊆M

XK ⊆ LX , XM ⊆ NX

XL = LX , with L finite

Game corresponding to equationXL = LX :

position: w ∈ A∗

attacker: chooses u ∈ L

plays either w −→ wu or w −→ uw

defender: chooses v ∈ L so that wu = vw̃, uw = w̃v, respectively

plays wu −→ w̃, uw −→ w̃, respectively

largest solution = all winning positions of the defender

Commutation — Example of Non-regular Solution

A = {a, b, c, e, ê, f, f̂ , g, ĝ}

L = {c, ef, ga, e, fg, f̂ ê, aĝ, ê, ĝf̂ , fgbaĝ} ∪ cM ∪Mc ∪

∪A∗bA∗bA∗ ∪ (A \ {c})∗b(A \ {c})∗ \N

M = efga+ba∗ ∪ ga∗ba∗ĝf̂ ∪ a∗ba∗ĝf̂ ê ∪ fga∗ba∗ĝ

N = {efg, fg, g, ε} · a∗ba∗ · {ε, ĝ, ĝf̂ , ĝf̂ ê}

encodes simultaneous decrementation of two counters and zero-test

Configuration: [[[e]f]g]amban[ĝ[f̂ [ê]]]

Commutation — Simultaneous Decrementation of Both Counters

Attacker forces defender to remove one a on each side:

efgamban

efgamban

· ĝf̂ fgambanĝf̂

gambanĝf̂ fgambanĝf̂ · c · c /∈ L2
· A∗

gaam−1banĝf̂ · ê

am−1banĝf̂ ê

...

efgam−1ban−1

Commutation — Encoding Games (Jeandel & Ollinger 2008)

Example:

ab

a

a2A∗

A∗baA∗

A∗bA∗

b
b2

• = attacker should play modification on the left

◦ = defender should play modification on the right

position of the game: a node of the graph and a word

labels of attacker’s nodes: allowed words

labels of edges: words to be added by attacker or removed by defender

• when attacker modifies on one side, defender has to modify on the other

• bipartite graph for each type of edges

• at most one common node for any two connected components of different types

• only one type of edges leading from each of attacker’s nodes

• non-empty labels of edges only around one attacker’s node for each type of edges

Implicit Equations — Rational Infinite Systems of Equations

rational system = defined by a finite transducer

Every rational system of word equations is algorithmically equivalent to its finite subsystem

=⇒ satisfiability decidable. (Culik II & Karhumäki 1983, Albert & Lawrence 1985, Guba 1986)

Do given finite languages form a solution of the system {XnZ = Y nZ | n ∈ N }?

undecidable (Lisovik 1997, Karhumäki & Lisovik 2003, MK 2007)

Implicit Equations — Tractable Cases

. . . ⊆ . . .XLY . . .

We need to classify words according to their decompositions with respect to

constant languages on the right.

Well-quasiorders (wqo) — Powerful Tool for Proving Regularity

Quasiorder≤ on A∗ is a wqo, if it contains neither infinite descending chains
r

r

r

p
p
pnor infinite antichains r r r p p p

Equivalent definitions:

• Every upward closed language overA is finitely generated.

• There is no infinite ascending sequence of upward closed languages.

Example: “scattered subword” ordering

Ehrenfeucht & Haussler & Rozenberg 1983:

L ⊆ A∗ is regular ⇐⇒ L is upward closed with respect to a monotone wqo on A∗.

Generalizes recognition by finite monoids:

• Congruence of finite index is a monotone wqo.

• upward closed = recognized by the congruence

Applying wqos to language inequalities:

Construct a wqo on A∗ such that every solution is contained in an upward closed solution.

Quasiorder Classifying Words According to Their Decompositions

σ : A∗ →M . . . homomorphism recognizing constant languages on the right

Definition (Bucher & Ehrenfeucht & Haussler 1985):

w ≤σ v ⇐⇒ w = a1 · · · am, aj ∈ A,

v = v1 · · · vm, vj ∈ A
+,

σ(a1) = σ(v1), . . . , σ(am) = σ(vm)

≤σ is the derivation relation of the rewriting system

{ a→ v | a ∈ A, v ∈ A∗, σ(a) = σ(v) }

Example: σ : {a, b}∗ → ({0, 1},+) (two-element group) σ(a) = 1, σ(b) = 0

.

.

.
.
.
.

ab2 a3 bab b2a aba a2b ba2 b3

ab ba a2 b2

a b

Implicit Inequalities with Restrictions on Constants

Theorem: (MK 2005)

σ : A∗ →M homomorphism

ϕi(X1, . . . , Xn) ⊆ ψi(X1, . . . , Xn) (infinite) system of inequalities

• all operations monotone

• in ϕi all K-ary operations f : (℘(A∗))K → ℘(A∗) satisfy:

f((〈Lk〉≤σ
)k∈K) ⊆ 〈f((Lk)k∈K)〉≤σ

for all Lk ⊆ A
∗ (〈L〉≤σ

upward closure)

• in ψi all K-ary operations f : (℘(A∗))K → ℘(A∗) satisfy:

f((〈Lk〉≤σ
)k∈K) ⊇ 〈f((Lk)k∈K)〉≤σ

for all Lk ⊆ A
∗

Then all maximal solutions are recognized by≤σ .

Examples of admissible operations:

• anywhere: concatenation, Kleene iteration, shuffle, (infinitary) union,

constants recognized by σ, constantsA≥n and {ε}.

• on the right: (infinitary) intersection.

• on the left: arbitrary constants.

Implicit Inequalities — Regularity of Maximal Solutions (MK 2005)

minimal deterministic automata of constant languages do not contain the pattern

•

a
• b

•

•

a
• b

=⇒ ≤σ is a wqo =⇒ all maximal solutions are regular

Example: L admissible constant language =⇒ every union of powers of L is regular.

(largest solution of the inequality X ⊆
⋃

n∈N

Ln, for N ⊆ N)

Corollary:

The class of polynomials of group languages is closed under taking maximal solutions

of all such systems.

Semi-commutation Inequalities

XK ⊆ LX K arbitrary, L regular

largest solution:

• always regular (MK 2005)

• for context-freeK : algorithmically recursive

• if K and L finite and all words in K longer than all in L: algorithmically regular (Ly 2007)

Game: position: w ∈ A∗

attacker: chooses u ∈ K

plays w −→ wu

defender: chooses v ∈ L so that wu = vw̃

plays wu −→ w̃

largest solution = all winning positions of the defender

Semi-commutation — Encoding Defender’s Strategies

w ∈ A∗ . . . initial word of the game

Labelled tree:

• defender moves along the edges = removes prefixes of w

• label = σ-image of the current remainder of w, where σ : A∗ →M recognizes L

Example: w = abcd, L = {a, ab, abcde, bc, c, cd, da}

σ(abcd) ()

σ(bcd) (a) (ab) σ(cd)

σ(d) (a, bc) σ(d) (ab, c) (ab, cd) 1

Semi-commutation — Well-quasiordering Labelled Trees

w ≤ v . . . winning strategies of the defender for w can be used also for v

Example:

s s

t t < t

p q p q

Largest solution is upward closed with respect to≤.

Kruskal 1960: ≤ is wqo.

Implicit Equations — Tractable Cases for “Simple” Equations

Positive results for commutation equationsXL = LX :

• three-element languages, regular codes (Karhumäki & Latteux & Petre 2005)

• binary languages closed under factors (Frid 2009)

Open questions for commutation:

• Conjecture: (Ratoandromanana 1989)

Among codes, equationXY = Y X has only solutions of the form X = Lm, Y = Ln.

Equivalently: Every code has a primitive root.

Decidability results for conjugacy equationsXK = LX :

• conjugacy of finite bifix codes via any non-empty language

(Cassaigne & Karhumäki & Salmela 2007)

Open decision problems for conjugacy:

• existence of a non-empty solution

• solvability with finite constants

• existence of a regular or finite solution

Open Questions

Explicit systems:

• methods for proving non-representability of languages by context-free, conjunctive

and Boolean grammars

• closure of conjunctive languages under complementation

General solvability questions:

• equations with concatenation and finite constants

• equations with concatenation (and union) over finite or regular languages

Simple implicit systems:

• regularity of solutions of other simple systems, for example:

KXL ⊆MX

KX ⊆ LX, XM ⊆ XN

• existence of algorithms for finding solutions, which are already known to be regular

Other operations:

• existence of non-trivial shuffle decompositionsX Y = L of a regular language L

• existence of non-trivial unambiguous decompositions of regular languages

