Language Equations

Michal Kunc
Masaryk University Brno
First Something Different — Word Equations

- operation: concatenation
- constants: letters
- variables stand for words
- for instance, solutions of equation $xba = abx$ are exactly $x = a(ba)^n$, where $n \in \mathbb{N}_0$
- PSPACE algorithm deciding satisfiability, EXPTIME algorithm finding all solutions (Makanin 1977, Plandowski 2006)
- satisfiability-equivalent to language equations with singleton constants and concatenation as the only operation:
 - shortlex-minimal words of an arbitrary language solution form a word solution
Overview

• General properties.
• Equations with one-sided concatenation.
• Explicit systems of equations. (basic models of computation, semantics of grammars)
• Inequalities with constant sides.
• General implicit equations. (surprising computational completeness)
Language Equations — Basic Elements

set of variables $\mathcal{V} = \{X_1, \ldots, X_n\}$

finite alphabet $A = \{a, b, \ldots\}$

A^* ... the monoid of finite words over A with the operation of concatenation

$L \subseteq A^*$... language over A

$\wp(A^*)$... the set of all languages over A

operations: usually extended from operations $A^* \times A^* \to \wp(A^*)$ defined on words

concatenation: $u \cdot v = \{uv\}$ \quad \(K \cdot L = \{uv \mid u \in K, v \in L\}\)

union: $u \cup v = \{u, v\}$

intersection: $u \cap v = \begin{cases} \{u\} & \text{if } u = v \\ \emptyset & \text{if } u \neq v \end{cases}$

shuffle: $u \bigshuffle v = \{u_1v_1 \ldots u_kv_k \mid u_1 \ldots u_k = u, v_1 \ldots v_k = v\}$

all such n-ary operations f are monotone:

\[K_1 \subseteq L_1 \& \ldots \& K_n \subseteq L_n \implies f(K_1, \ldots, K_n) \subseteq f(L_1, \ldots, L_n) \]
Language Equations — Definition

\[\varphi(X_1, \ldots, X_n) = \psi(X_1, \ldots, X_n) \]

\(\varphi, \psi \) … expressions using variables, constant languages and language operations

solutions: \((L_1, \ldots, L_n) \in \wp(A^*)^n\) such that \(\varphi(L_1, \ldots, L_n) = \psi(L_1, \ldots, L_n)\)

ordering of solutions by componentwise inclusion:

\((K_1, \ldots, K_n) \leq (L_1, \ldots, L_n) \iff K_1 \subseteq L_1, \ldots, K_n \subseteq L_n\)
The Basic Property

\[f: \wp(A^*)^n \rightarrow \wp(A^*) \text{ continuous:} \]
\[\forall \ell \in \mathbb{N} \exists m \in \mathbb{N} \forall K_1, \ldots, K_n, L_1, \ldots, L_n \subseteq A^*: \]
\[K_i \cap A^{\leq m} = L_i \cap A^{\leq m} \implies f(K_1, \ldots, K_n) \cap A^{\leq \ell} = f(L_1, \ldots, L_n) \cap A^{\leq \ell} \]

Continuous operations: Boolean operations, concatenation, shuffle,

Non-continuous operations: Typically erasing operations, e.g. erasing homomorphisms

Proposition: If all operations are continuous, then every solution is contained in a maximal solution and contains a minimal solution.

\[\rightsquigarrow \text{describing languages as largest and smallest solutions of systems of equations} \]

Main questions to study:
- expressive power, properties of solutions
- decidability of existence and uniqueness of solutions
- algorithms for finding minimal and maximal solutions
Equations with One-Sided Concatenation
One-Sided Concatenation — Explicit Systems

Example:

\[
X_1 = \{\varepsilon\} \cup X_2 \cdot a \quad X_2 = X_1 \cdot b \cup X_2 \cdot a
\]

regular languages = components of smallest (largest, unique) solutions of explicit systems

\[
X_i = K_i \cup \bigcup_{j=1}^{n} X_j \cdot L_{j,i} \quad i = 1, \ldots, n
\]

of left-linear equations with finite constants \(K_i\) and \(L_{j,i}\)

Systems correspond to non-deterministic automata with arcs labelled with constant languages.

In general: Components of smallest solutions are rational combinations of constant languages.

Additionally intersection allowed: alternating finite automata.
One-Sided Concatenation — Implicit Systems

Inequalities with one-sided concatenation, Boolean operations and regular constants:

basic properties can be expressed using formulae of monadic second-order theory
of the infinite $|A|$-ary tree

Example: $\{b\} \cup X a \subseteq X \cup X ba$

$$X \text{ is a solution } \iff X(b) \land (\forall x: X(x) \implies (X(xa) \lor \exists y: X(y) \land x = yb))$$

$$X \text{ minimal } \iff \forall Y: (Y \text{ is a solution } \land \forall x: Y(x) \implies X(x)) \implies$$

$$\implies (\forall x: X(x) \implies Y(x))$$

minimal solutions: $\bullet = \text{"X holds"}$ $\circ = \text{"X does not hold"}$

$$a^* \cup b :$$

$$a^* \cup b :$$

Rabin 1969 \implies algorithmically solvable using tree automata
One-Sided Concatenation — Complexity of Decision Problems

Inequalities with one-sided concatenation, Boolean operations and regular constants:

basic decision problems are EXPTIME-complete

(Aiken & Kozen & Vardi & Wimmers 1994,

The set of all solutions represented by an NFA $A = (Q, I, F, \delta)$ computable in EXPTIME:

- $r: A^* \rightarrow Q$ run of A: $r(\varepsilon) \in I$, $(r(w), a, r(wa)) \in \delta$
- solutions are exactly languages $L(r) = \{ w \in A^* \mid r(w) \in F \}$
One-Sided Concatenation — Non-regular Constants

\[K_0 \cup X_1 K_1 \cup \cdots \cup X_n K_n \subseteq L_0 \cup X_1 L_1 \cup \cdots \cup X_n L_n \]
\(K_j \) arbitrary, \(L_j \) regular

largest solution:

- regular
- for context-free \(K_j \): algorithmically regular
- direct construction of the automaton accepting the solution

(MK 2005)
Explicit Systems of Equations
Explicit Systems of Equations

\[X_1 = \varphi_1(X_1, \ldots, X_n) \]

\[\vdots \]

\[X_n = \varphi_n(X_1, \ldots, X_n) \]

notation:

\[X = (X_1, \ldots, X_n), \quad \varphi = (\varphi_1, \ldots, \varphi_n) \]

system of equations \(X = \varphi(X) \)

\(\varphi_i \) monotone and continuous \(\implies \) system possesses the least and the greatest solution

\[\lim_{k \to \infty} \varphi^k(\emptyset, \ldots, \emptyset) \quad \lim_{k \to \infty} \varphi^k(A^*, \ldots, A^*) \]
Concatenation and Union — Context-Free Languages

Example: Dyck language of correct bracketings over \(A = \{ (,) \} \):

- context-free grammar:
 \[X_1 \to \varepsilon | X_2 X_1 \quad X_2 \to (X_1) \]

- system of language equations:
 \[X_1 = \{ \varepsilon \} \cup X_2 \cdot X_1 \quad X_2 = \{ (\} \cdot X_1 \cdot \{) \} \]

Ginsburg & Rice 1962:
context-free languages = components of smallest (largest, unique) solutions of explicit systems
\[X_i = S_{i,1} \cup \cdots \cup S_{i,k_i} \quad i = 1, \ldots, n \]

of polynomial equations with \(S_{i,j} \in (A \cup V)^* \)
Concatenation, Union and Intersection — Conjunctive Languages

Okhotin 2001–today:

• analogy of alternating machines for context-free grammars
• we can specify that a word satisfies certain syntactic conditions simultaneously
• parsing using standard techniques
• $\subseteq \text{DTIME}(n^3) \cap \text{DSPACE}(n)$
Linear Concatenation, Union and Intersection

$X_i = \varphi_i$ \hspace{1em} φ_i constructed from elements of A^* and $A^* \cup A^*$ using union and intersection

Okhotin 2004:
systems define exactly languages accepted by one-way real-time cellular automata

Examples:

\{ wcw \mid w \in \{a, b\}^* \}, \{ a^n b^n c^n \mid n \in \mathbb{N} \}, all computations of a Turing machine
Conjunctive Languages over Unary Alphabet

alphabet \(A = \{a\} \)

Language \(L \subseteq \{a\}^\ast \) represents the set \(\{ k \mid a^k \in L \} \) of non-negative integers.

concatenation = elementwise addition

Context-free unary languages are regular, i.e. ultimately periodic.

Systems of equations with addition, union and intersection:

- allow manipulating integers in positional notation
 e.g. binary notation of \(\{ a^{2^n} \mid n \in \mathbb{N} \} \) is regular \(10^\ast \)
- smallest solutions are (as sets of numbers) in EXPTIME and can be EXPTIME-complete (Jeż & Okhotin 2008)
- unary notation of any linear conjunctive language can be represented (Jeż & Okhotin 2010)
 (in particular, unary representation of valid computations of a Turing machine)
Explicit Systems with Concatenation and All Boolean Operations

In general, powerful enough to express implicit equations \implies computationally universal.

Boolean grammars (Okhotin 2004–2007):
- semantics defined only for some systems
- generalization of conjunctive languages
- standard parsing techniques still available
- used to give a formal specification of a simple programming language

Equations with concatenation and any clone of Boolean operations:
- Okhotin 2007: exactly seven classes of languages

Largest and smallest solutions w.r.t. lexicographical ordering:
- Okhotin 2005: number of variables corresponds to the levels of arithmetical hierarchy
Equations with Constant Sides
Inequalities with Constant Sides — Examples

Minimal deterministic automaton of a language L:

state reached by $w \in A^* =$ largest solution of the inequality $w \cdot X_w \subseteq L$

$X_w \xrightarrow{a} X_{wa}$

initial state X_ε

final states X_w, where $w \in L$

Universal automaton of a language L

$= \text{smallest non-deterministic automaton admitting morphism from every automaton accepting } L$

state $= \text{maximal solution of the inequality } X \cdot Y \subseteq L$

$(X, Y) \xrightarrow{a} (X', Y') \iff aY' \subseteq Y \iff Xa \subseteq X'$

(X, Y) initial state $\iff \varepsilon \in X$

(X, Y) final state $\iff \varepsilon \in Y$
Systems of Inequalities with Constant Sides — General Results

\[\bigcup P_i \subseteq L_i \qquad L_i \subseteq A^* \text{ regular constant, } P_i \subseteq (A \cup \mathcal{V})^* \text{ arbitrary} \]

maximal solutions:

- finitely many, all of them regular
- for context-free expressions \(\bigcup P_i \): algorithmically regular
- \(\sigma : A^* \rightarrow M \) homomorphism recognizing all languages \(L_i \)

 \[(\text{i.e. } L_i = \sigma^{-1}(F_i) \text{ for some } F_i \subseteq M) \]

 \[\implies \sigma \text{ recognizes all components of maximal solutions} \]

(Conway 1971)

Systems of equations with constant sides:

\[\varphi_i(X_1, \ldots, X_n) = L_i \qquad L_i \subseteq A^* \text{ regular constant, } \varphi_i \text{ regular expression} \]

- satisfiability by arbitrary (finite) languages is EXPSPACE-complete (Bala 2006)
- Is satisfiability decidable if \(\varphi_i \) can contain intersection?
Implicit Equations
Does $\varphi(L_1, \ldots, L_n) = \psi(L_1, \ldots, L_n)$ hold for arbitrary (regular) languages L_1, \ldots, L_n?

- trivially *decidable* with union, concatenation, Kleene iteration and regular constants:
 treat variables as letters and compare regular languages
- decidable also with the shuffle operation (Meyer & Rabinovich 2002)
- open problems for expressions with intersection
Implicit Equations — Undecidability of Solvability

Equations with finite constants, union and concatenation:

Context-free languages X and Y defined by explicit systems.
Add equation $X = Y$ to test for equivalence.

Systems of equations with regular constants and concatenation (MK 2007):

$XXK = LX, A^*X = A^*$
$K, L \subseteq A^*$ regular

(conjugacy via languages containing the empty word)
Implicit Equations — Computational Universality

Components of unique (smallest, largest) solutions =
= recursive (recursively enumerable, co-recursively enumerable) languages.

Universality of simple systems of equations:

Unary alphabet, concatenation, union and finite constants (Jeż & Okhotin 2008):
- Computations of a Turing machine encoded in the unary notation in a very special way and the accepted language extracted using language equations.

Unary alphabet, concatenation and regular constants (Jeż & Okhotin 2009):
- Encoding of languages, which allows using concatenation to compute both concatenation and union
- **Lehtinen & Okhotin 2009:** $XXK = XXL, XM = N$, K, L finite, M, N regular

Two-letter alphabet, concatenation and finite constants (MK 2007):
- $XL = LX$, with L finite

\rightsquigarrow All basic decision problems are undecidable for very simple equations.
Commutation — Example of Computational Universality

Every co-recursively enumerable language can be encoded into the largest solution of a system of any of the following forms, with regular constants K, L, M and N:

\[
\begin{align*}
XK & \subseteq LX, \ X \subseteq M \\
XK & \subseteq LX, \ XM \subseteq NX \\
XL & = LX, \text{ with } L \text{ finite}
\end{align*}
\]

Game corresponding to equation $XL = LX$:

- **position**: $w \in A^*$
- **attacker**: chooses $u \in L$
 - plays either $w \rightarrow wu$ or $w \rightarrow uw$
- **defender**: chooses $v \in L$ so that $wu = v\tilde{w}, uw = \tilde{w}v$, respectively
 - plays $wu \rightarrow \tilde{w}, uw \rightarrow \tilde{w}$, respectively

largest solution $= \text{all winning positions of the defender}$
Commutation — Example of Non-regular Solution

\[A = \{a, b, c, e, \hat{e}, f, \hat{f}, g, \hat{g}\} \]

\[L = \{c, e f, g a, e, f g, \hat{f} \hat{e}, a \hat{g}, \hat{e}, \hat{g} \hat{f}, f g b a \hat{g}\} \cup c M \cup M c \cup \]
\[\cup A^* b A^* b A^* \cup (A \setminus \{c\})^* b (A \setminus \{c\})^* \setminus N \]

\[M = e f g a^+ b a^* \cup g a^* b a^* \hat{g} \hat{f} \cup a^* b a^* \hat{g} \hat{f} \hat{e} \cup f g a^* b a^* \hat{g} \]

\[N = \{e f g, f g, g, \varepsilon\} \cdot a^* b a^* \cdot \{\varepsilon, \hat{g}, \hat{g} \hat{f}, \hat{g} \hat{f} \hat{e}\} \]

encodes simultaneous decrementation of two counters and zero-test

Configuration: \[[[[e]f]g]a^m b a^n [\hat{g} [\hat{f} [\hat{e}]]] \]
Commutation — Simultaneous Decrementation of Both Counters

Attacker forces defender to remove one a on each side:

\[
e f g a^m b a^n \\
\downarrow \\
e f g a^m b a^n \cdot \hat{g} \hat{f} \quad \rightarrow \quad f g a^m b a^n \hat{g} \hat{f} \\
\downarrow \\
g a^m b a^n \hat{g} \hat{f} \\
\downarrow \\
g a a^{m-1} b a^n \hat{g} \hat{f} \cdot \hat{e} \\
\downarrow \\
a^{m-1} b a^n \hat{g} \hat{f} \hat{e} \\
\downarrow \\
\vdots \\
\downarrow \\
e f g a^{m-1} b a^{n-1}
\]
Commutation — Encoding Games

Example:

- ● = attacker should play
- ○ = defender should play
- modification on the left
- modification on the right

Position of the game: a node of the graph and a word
Labels of attacker’s nodes: allowed words
Labels of edges: words to be added by attacker or removed by defender
 - when attacker modifies on one side, defender has to modify on the other
 - bipartite graph for each type of edges
 - at most one common node for any two connected components of different types
 - only one type of edges leading from each of attacker’s nodes
 - non-empty labels of edges only around one attacker’s node for each type of edges
Implicit Equations — Rational Infinite Systems of Equations

rational system = defined by a finite transducer

Every rational system of word equations is algorithmically equivalent to its finite subsystem

Do given finite languages form a solution of the system \(\{ X^n Z = Y^n Z \mid n \in \mathbb{N} \} \)?

undecidable (Lisovik 1997, Karhumäki & Lisovik 2003, MK 2007)
Implicit Equations — Tractable Cases

\[\subseteq \subseteq XLY \ldots \]

We need to classify words according to their decompositions with respect to constant languages on the right.
Well-quasiorders (wqo) — Powerful Tool for Proving Regularity

Quasiorder \leq on A^* is a wqo, if it contains neither infinite descending chains nor infinite antichains.

Equivalent definitions:
• Every upward closed language over A is finitely generated.
• There is no infinite ascending sequence of upward closed languages.

Example: “scattered subword” ordering

Ehrenfeucht & Haussler & Rozenberg 1983:
$L \subseteq A^*$ is regular \iff L is upward closed with respect to a monotone wqo on A^*.

Generalizes recognition by finite monoids:
• Congruence of finite index is a monotone wqo.
• upward closed = recognized by the congruence

Applying wqos to language inequalities:
Construct a wqo on A^* such that every solution is contained in an upward closed solution.
Quasiorder Classifying Words According to Their Decompositions

\(\sigma : A^* \to M \) ... homomorphism recognizing constant languages on the right

Definition (Bucher & Ehrenfeucht & Haussler 1985):

\(w \leq_{\sigma} v \iff w = a_1 \cdots a_m, \ a_j \in A, \ v = v_1 \cdots v_m, \ v_j \in A^+, \)

\(\sigma(a_1) = \sigma(v_1), \ldots, \sigma(a_m) = \sigma(v_m) \)

\(\leq_{\sigma} \) is the derivation relation of the rewriting system

\[\{ a \to v \mid a \in A, \ v \in A^*, \ \sigma(a) = \sigma(v) \} \]

Example: \(\sigma : \{a, b\}^* \to (\{0, 1\}, +) \) (two-element group) \(\sigma(a) = 1, \sigma(b) = 0 \)
Implicit Inequalities with Restrictions on Constants

Theorem: (MK 2005)

\[\sigma : A^* \to M \] homomorphism

\[\varphi_i(X_1, \ldots, X_n) \subseteq \psi_i(X_1, \ldots, X_n) \] (infinite) system of inequalities

- all operations monotone
- in \(\varphi_i \) all \(K \)-ary operations \(f : (\varphi(A^*))^K \to \varphi(A^*) \) satisfy:
 \[f((\langle L_k \rangle_{\leq \sigma})_{k \in K}) \subseteq \langle f((L_k)_{k \in K}) \rangle_{\leq \sigma} \] for all \(L_k \subseteq A^* \)
 \((\langle L \rangle_{\leq \sigma} \) upward closure)
- in \(\psi_i \) all \(K \)-ary operations \(f : (\varphi(A^*))^K \to \varphi(A^*) \) satisfy:
 \[f((\langle L_k \rangle_{\leq \sigma})_{k \in K}) \supseteq \langle f((L_k)_{k \in K}) \rangle_{\leq \sigma} \] for all \(L_k \subseteq A^* \)

Then all maximal solutions are recognized by \(\leq_{\sigma} \).

Examples of admissible operations:

- anywhere: concatenation, Kleene iteration, shuffle, (infinitary) union,
 constants recognized by \(\sigma \), constants \(A^{\geq n} \) and \(\{ \varepsilon \} \).
- on the right: (infinitary) intersection.
- on the left: arbitrary constants.
Implicit Inequalities — Regularity of Maximal Solutions

(MK 2005)

minimal deterministic automata of constant languages do not contain the pattern

\[
\begin{array}{ccc}
\bullet & \xrightarrow{a} & \bullet \\
\bullet & \xrightarrow{b} & \bullet \\
\bullet & \xrightarrow{a} & \bullet \\
\bullet & \xrightarrow{b} & \bullet
\end{array}
\]

\[
\Rightarrow \leq_{\sigma} \text{ is a wqo} \Rightarrow \text{all maximal solutions are regular}
\]

Example: \(L \) admissible constant language \(\Rightarrow \) every union of powers of \(L \) is regular.

(largest solution of the inequality \(X \subseteq \bigcup_{n \in N} L^n \), for \(N \subseteq \mathbb{N} \))

Corollary:

The class of polynomials of group languages is closed under taking maximal solutions of all such systems.
Semi-commutation Inequalities

\[XK \subseteq LX \quad K \text{ arbitrary, } L \text{ regular} \]

largest solution:
- always regular \((MK 2005)\)
- for context-free \(K\): algorithmically recursive
- if \(K\) and \(L\) finite and all words in \(K\) longer than all in \(L\): algorithmically regular \((Ly 2007)\)

Game: position: \(w \in A^*\)

attacker: chooses \(u \in K\)
- plays \(w \rightarrow wu\)

defender: chooses \(v \in L\) so that \(wu = v\tilde{w}\)
- plays \(wu \rightarrow \tilde{w}\)

largest solution = all winning positions of the defender
Semi-commutation — Encoding Defender’s Strategies

\[w \in A^* \ldots \text{initial word of the game} \]

Labelled tree:
- defender moves along the edges = removes prefixes of \(w \)
- label = \(\sigma \)-image of the current remainder of \(w \), where \(\sigma : A^* \rightarrow M \) recognizes \(L \)

Example: \(w = abcd, L = \{a, ab, abcde, bc, c, cd, da\} \)

\[\sigma(abcd) \leftarrow \ldots (ab) \rightarrow \sigma(cd) \]

\[\sigma(bcd) \leftarrow \ldots (a) \]

\[\sigma(d) \leftarrow \ldots (a, bc) \]

\[\sigma(d) \leftarrow \ldots (ab, c) \]

\[(ab, cd) \rightarrow 1 \]
Semi-commutation — Well-quasiordering Labelled Trees

\(w \leq v \ldots \) winning strategies of the defender for \(w \) can be used also for \(v \)

Example:

\[
\begin{array}{c}
s \\
\downarrow \\
t \\
\downarrow \\
p \\
\end{array} \quad \begin{array}{c}
t \\
\downarrow \\
q \\
\downarrow \\
p \\
\end{array} \quad \begin{array}{c}
t \\
\downarrow \\
s \\
\end{array}
\]

Largest solution is upward closed with respect to \(\leq \).

Kruskal 1960: \(\leq \) is wqo.
Implicit Equations — Tractable Cases for “Simple” Equations

Positive results for commutation equations $XL = LX$:

- three-element languages, regular codes (Karhumäki & Latteux & Petre 2005)
- binary languages closed under factors (Frid 2009)

Open questions for commutation:

- Conjecture: (Ratoandromanana 1989)
 Among codes, equation $XY = YX$ has only solutions of the form $X = L^m$, $Y = L^n$.
 Equivalently: Every code has a primitive root.

Decidability results for conjugacy equations $XK = LX$:

- conjugacy of finite bifix codes via any non-empty language
 (Cassaigne & Karhumäki & Salmela 2007)

Open decision problems for conjugacy:

- existence of a non-empty solution
- solvability with finite constants
- existence of a regular or finite solution
Open Questions

Explicit systems:
- methods for proving non-representability of languages by context-free, conjunctive and Boolean grammars
- closure of conjunctive languages under complementation

General solvability questions:
- equations with concatenation and finite constants
- equations with concatenation (and union) over finite or regular languages

Simple implicit systems:
- regularity of solutions of other simple systems, for example:
 \[K X L \subseteq M X \]
 \[K X \subseteq L X, \ X M \subseteq X N \]
- existence of algorithms for finding solutions, which are already known to be regular

Other operations:
- existence of non-trivial shuffle decompositions \(X \uplus Y = L \) of a regular language \(L \)
- existence of non-trivial unambiguous decompositions of regular languages