
What Do We Know About Language Equations?

Michal Kunc

Masaryk University Brno

What are we going to deal with?

• equations over algebras of formal languages

• concatenation operation, and possibly Boolean operations or Kleene star

• very different from formal power series (unambiguous operations)

• long ago: explicit systems of polynomial equations – context-free languages

• today: renewed interest, surprising recent results

What are we interested in?

• expressive power, properties of solutions

• decidability of existence and uniqueness of solutions

• algorithms for finding (minimal and maximal) solutions

What do we need?

finite alphabet A = {a, b, . . . }

A∗ . . . the monoid of finite words over A with the operation of concatenation

℘(A∗) . . . the set of all languages over A

concatenation of languages K · L = {uv | u ∈ K, v ∈ L }

finite set of variables V = {X1, . . . , Xn}

We know . . .

. . . that they are natural and useful.

Description of regular languages:

Example:

q1

b

q2

a

a

X1 = {ε} ∪X2 · a X2 = X1 · b ∪X2 · a

In general:

Xi = Ki ∪
n
⋃

j=1

Xj · Lj,i i = 1, . . . , n

regular languages = components of smallest (largest, unique) solutions of explicit systems

of left-linear equations with finite constants Ki and Lj,i

Matrix notation: union instead of summation

row vectors X = (Xi) and S = (Ki), matrix R = (Lj,i)

X = S + XR

Solving Explicit Systems of Left-Linear Equations

Theorem:

Components of the smallest solution of the system X = S + XR belong to the rational

closure of entries of R and S. (one direction of Kleene theorem)

The system as an automaton:

• language Rj,i labels the transition from state j to state i

• a word from Si is read when entering the automaton at state i

Proof:

The smallest solution of X = S + XR is SR∗, where R∗ = E + R + R2 + · · · .

Inductive formula for computing R∗ as a block matrix:





A B

C D





∗

=





(A + BD∗C)∗ A∗B(D + CA∗B)∗

D∗C(A + BD∗C)∗ (D + CA∗B)∗





Description of Context-Free Languages

Example: Dyck language

S → ε | TS X1 = {ε} ∪X2 ·X1

T → aSb X2 = a ·X1 · b

In general:

Xi = Pi i = 1, . . . , n

Ginsburg & Rice 1962:

context-free languages = components of smallest (largest, unique) solutions of explicit systems

of polynomial equations with finite Pi ⊆ (A ∪ V)∗

elegant matrix notation for certain normal forms

Rosenkrantz 1967: construction of quadratic Greibach normal form

(right-hand sides of rules belong to AV2 ∪AV ∪A)

Generalizations of Context-Free Languages

Conjunctive languages (Okhotin 2001):

• analogy of alternating finite automata and Turing machines for context-free grammars

• additionally intersection allowed in equations

• we can specify that a word satisfies certain syntactic conditions simultaneously

• unary languages can be non-regular: regular in positional notation (Jeż 2007), e.g. a2
n

Linear conjunctive languages:

Okhotin 2004:

exactly languages accepted by one-way real-time cellular automata:

←− input word

←− output value

Examples:

{wcw | w ∈ {a, b}∗ }, { anbncn | n ∈ N }, all computations of a Turing machine

All Boolean Operations

Okhotin 2003:

components of unique (smallest, largest) solutions =

= recursive (recursively enumerable, co-recursively enumerable) languages

Boolean grammars (Okhotin 2004):

• restriction to systems with naturally reachable solution (undecidable property)

• generalization of conjunctive languages (in particular, context-free)

• parsing using standard techniques

• ⊆ DTIME(n3) ∩DSPACE(n)

• used for formal specification of a simple programming language

• other approaches to defining semantics

Okhotin 2007:

equations with concatenation and any clone of Boolean operations

(concatenation and symmetric difference: universal)

Arithmetical hierarchy:

• components of largest and smallest solutions with respect to lexicographical ordering

• characterized by the number of variables in equations (Okhotin 2005)

. . . that words are not enough.

Equations over words:

• constants are letters, for variables only words are substituted

• for instance, solutions of equation xba = abx are exactly x = a(ba)n, where n ∈ N0

• term unification modulo associativity

• PSPACE algorithm deciding satisfiability, EXPTIME algorithm finding all solutions

(Makanin 1977, Plandowski 2006)

• Conjecture: Satisfiability problem is NP-complete.

• satisfiability-equivalent to language equations with only letters as constants and concatenation:

shortlex-minimal words of an arbitrary language solution form a word solution

Satisfiability of language equations by arbitrary languages is undecidable for

• equations with finite constants, union and concatenation

• systems of equations with regular constants and concatenation (MK 2007)

Conjugacy of Languages

KM = ML . . . languages K and L are conjugated via a language M

Words u and v are conjugated ⇐⇒ v can be obtained from u by cyclic shift.

MK 2007:

Conjugacy of regular languages via any language containing ε is undecidable.

Corollary:

Satisfiability of systems KX = XL, A∗X = A∗ is undecidable for regular languages K , L.

Cassaigne & Karhumäki & Salmela 2007:

Conjugacy of finite bifix codes via any non-empty language is decidable.

Open questions:

• removal of the requirement on ε

• conjugacy of finite languages (satisfiability of equations with finite constants)

• conjugacy via regular or finite languages (satisfiability by regular or finite languages)

Identity problem for regular expressions:

f , g regular expressions with variables X1, . . . , Xn (union, concatenation, Kleene star, letters)

Does f(L1, . . . , Ln) = g(L1, . . . , Ln) hold for arbitrary (regular) languages L1, . . . , Ln?

• trivially decidable (treat variables as letters and compare regular languages)

• decidable also with the shuffle operation (Meyer & Rabinovich 2002)

• open problems for expressions with intersection

Rational systems:

Satisfiability of rational systems of word equations is decidable (thanks to compactness).

(Culik II & Karhumäki 1983, Albert & Lawrence 1985, Guba 1986)

Do given finite languages form a solution of the system {XnZ = Y nZ | n ∈ N }?

undecidable (Lisovik 1997, Karhumäki & Lisovik 2003, MK 2007)

. . . that they can be often encountered as inequalities.

Minimal automaton of a language L:

state = largest solution of the inequality w ·Xw ⊆ L, where w ∈ A∗

Xw
a
→ Xwa

initial state Xε

final states Xw, where w ∈ L

Universal automaton of a language L

= smallest non-deterministic automaton admitting morphism from every automaton accepting L

state = maximal solution of the inequality X · Y ⊆ L

(X, Y)
a
→ (X ′, Y ′) ⇐⇒ aY ′ ⊆ Y ⇐⇒ Xa ⊆ X ′

(X, Y) initial state ⇐⇒ ε ∈ X

(X, Y) final state ⇐⇒ ε ∈ Y

. . . that they can be studied in general.

Example: Minimal solutions of X ∪ Y = L are precisely disjoint decompositions of L.

In the presence of union and concatenation, interesting properties are demonstrated

by maximal solutions.

Systems of Inequalities with Constant Right-Hand Sides

Pi ⊆ Li Li ⊆ A∗ regular, Pi ⊆ (A ∪ V)∗ arbitrary

maximal solutions (Conway 1971):

• finitely many, all of them regular

• for context-free expressions Pi: algorithmically regular

• every solution is contained in a maximal one

• all components are recognized by the syntactic congruence∼ of the languages Li

u ∼ v =⇒ (∀x, y : xuy ∈ Li ⇐⇒ xvy ∈ Li)

Analogy: preservation of regularity by arbitrary inverse substitutions:

Largest solution of the inequality ϕ(X) ⊆ A∗ \ L is X = A∗ \ (ϕ−1(L)).

Systems of equations with constant right-hand sides:
Pi = Li Li ⊆ A∗ regular, Pi ⊆ (A ∪ V)∗ regular expression

• satisfiability by arbitrary (finite) languages is EXPSPACE-complete (Bala 2006)

• Is satisfiability decidable if Pi can contain intersection?

General Left-Linear Inequalities

K0 ∪X1K1 ∪ · · · ∪XnKn ⊆ L0 ∪X1L1 ∪ · · · ∪XnLn

Kj , Lj regular =⇒ basic properties of the inequality can be expressed using

formulae of monadic second-order theory of infinite |A|-ary tree

Example: b ∪Xa ⊆ X ∪Xba

X is a solution ⇐⇒ X(b) ∧
(

∀x : X(x) =⇒ (X(xa) ∨ ∃y : X(y) ∧ x = yb)
)

X minimal ⇐⇒ ∀Y : (Y is a solution ∧ ∀x : Y (x) =⇒ X(x)) =⇒

=⇒ (∀x : X(x) =⇒ Y (x))

minimal solutions: • = “X holds” ◦ = “X does not hold”

a∗ ∪ b : •
a b

•
a b

•
a b

• ◦ ◦ ◦

ba∗ : ◦
a b

◦
a b

•
a b

◦ ◦ • ◦

Rabin 1969 =⇒ algorithmically solvable using tree automata

very special case of set constraints (letters as unary functions)

EXPTIME-complete (even when complementation is allowed) (1994–2006)

Yet More General Left-Linear Inequalities

K0 ∪X1K1 ∪ · · · ∪XnKn ⊆ L0 ∪X1L1 ∪ · · · ∪XnLn

Kj arbitrary, Lj regular

MK 2005:

largest solution:

• regular

• for context-free Kj : algorithmically regular

• direct construction of the automaton accepting the solution

Concatenations on the Right

Previous cases:

. . . ⊆ L constants on the right fix the context

XK ∪ . . . ⊆ XL ∪ . . . local modifications on one side

Next task:

. . . ⊆ XLY general concatenations on the right

We need to classify words according to their decompositions with respect to constant languages.

Well-quasiorder (wqo)

Quasiorder≤ on A∗ is a wqo, if it contains neither
r

r

r

p
p
p

nor r r r p p p

Equivalent definitions:

• Every upward closed language over A is finitely generated.

• There is no infinite ascending sequence of upward closed languages.

Monotone: u ≤ v & ũ ≤ ṽ =⇒ uũ ≤ vṽ

Example: “scattered subword” relation

Ehrenfeucht & Haussler & Rozenberg 1983:

L ⊆ A∗ is regular ⇐⇒ L is upward closed with respect to a monotone wqo on A∗.

Special case:

Congruence of finite index is a monotone well-quasiorder.

upward closed = recognized by the congruence

Applying well-quasiorders to inequalities:

Construct a wqo on A∗ such that every solution is contained in an upward closed solution.

A Quasiorder for Dealing with Concatenations on the Right

∼ . . . syntactic congruence of constant languages on the right side of inequalities

w ≤ v ⇐⇒ w = a1 · · ·am, aj ∈ A,

v = v1 · · · vm, vj ∈ A+,

aj ∼ vj , j = 1, . . . , m

Example: {a, b}+/ ∼ ∼= Z2 1 = [a]∼, 0 = [b]∼

.

.

.
.
.
.

ab2 a3 bab b2a aba a2b ba2 b3

ab ba a2 b2

a b

Restrictions on Constants

Systems of inequalities Pi ⊆ Qi

Pi ⊆ (A ∪ V)∗ arbitrary

Qi . . . regular expressions over variables and languages, whose minimal automaton

does not contain

•
a
• b

•

•
a
• b

MK 2005: all maximal solutions are regular

Corollary:

The class of polynomials of group languages is closed under taking maximal solutions

of such systems.

. . . that they are nice to play with.

XK ⊆ LX K arbitrary, L regular

largest solution: • always regular

• for context-free K : algorithmically recursive (MK 2005)

• if K and L finite and all words in K longer than all in L: algorithmically regular (Ly 2007)

Game: position: w ∈ A∗

attacker: u ∈ K , w −→ wu

defender: v ∈ L, wu = vw̃, wu−→ w̃

largest solution = all winning positions of the defender

Example: w = abcd, L = {a, ab, abcde, bc, c, cd, da},∼ = syntactic congruence of L

[abcd]∼ ()

[bcd]∼ (a) (ab) [cd]∼

[d]∼ (a, bc) [d]∼ (ab, c) (ab, cd) 1

Well-quasiordering Trees

w ≤ v . . . winning strategies of the defender for w can be used also for v

Example:

s s

t t < t

p q p q

Largest solution is upward closed with respect to≤.

Kruskal 1960: ≤ is wqo.

. . . that they can be surprisingly powerful.

MK 2005:

Every co-recursively enumerable language can be described as the largest solution of any of the

following systems with regular constants K , L, M and N .

XK ⊆ LX XK ⊆ LX XK ⊆ LX

X ⊆M XM ⊆ NX MX ⊆ XN

Special case: XL = LX

• formulated by Conway 1971

• positive results:

at most ternary languages, regular codes (Karhumäki & Latteux & Petre 2005)

MK 2007:

There exists a finite language L such that the largest solution C(L) of XL = LX is not

recursively enumerable.

Example: L regular, but C(L) non-regular

A = {a, b, c, e, ê, f, f̂ , g, ĝ}

L = {c, ef, ga, e, fg, f̂ ê, aĝ, ê, ĝf̂ , fgbaĝ} ∪ cM ∪Mc ∪

∪A∗bA∗bA∗ ∪ (A \ {c})∗b(A \ {c})∗ \N

M = efga+ba∗ ∪ ga∗ba∗ĝf̂ ∪ a∗ba∗ĝf̂ ê ∪ fga∗ba∗ĝ

N = {efg, fg, g, ε} · a∗ba∗ · {ε, ĝ, ĝf̂ , ĝf̂ ê}

encodes simultaneous decrementation of two counters and zero-test

Configuration: [[[e]f]g]amban[ĝ[f̂ [ê]]]

Simultaneous Decrementation of Both Counters

Attacker forces defender to remove one a on each side:

efgamban

efgamban

· ĝf̂ fgambanĝf̂

gambanĝf̂ fgambanĝf̂ · c · c /∈ L2
· A∗

gaam−1banĝf̂ · ê

am−1banĝf̂ ê

...

efgam−1ban−1

Games That Can Be Encoded (Jeandel & Ollinger)

Example:

ab

a

a2A∗

A∗baA∗

A∗bA∗

b
b2

• = attacker should play modification on the left

◦ = defender should play modification on the right

position of the game: a vertex of the graph and a word

labels of attacker’s vertices: allowed words

labels of edges: words to be added by attacker or removed by defender

• when attacker modifies on one side, defender has to modify on the other

• bipartite graph for each type of edges

• at most one common vertex for any two connected components of different types

• only one type of edges leading from each of attacker’s vertices

• non-empty labels of edges only around one attacker’s vertex for each type of edges

. . . that we do not understand their languages.

• satisfiability of equations with concatenation (and union) over finite or regular languages

• satisfiability of equations with concatenation and finite constants

• Conjecture (Ratoandromanana 1989):

Among codes, equation XY = Y X has only solutions of the form X = Lm, Y = Ln.

Equivalently: Every code has a primitive root.

• regularity of solutions of other simple systems of inequalities, for example:

KXL ⊆MX

KX ⊆ LX, XM ⊆ XN

• existence of algorithms for finding regular solutions

• methods for proving properties of conjunctive and Boolean grammars

• existence of non-trivial shuffle decomposition X Y = L of a regular language L

• existence of non-trivial unambiguous decompositions of regular languages

• unary languages

X = TY = Z1Z2

X2
= Z1ank youThZ2

