What Do We Know About Language Equations?

Michal Kunc Masaryk University Brno

What are we going to deal with?

- equations over algebras of formal languages
- concatenation operation, and possibly Boolean operations or Kleene star
- very different from formal power series (unambiguous operations)
- long ago: explicit systems of polynomial equations context-free languages
- today: renewed interest, surprising recent results

What are we interested in?

- expressive power, properties of solutions
- decidability of existence and uniqueness of solutions
- algorithms for finding (minimal and maximal) solutions

What do we need?

finite alphabet $A = \{a, b, \dots\}$

 $A^* \dots$ the monoid of finite words over A with the operation of concatenation $\wp(A^*) \dots$ the set of all languages over A concatenation of languages $K \cdot L = \{ uv \mid u \in K, v \in L \}$ finite set of variables $\mathcal{V} = \{X_1, \dots, X_n\}$

We know . . .

... that they are natural and useful.

Description of regular languages:

Example:

 $X_1 = \{\varepsilon\} \cup X_2 \cdot a \qquad X_2 = X_1 \cdot b \cup X_2 \cdot a$

In general:

$$X_i = K_i \cup \bigcup_{j=1}^n X_j \cdot L_{j,i} \qquad i = 1, \dots, n$$

regular languages = components of smallest (largest, unique) solutions of explicit systems of left-linear equations with finite constants K_i and $L_{j,i}$

Matrix notation: union instead of summation row vectors $X = (X_i)$ and $S = (K_i)$, matrix $R = (L_{j,i})$ X = S + XR

Solving Explicit Systems of Left-Linear Equations

Theorem:

Components of the smallest solution of the system X = S + XR belong to the rational closure of entries of R and S. (one direction of Kleene theorem)

The system as an automaton:

- language $R_{j,i}$ labels the transition from state j to state i
- a word from S_i is read when entering the automaton at state i

Proof:

The smallest solution of X = S + XR is SR^* , where $R^* = E + R + R^2 + \cdots$. Inductive formula for computing R^* as a block matrix:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^* = \begin{pmatrix} (A+BD^*C)^* & A^*B(D+CA^*B)^* \\ D^*C(A+BD^*C)^* & (D+CA^*B)^* \end{pmatrix}$$

Description of Context-Free Languages

Example: Dyck language

$$S \to \varepsilon \mid TS \qquad \qquad X_1 = \{\varepsilon\} \cup X_2 \cdot X_1$$
$$T \to aSb \qquad \qquad X_2 = a \cdot X_1 \cdot b$$

In general:

$$X_i = P_i \qquad i = 1, \dots, n$$

Ginsburg & Rice 1962:

context-free languages = components of smallest (largest, unique) solutions of explicit systems of polynomial equations with finite $P_i \subseteq (A \cup V)^*$

elegant matrix notation for certain normal forms

Rosenkrantz 1967: construction of quadratic Greibach normal form (right-hand sides of rules belong to $AV^2 \cup AV \cup A$)

Generalizations of Context-Free Languages

Conjunctive languages (Okhotin 2001):

- analogy of alternating finite automata and Turing machines for context-free grammars
- additionally intersection allowed in equations
- we can specify that a word satisfies certain syntactic conditions simultaneously
- unary languages can be non-regular: regular in positional notation (Jeż 2007), e.g. a^{2^n}

Linear conjunctive languages:

Okhotin 2004:

exactly languages accepted by one-way real-time cellular automata:

Examples:

 $\{ wcw \mid w \in \{a,b\}^* \}$, $\{ a^n b^n c^n \mid n \in \mathbb{N} \}$, all computations of a Turing machine

All Boolean Operations

Okhotin 2003:

components of unique (smallest, largest) solutions =

= recursive (recursively enumerable, co-recursively enumerable) languages

Boolean grammars (Okhotin 2004):

- restriction to systems with naturally reachable solution (undecidable property)
- generalization of conjunctive languages (in particular, context-free)
- parsing using standard techniques
- \subseteq DTIME $(n^3) \cap$ DSPACE(n)
- used for formal specification of a simple programming language
- other approaches to defining semantics

Okhotin 2007:

equations with concatenation and any clone of Boolean operations (concatenation and symmetric difference: universal)

Arithmetical hierarchy:

- components of largest and smallest solutions with respect to lexicographical ordering
- characterized by the number of variables in equations (Okhotin 2005)

... that words are not enough.

Equations over words:

- constants are letters, for variables only words are substituted
- for instance, solutions of equation xba = abx are exactly $x = a(ba)^n$, where $n \in \mathbb{N}_0$
- term unification modulo associativity
- PSPACE algorithm deciding satisfiability, EXPTIME algorithm finding all solutions (Makanin 1977, Plandowski 2006)
- \bullet Conjecture: Satisfiability problem is $NP\mbox{-}complete.$
- satisfiability-equivalent to language equations with only letters as constants and concatenation: shortlex-minimal words of an arbitrary language solution form a word solution

Satisfiability of language equations by arbitrary languages is undecidable for

- equations with finite constants, union and concatenation
- systems of equations with regular constants and concatenation (MK 2007)

Conjugacy of Languages

 $KM = ML \dots$ languages K and L are conjugated via a language M

Words u and v are conjugated $\iff v$ can be obtained from u by cyclic shift.

MK 2007:

Conjugacy of regular languages via any language containing ε is undecidable.

Corollary:

Satisfiability of systems $KX = XL, A^*X = A^*$ is undecidable for regular languages K, L.

Cassaigne & Karhumäki & Salmela 2007:

Conjugacy of finite bifix codes via any non-empty language is decidable.

Open questions:

- ullet removal of the requirement on arepsilon
- conjugacy of finite languages (satisfiability of equations with finite constants)
- conjugacy via regular or finite languages (satisfiability by regular or finite languages)

Identity problem for regular expressions:

f, g regular expressions with variables X_1, \ldots, X_n (union, concatenation, Kleene star, letters)

Does $f(L_1, \ldots, L_n) = g(L_1, \ldots, L_n)$ hold for arbitrary (regular) languages L_1, \ldots, L_n ?

- trivially decidable (treat variables as letters and compare regular languages)
- decidable also with the shuffle operation (Meyer & Rabinovich 2002)
- open problems for expressions with intersection

Rational systems:

Satisfiability of rational systems of word equations is decidable (thanks to compactness). (Culik II & Karhumäki 1983, Albert & Lawrence 1985, Guba 1986)

Do given finite languages form a solution of the system $\{X^n Z = Y^n Z \mid n \in \mathbb{N}\}$? undecidable (Lisovik 1997, Karhumäki & Lisovik 2003, MK 2007)

... that they can be often encountered as inequalities.

Minimal automaton of a language L:

```
state = largest solution of the inequality w \cdot X_w \subseteq L, where w \in A^*
X_w \xrightarrow{a} X_{wa}
initial state X_{\varepsilon}
final states X_w, where w \in L
```

Universal automaton of a language L

r = smallest non-deterministic automaton admitting morphism from every automaton accepting L

state = maximal solution of the inequality $X \cdot Y \subseteq L$ $(X, Y) \xrightarrow{a} (X', Y') \iff aY' \subseteq Y \iff Xa \subseteq X'$ (X, Y) initial state $\iff \varepsilon \in X$ (X, Y) final state $\iff \varepsilon \in Y$

... that they can be studied in general.

Example: Minimal solutions of $X \cup Y = L$ are precisely disjoint decompositions of L.

In the presence of union and concatenation, interesting properties are demonstrated by maximal solutions.

Systems of Inequalities with Constant Right-Hand Sides

$$P_i \subseteq L_i$$
 $L_i \subseteq A^*$ regular, $P_i \subseteq (A \cup \mathcal{V})^*$ arbitrary

maximal solutions (Conway 1971):

- finitely many, all of them regular
- for context-free expressions P_i : algorithmically regular
- every solution is contained in a maximal one
- ullet all components are recognized by the syntactic congruence \sim of the languages L_i

$$u \sim v \implies (\forall x, y \colon xuy \in L_i \iff xvy \in L_i)$$

Analogy: preservation of regularity by arbitrary inverse substitutions:

Largest solution of the inequality $\varphi(X) \subseteq A^* \setminus L$ is $X = A^* \setminus (\varphi^{-1}(L))$.

Systems of equations with constant right-hand sides:

 $P_i = L_i$ $L_i \subseteq A^*$ regular, $P_i \subseteq (A \cup V)^*$ regular expression

- satisfiability by arbitrary (finite) languages is EXPSPACE-complete (Bala 2006)
- Is satisfiability decidable if P_i can contain intersection?

General Left-Linear Inequalities

$K_0 \cup X_1 K_1 \cup \cdots \cup X_n K_n \subseteq L_0 \cup X_1 L_1 \cup \cdots \cup X_n L_n$

 K_j , L_j regular \implies basic properties of the inequality can be expressed using formulae of monadic second-order theory of infinite |A|-ary tree

Example: $b \cup Xa \subseteq X \cup Xba$

$$\begin{aligned} X \text{ is a solution } &\iff X(b) \land \left(\forall x \colon X(x) \implies (X(xa) \lor \exists y \colon X(y) \land x = yb) \right) \\ X \text{ minimal } &\iff \forall Y \colon (Y \text{ is a solution} \land \forall x \colon Y(x) \implies X(x)) \implies \\ &\implies (\forall x \colon X(x) \implies Y(x)) \end{aligned}$$

minimal solutions: $\bullet = "X$ holds" $\circ = "X$ does not hold"

Rabin 1969 \implies algorithmically solvable using tree automata

very special case of set constraints (letters as unary functions)

EXPTIME-complete (even when complementation is allowed) (1994–2006)

Yet More General Left-Linear Inequalities

$K_0 \cup X_1 K_1 \cup \dots \cup X_n K_n \subseteq L_0 \cup X_1 L_1 \cup \dots \cup X_n L_n$

 K_j arbitrary, L_j regular

MK 2005:

largest solution:

- regular
- for context-free K_j : algorithmically regular
- direct construction of the automaton accepting the solution

Concatenations on the Right

Previous cases:

$\ldots \subseteq L$	constants on the right fix the context
$\mathbf{T}\mathbf{Z}$ $\mathbf{T}\mathbf{Z}$	

 $XK \cup \ldots \subseteq XL \cup \ldots$ local modifications on one side

Next task:

 $\ldots \subseteq XLY$ general concatenations on the right

We need to classify words according to their decompositions with respect to constant languages.

Well-quasiorder (wqo)

Quasiorder \leq on A^* is a wqo, if it contains neither in the formula is a second s

Equivalent definitions:

- Every upward closed language over A is finitely generated.
- There is no infinite ascending sequence of upward closed languages.

Monotone: $u \leq v \& \tilde{u} \leq \tilde{v} \implies u\tilde{u} \leq v\tilde{v}$

Example: "scattered subword" relation

Ehrenfeucht & Haussler & Rozenberg 1983:

 $L \subseteq A^*$ is regular $\iff L$ is upward closed with respect to a monotone wqo on A^* .

Special case:

Congruence of finite index is a monotone well-quasiorder.

upward closed = recognized by the congruence

Applying well-quasiorders to inequalities:

Construct a wqo on A^* such that every solution is contained in an upward closed solution.

A Quasiorder for Dealing with Concatenations on the Right

 $\sim\ldots$ syntactic congruence of constant languages on the right side of inequalities

$$w \le v \iff w = a_1 \cdots a_m, a_j \in A,$$

 $v = v_1 \cdots v_m, v_j \in A^+,$
 $a_j \sim v_j, j = 1, \dots, m$

Example:
$$\{a, b\}^+ / \sim \cong \mathbb{Z}_2$$
 $1 = [a]_{\sim}, 0 = [b]_{\sim}$

Restrictions on Constants

Systems of inequalities $P_i \subseteq Q_i$

 $P_i \subseteq (A \cup \mathcal{V})^*$ arbitrary

 $Q_i \dots$ regular expressions over variables and languages, whose minimal automaton does not contain

MK 2005: all maximal solutions are regular

Corollary:

The class of polynomials of group languages is closed under taking maximal solutions of such systems.

... that they are nice to play with.

 $XK \subseteq LX$ K arbitrary, L regular

largest solution: • always regular

- for context-free K: algorithmically recursive (MK 2005)
- if K and L finite and all words in K longer than all in L: algorithmically regular (Ly 2007)

Game: position: $w \in A^*$ attacker: $u \in K, w \longrightarrow wu$ defender: $v \in L, wu = v\tilde{w}, wu \longrightarrow \tilde{w}$

largest solution = all winning positions of the defender

Example: $w = abcd, L = \{a, ab, abcde, bc, c, cd, da\}, \sim =$ syntactic congruence of L $[abcd]_{\sim} < \cdots ()$ $[bcd]_{\sim} < \cdots (a)$ $[d]_{\sim} < \cdots (a, bc)$ $[d]_{\sim} < \cdots (ab, c)$ $(ab, cd) \cdots > 1$

Well-quasiordering Trees

 $w \leq v \dots$ winning strategies of the defender for w can be used also for v

Largest solution is upward closed with respect to \leq .

Kruskal 1960: \leq is wqo.

... that they can be surprisingly powerful.

MK 2005:

Every co-recursively enumerable language can be described as the largest solution of any of the following systems with regular constants K, L, M and N.

$XK \subseteq LX$	$XK \subseteq LX$	$XK \subseteq LX$
$X \subseteq M$	$XM \subseteq NX$	$MX \subseteq XN$

Special case: XL = LX

- formulated by Conway 1971
- positive results:

at most ternary languages, regular codes (Karhumäki & Latteux & Petre 2005)

MK 2007:

There exists a finite language L such that the largest solution C(L) of XL = LX is not recursively enumerable.

Example: L regular, but $\mathcal{C}(L)$ non-regular

 $A = \{a, b, c, e, \hat{e}, f, \hat{f}, g, \hat{g}\}$

$$\begin{split} L &= \{c, ef, ga, e, fg, \hat{f}\hat{e}, a\hat{g}, \hat{e}, \hat{g}\hat{f}, fgba\hat{g}\} \cup cM \cup Mc \cup \\ &\cup A^*bA^*bA^* \cup (A \setminus \{c\})^*b(A \setminus \{c\})^* \setminus N \\ M &= efga^+ba^* \cup ga^*ba^*\hat{g}\hat{f} \cup a^*ba^*\hat{g}\hat{f}\hat{e} \cup fga^*ba^*\hat{g} \\ N &= \{efg, fg, g, \varepsilon\} \cdot a^*ba^* \cdot \{\varepsilon, \hat{g}, \hat{g}\hat{f}, \hat{g}\hat{f}\hat{e}\} \end{split}$$

encodes simultaneous decrementation of two counters and zero-test

Configuration: $[[[e]f]g]a^{m}ba^{n}[\hat{g}[\hat{f}[\hat{e}]]]$

Simultaneous Decrementation of Both Counters

Attacker forces defender to remove one a on each side:

Games That Can Be Encoded (Jeandel & Ollinger)

position of the game: a vertex of the graph and a word

labels of attacker's vertices: allowed words

labels of edges: words to be added by attacker or removed by defender

- when attacker modifies on one side, defender has to modify on the other
- bipartite graph for each type of edges
- at most one common vertex for any two connected components of different types
- only one type of edges leading from each of attacker's vertices
- non-empty labels of edges only around one attacker's vertex for each type of edges

... that we do not understand their languages.

- satisfiability of equations with concatenation (and union) over finite or regular languages
- satisfiability of equations with concatenation and finite constants
- Conjecture (Ratoandromanana 1989):

Among codes, equation XY = YX has only solutions of the form $X = L^m$, $Y = L^n$. Equivalently: Every code has a primitive root.

- regularity of solutions of other simple systems of inequalities, for example: $KXL \subseteq MX$ $KX \subseteq LX, XM \subseteq XN$
- existence of algorithms for finding regular solutions
- methods for proving properties of conjunctive and Boolean grammars
- existence of non-trivial shuffle decomposition $X \amalg Y = L$ of a regular language L
- existence of non-trivial unambiguous decompositions of regular languages
- unary languages

$$X = TY = Z_1 Z_2$$
$$X^2 = Z_1 ank you ThZ_2$$