What Do We Know About Language Equations?

Michal Kunc

Masaryk University Brno

What are we going to deal with?

- equations over algebras of formal languages
- concatenation operation, and possibly Boolean operations or Kleene star
- very different from formal power series (unambiguous operations)
- long ago: explicit systems of polynomial equations - context-free languages
- today: renewed interest, surprising recent results

What are we interested in?

- expressive power, properties of solutions
- decidability of existence and uniqueness of solutions
- algorithms for finding (minimal and maximal) solutions

What do we need?

finite alphabet $A=\{a, b, \ldots\}$
A^{*}... the monoid of finite words over A with the operation of concatenation $\wp\left(A^{*}\right) \ldots$ the set of all languages over A
concatenation of languages $K \cdot L=\{u v \mid u \in K, v \in L\}$
finite set of variables $\mathcal{V}=\left\{X_{1}, \ldots, X_{n}\right\}$

We know...

... that they are natural and useful.

Description of regular languages:
Example:

$$
X_{1}=\{\varepsilon\} \cup X_{2} \cdot a \quad X_{2}=X_{1} \cdot b \cup X_{2} \cdot a
$$

In general:

$$
X_{i}=K_{i} \cup \bigcup_{j=1}^{n} X_{j} \cdot L_{j, i} \quad i=1, \ldots, n
$$

regular languages $=$ components of smallest (largest, unique) solutions of explicit systems of left-linear equations with finite constants K_{i} and $L_{j, i}$

Matrix notation: union instead of summation

$$
\begin{aligned}
& \text { row vectors } X=\left(X_{i}\right) \text { and } S=\left(K_{i}\right), \text { matrix } R=\left(L_{j, i}\right) \\
& X=S+X R
\end{aligned}
$$

Solving Explicit Systems of Left-Linear Equations

Theorem:
Components of the smallest solution of the system $X=S+X R$ belong to the rational closure of entries of R and S. (one direction of Kleene theorem)

The system as an automaton:

- language $R_{j, i}$ labels the transition from state j to state i
- a word from S_{i} is read when entering the automaton at state i

Proof:
The smallest solution of $X=S+X R$ is $S R^{*}$, where $R^{*}=E+R+R^{2}+\cdots$. Inductive formula for computing R^{*} as a block matrix:

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{*}=\left(\begin{array}{cc}
\left(A+B D^{*} C\right)^{*} & A^{*} B\left(D+C A^{*} B\right)^{*} \\
D^{*} C\left(A+B D^{*} C\right)^{*} & \left(D+C A^{*} B\right)^{*}
\end{array}\right)
$$

Description of Context-Free Languages

Example: Dyck language

$$
\begin{array}{ll}
S \rightarrow \varepsilon \mid T S & X_{1}=\{\varepsilon\} \cup X_{2} \cdot X_{1} \\
T \rightarrow a S b & X_{2}=a \cdot X_{1} \cdot b
\end{array}
$$

In general:

$$
X_{i}=P_{i} \quad i=1, \ldots, n
$$

Ginsburg \& Rice 1962:

context-free languages $=$ components of smallest (largest, unique) solutions of explicit systems of polynomial equations with finite $P_{i} \subseteq(A \cup \mathcal{V})^{*}$
elegant matrix notation for certain normal forms
Rosenkrantz 1967: construction of quadratic Greibach normal form (right-hand sides of rules belong to $A \mathcal{V}^{2} \cup A \mathcal{V} \cup A$)

Generalizations of Context-Free Languages

Conjunctive languages (Okhotin 2001):

- analogy of alternating finite automata and Turing machines for context-free grammars
- additionally intersection allowed in equations
- we can specify that a word satisfies certain syntactic conditions simultaneously
- unary languages can be non-regular: regular in positional notation (Jeż 2007), e.g. $a^{2^{n}}$

Linear conjunctive languages:

Okhotin 2004:

exactly languages accepted by one-way real-time cellular automata:

\longleftarrow input word
\longleftarrow output value
Examples:
$\left\{w c w \mid w \in\{a, b\}^{*}\right\},\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\}$, all computations of a Turing machine

All Boolean Operations

Okhotin 2003:

components of unique (smallest, largest) solutions =
$=$ recursive (recursively enumerable, co-recursively enumerable) languages

Boolean grammars (Okhotin 2004):

- restriction to systems with naturally reachable solution (undecidable property)
- generalization of conjunctive languages (in particular, context-free)
- parsing using standard techniques
- $\subseteq \operatorname{DTIME}\left(n^{3}\right) \cap \operatorname{DSPACE}(n)$
- used for formal specification of a simple programming language
- other approaches to defining semantics

Okhotin 2007:

equations with concatenation and any clone of Boolean operations (concatenation and symmetric difference: universal)

Arithmetical hierarchy:

- components of largest and smallest solutions with respect to lexicographical ordering
- characterized by the number of variables in equations (Okhotin 2005)

... that words are not enough.

Equations over words:

- constants are letters, for variables only words are substituted
- for instance, solutions of equation $x b a=a b x$ are exactly $x=a(b a)^{n}$, where $n \in \mathbb{N}_{0}$
- term unification modulo associativity
- PSPACE algorithm deciding satisfiability, EXPTIME algorithm finding all solutions (Makanin 1977, Plandowski 2006)
- Conjecture: Satisfiability problem is NP-complete.
- satisfiability-equivalent to language equations with only letters as constants and concatenation: shortlex-minimal words of an arbitrary language solution form a word solution

Satisfiability of language equations by arbitrary languages is undecidable for

- equations with finite constants, union and concatenation
- systems of equations with regular constants and concatenation (MK 2007)

Conjugacy of Languages

$K M=M L \ldots$ languages K and L are conjugated via a language M
Words u and v are conjugated $\Longleftrightarrow v$ can be obtained from u by cyclic shift.

MK 2007:

Conjugacy of regular languages via any language containing ε is undecidable.
Corollary:
Satisfiability of systems $K X=X L, A^{*} X=A^{*}$ is undecidable for regular languages K, L.

Cassaigne \& Karhumäki \& Salmela 2007:

Conjugacy of finite bifix codes via any non-empty language is decidable.
Open questions:

- removal of the requirement on ε
- conjugacy of finite languages (satisfiability of equations with finite constants)
- conjugacy via regular or finite languages (satisfiability by regular or finite languages)

Identity problem for regular expressions:

f, g regular expressions with variables X_{1}, \ldots, X_{n} (union, concatenation, Kleene star, letters)
Does $f\left(L_{1}, \ldots, L_{n}\right)=g\left(L_{1}, \ldots, L_{n}\right)$ hold for arbitrary (regular) languages L_{1}, \ldots, L_{n} ?

- trivially decidable (treat variables as letters and compare regular languages)
- decidable also with the shuffle operation (Meyer \& Rabinovich 2002)
- open problems for expressions with intersection

Rational systems:

Satisfiability of rational systems of word equations is decidable (thanks to compactness).
(Culik II \& Karhumäki 1983, Albert \& Lawrence 1985, Guba 1986)
Do given finite languages form a solution of the system $\left\{X^{n} Z=Y^{n} Z \mid n \in \mathbb{N}\right\}$? undecidable (Lisovik 1997, Karhumäki \& Lisovik 2003, MK 2007)
... that they can be often encountered as inequalities.

Minimal automaton of a language L :
state $=$ largest solution of the inequality $w \cdot X_{w} \subseteq L$, where $w \in A^{*}$
$X_{w} \xrightarrow{a} X_{w a}$
initial state X_{ε}
final states X_{w}, where $w \in L$

Universal automaton of a language L
$=$ smallest non-deterministic automaton admitting morphism from every automaton accepting L
state $=$ maximal solution of the inequality $X \cdot Y \subseteq L$
$(X, Y) \xrightarrow{a}\left(X^{\prime}, Y^{\prime}\right) \Longleftrightarrow a Y^{\prime} \subseteq Y \Longleftrightarrow X a \subseteq X^{\prime}$
(X, Y) initial state $\Longleftrightarrow \varepsilon \in X$
(X, Y) final state $\Longleftrightarrow \varepsilon \in Y$

... that they can be studied in general.

Example: Minimal solutions of $X \cup Y=L$ are precisely disjoint decompositions of L.

In the presence of union and concatenation, interesting properties are demonstrated by maximal solutions.

Systems of Inequalities with Constant Right-Hand Sides

$P_{i} \subseteq L_{i} \quad L_{i} \subseteq A^{*}$ regular, $P_{i} \subseteq(A \cup \mathcal{V})^{*}$ arbitrary maximal solutions (Conway 1971):

- finitely many, all of them regular
- for context-free expressions P_{i} : algorithmically regular
- every solution is contained in a maximal one
- all components are recognized by the syntactic congruence \sim of the languages L_{i} $u \sim v \Longrightarrow\left(\forall x, y: x u y \in L_{i} \Longleftrightarrow x v y \in L_{i}\right)$

Analogy: preservation of regularity by arbitrary inverse substitutions:
Largest solution of the inequality $\varphi(X) \subseteq A^{*} \backslash L$ is $X=A^{*} \backslash\left(\varphi^{-1}(L)\right)$.

Systems of equations with constant right-hand sides:
$P_{i}=L_{i} \quad L_{i} \subseteq A^{*}$ regular, $P_{i} \subseteq(A \cup \mathcal{V})^{*}$ regular expression

- satisfiability by arbitrary (finite) languages is EXPSPACE-complete (Bala 2006)
- Is satisfiability decidable if P_{i} can contain intersection?

General Left-Linear Inequalities

$K_{0} \cup X_{1} K_{1} \cup \cdots \cup X_{n} K_{n} \subseteq L_{0} \cup X_{1} L_{1} \cup \cdots \cup X_{n} L_{n}$
K_{j}, L_{j} regular \Longrightarrow basic properties of the inequality can be expressed using formulae of monadic second-order theory of infinite $|A|$-ary tree

Example: $b \cup X a \subseteq X \cup X b a$
X is a solution $\Longleftrightarrow X(b) \wedge(\forall x: X(x) \Longrightarrow(X(x a) \vee \exists y: X(y) \wedge x=y b))$
X minimal $\Longleftrightarrow \forall Y:(Y$ is a solution $\wedge \forall x: Y(x) \Longrightarrow X(x)) \Longrightarrow$
$\Longrightarrow(\forall x: X(x) \Longrightarrow Y(x))$
minimal solutions: $\bullet=$ " X holds" $\quad \circ=$ " X does not hold" $a^{*} \cup b:$
 $b a^{*}$:

Rabin $1969 \Longrightarrow$ algorithmically solvable using tree automata very special case of set constraints (letters as unary functions)

EXPTIME-complete (even when complementation is allowed) (1994-2006)

Yet More General Left-Linear Inequalities

$K_{0} \cup X_{1} K_{1} \cup \cdots \cup X_{n} K_{n} \subseteq L_{0} \cup X_{1} L_{1} \cup \cdots \cup X_{n} L_{n}$
K_{j} arbitrary, L_{j} regular

MK 2005:

largest solution:

- regular
- for context-free K_{j} : algorithmically regular
- direct construction of the automaton accepting the solution

Concatenations on the Right

Previous cases:
$\ldots \subseteq L \quad$ constants on the right fix the context
$X K \cup \ldots \subseteq X L \cup \ldots \quad$ local modifications on one side

Next task:
$\ldots \subseteq X L Y$
general concatenations on the right
We need to classify words according to their decompositions with respect to constant languages.

Well-quasiorder (wqo)

Quasiorder \leq on A^{*} is a wqo, if it contains neither \vdots nor \bullet. . . .
Equivalent definitions:

- Every upward closed language over A is finitely generated.
- There is no infinite ascending sequence of upward closed languages.

Monotone: $u \leq v \& \tilde{u} \leq \tilde{v} \Longrightarrow u \tilde{u} \leq v \tilde{v}$
Example: "scattered subword" relation

Ehrenfeucht \& Haussler \& Rozenberg 1983:

$L \subseteq A^{*}$ is regular $\Longleftrightarrow L$ is upward closed with respect to a monotone wqo on A^{*}.

Special case:
Congruence of finite index is a monotone well-quasiorder.
upward closed $=$ recognized by the congruence
Applying well-quasiorders to inequalities:
Construct a wqo on A^{*} such that every solution is contained in an upward closed solution.

A Quasiorder for Dealing with Concatenations on the Right

$\sim \ldots$ syntactic congruence of constant languages on the right side of inequalities

$$
\begin{aligned}
w \leq v \Longleftrightarrow & w=a_{1} \cdots a_{m}, a_{j} \in A \\
& v=v_{1} \cdots v_{m}, v_{j} \in A^{+} \\
& a_{j} \sim v_{j}, j=1, \ldots, m
\end{aligned}
$$

Example: $\quad\{a, b\}^{+} / \sim \cong \mathbb{Z}_{2} \quad 1=[a]_{\sim}, 0=[b]_{\sim}$

Restrictions on Constants

Systems of inequalities $P_{i} \subseteq Q_{i}$
$P_{i} \subseteq(A \cup \mathcal{V})^{*}$ arbitrary
$Q_{i} \ldots$ regular expressions over variables and languages, whose minimal automaton does not contain

MK 2005: all maximal solutions are regular

Corollary:
The class of polynomials of group languages is closed under taking maximal solutions of such systems.

... that they are nice to play with.

$X K \subseteq L X \quad K$ arbitrary, L regular
largest solution: • always regular

- for context-free K : algorithmically recursive (MK 2005)
- if K and L finite and all words in K longer than all in L : algorithmically regular (Ly 2007)

Game: position: $w \in A^{*}$
attacker: $u \in K, w \longrightarrow w u$
defender: $v \in L, w u=v \tilde{w}, w u \longrightarrow \tilde{w}$
largest solution $=$ all winning positions of the defender
Example: $w=a b c d, L=\{a, a b, a b c d e, b c, c, c d, d a\}, \sim=$ syntactic congruence of L $[a b c d]_{\sim}<\ldots \ldots$ ()

Well-quasiordering Trees

$w \leq v \ldots$ winning strategies of the defender for w can be used also for v
Example:

Largest solution is upward closed with respect to \leq.
Kruskal 1960: \leq is wqo.

... that they can be surprisingly powerful.

MK 2005:

Every co-recursively enumerable language can be described as the largest solution of any of the following systems with regular constants K, L, M and N.

$$
\begin{array}{rll}
X K \subseteq L X & & X K \subseteq L X \\
& & X K \subseteq L X \\
X \subseteq M & & X M \subseteq N X
\end{array}
$$

Special case: $X L=L X$

- formulated by Conway 1971
- positive results:
at most ternary languages, regular codes (Karhumäki \& Latteux \& Petre 2005)

MK 2007:

There exists a finite language L such that the largest solution $\mathcal{C}(L)$ of $X L=L X$ is not recursively enumerable.

Example: L regular, but $\mathcal{C}(L)$ non-regular

$A=\{a, b, c, e, \hat{e}, f, \hat{f}, g, \hat{g}\}$
$L=\{c, e f, g a, e, f g, f \hat{f} \hat{e}, a \hat{g}, \hat{e}, \hat{g} \hat{f}, f g b a \hat{g}\} \cup c M \cup M c \cup$ $\cup A^{*} b A^{*} b A^{*} \cup(A \backslash\{c\})^{*} b(A \backslash\{c\})^{*} \backslash N$
$M=e f g a^{+} b a^{*} \cup g a^{*} b a^{*} \hat{g} \hat{f} \cup a^{*} b a^{*} \hat{g} \hat{f} \hat{e} \cup f g a^{*} b a^{*} \hat{g}$
$N=\{e f g, f g, g, \varepsilon\} \cdot a^{*} b a^{*} \cdot\{\varepsilon, \hat{g}, \hat{g} \hat{f}, \hat{g} f \hat{f}\}$
encodes simultaneous decrementation of two counters and zero-test
Configuration: $\quad[[[e] f] g] a^{m} b a^{n}[\hat{g}[\hat{f}[\hat{e}]]]$

Simultaneous Decrementation of Both Counters

Attacker forces defender to remove one a on each side:

Games That Can Be Encoded (Jeandel \& Ollinger)

Example:

$$
\begin{array}{ll}
\bullet=\text { attacker should play } & - \\
\circ=\text { defender should play } & --- \text { modificatication on the right }
\end{array}
$$

position of the game: a vertex of the graph and a word
labels of attacker's vertices: allowed words
labels of edges: words to be added by attacker or removed by defender

- when attacker modifies on one side, defender has to modify on the other
- bipartite graph for each type of edges
- at most one common vertex for any two connected components of different types
- only one type of edges leading from each of attacker's vertices
- non-empty labels of edges only around one attacker's vertex for each type of edges

... that we do not understand their languages.

- satisfiability of equations with concatenation (and union) over finite or regular languages
- satisfiability of equations with concatenation and finite constants
- Conjecture (Ratoandromanana 1989):

Among codes, equation $X Y=Y X$ has only solutions of the form $X=L^{m}, Y=L^{n}$.
Equivalently: Every code has a primitive root.

- regularity of solutions of other simple systems of inequalities, for example:
$K X L \subseteq M X$
$K X \subseteq L X, X M \subseteq X N$
- existence of algorithms for finding regular solutions
- methods for proving properties of conjunctive and Boolean grammars
- existence of non-trivial shuffle decomposition $X \amalg Y=L$ of a regular language L
- existence of non-trivial unambiguous decompositions of regular languages
- unary languages

$$
\begin{aligned}
X & =T Y=Z_{1} Z_{2} \\
X^{2} & =Z_{1} \text { ank youTh } Z_{2}
\end{aligned}
$$

