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Abstract. We give a transparent characterization, by means of a cer-
tain syntactic semigroup, of regular languages possessing the finite power
property. Then we use this characterization to obtain a short elementary
proof for the uniform decidability of the finite power property for ra-
tional languages in all monoids defined by a confluent regular system
of deletion rules. This result in particular covers the case of free groups
solved earlier by d’Alessandro and Sakarovitch by means of an involved
reduction to the boundedness problem for distance automata.

1 Introduction

A language L is said to have the finite power property if its iteration L+ is a union
of finitely many powers of L. The problem to algorithmically determine whether
a given regular language possesses the finite power property is one of the most
prominent questions in the theory of regular languages. It was formulated by
Brzozowski during the SWAT conference in 1966, and solved independently by
Hashiguchi [4] and Simon [13] more than ten years later. Results on this problem
were the starting point of a fruitful and still active research, leading in particular
to Hashiguchi’s solution of the star-height problem [6]. The approach of Simon
initiated the development of the theory of automata with multiplicities over the
tropical semiring, which is now a standard method of dealing with problems
related to the product operation on regular languages (see [14] for a survey).

On the other hand, the approach of Hashiguchi is combinatorial: he works
directly with an automaton for the given language and uses an argument based
on the pigeon hole principle. Our solution of the problem can be viewed as un-
covering the algebraic background of Hashiguchi’s arguments. First steps in this
direction were already performed by Kirsten [8]. Here we present a fully algebraic
treatment of this technique, and we formulate a simple and easily verifiable alge-
braic condition on a certain syntactic semigroup, which is equivalent to the finite
power property. This approach also allows us to slightly generalize the result to
all monoids where length of elements can be well defined and where every two
factorizations of any element have a common refinement. These two properties
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are sufficient for the two main arguments of the proof: induction on the length
of elements and localization of the problem to regular J -classes, respectively.

Then we show that deciding the finite power property for rational languages
in finitely generated monoids where the word problem is solved by a confluent
regular system of deletions, can be uniformly reduced to monoids where the
first result can be applied. More precisely, for every rational language in such
a monoid we construct a different monoid according to the behaviour of deletions
with respect to this language. Note that free groups can be defined by a confluent
finite rewriting system consisting of the deletion rules aa−1 → ε and a−1a → ε,
for each of the free generators a. Therefore, our result generalizes the decidability
result for free groups of d’Alessandro and Sakarovitch [3], who follow the usual
approach and reduce the problem to testing whether a distance automaton is
bounded, which is decidable due to a difficult result of Hashiguchi [5].

Basic concepts employed in this paper are recalled in the following section.
For a more comprehensive introduction to semigroup theory, formal languages,
rational transductions and rewriting we refer the reader to [7], [11], [1] and [2],
respectively.

2 Preliminaries

The sets of positive and non-negative integers are denoted by IN and IN0, respec-
tively. For any set S, the notation ℘(S) stands for the set of all subsets of S. As
usual, we denote by A+ the semigroup of all non-empty finite words over a finite
alphabet A, and by A∗ the monoid obtained by adding the empty word ε to A+.
The length of a word w ∈ A∗ is written as |w|.

2.1 Semigroups and languages

Let M be a monoid with identity element 1. Any subset L ⊆ M is called
a language in M. The product of two languages K and L in M is defined as
KL = { st | s ∈ K, t ∈ L }. The subsemigroup of M generated by a language L,
which is equal to

⋃

n∈IN L
n, is denoted by L+ and called the iteration of L. The

submonoid of M generated by L is L∗ = L+ ∪ {1}. Further, for n ∈ IN we write
L≤n = L∪L2∪· · ·∪Ln, and we say that a language L possesses the finite power

property (FPP) if there exists n ∈ IN such that L+ = L≤n.
A language L in a monoid M is recognizable if there exists a homomorphism

σ : M → S to a finite semigroup S satisfying L = σ−1σ(L), i.e. such that the
membership of elements of M in L depends only on their σ-images. The syntactic

homomorphism of L is the projection homomorphism σ : M → M/≡, where the
congruence ≡ of M is defined by the condition

v ≡ w ⇐⇒ (∀x, y ∈ M)(xvy ∈ L ⇐⇒ xwy ∈ L) .

The factor monoid M/≡ is called the syntactic monoid of L; it is the smallest
monoid recognizing L.
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A language L in M is rational if it belongs to the smallest family of languages
in M containing all finite languages and closed under the rational operations :
union, product and iteration. Kleene’s theorem states that a language in a free
monoid A∗ is rational if and only if it is recognizable; such a language is then
called regular. If the monoid M is generated by a finite set A, i.e. there is an
onto homomorphism γ : A∗

։ M, then a language in M is rational if and only
if it is of the form γ(L) for some regular language L in A∗.

Let S be an arbitrary semigroup. An ideal of S is a non-empty subset I ⊆ S

such that for all s ∈ I and t ∈ S, we have st ∈ I and ts ∈ I. For any ideal I
of S, the Rees factor semigroup S/I is defined on the set (S \ I) ∪ {0}, where
0 is a new zero element, and elements s, t ∈ S \ I are multiplied according to
the formula

s · t =

{

st if st /∈ I ,

0 if st ∈ I .

The ideal of S generated by a given element s ∈ S is equal to S1sS1, where
S1 denotes the monoid obtained from S by adding a new identity element 1.
The quasi-order ≤JS

on S is defined, for any s, t ∈ S, by the rule

s ≤JS
t ⇐⇒ s ∈ S

1tS1 .

The Green relation JS of the semigroup S is the equivalence relation on S

associated with the quasi-order ≤JS
, i.e. two elements of S are J -equivalent

if they generate the same ideal. Consequently, the quasi-order ≤JS
determines

a partial order of J -classes of S.
A straightforward application of the pigeon hole principle to a J -class of

a finite semigroup gives the following useful lemma.

Lemma 1 (Kirsten [8]). Let J be a J -class of a finite semigroup S. Let n ∈ IN
and let s1, . . . , sn be a sequence of elements of S satisfying s1 · · · sn ∈ J . Let

N ⊆ {1, . . . , n} with |N | > |J | be such that si ∈ J for all i ∈ N . Then there

exist k, l ∈ N , k < l, such that sk · · · sl = sk.

Recall that an element s of a semigroup which satisfies ss = s is called
an idempotent. A J -class J of a finite semigroup S is regular if it contains
an idempotent, or equivalently, if there exist elements s, t ∈ J such that their
product st belongs to J too.

Finally, we recall one of the basic constructions of semigroups, which will be
used here to encode deletions. Assume we have a semigroup S and an element
0 /∈ S. Let L and R be arbitrary finite sets, and let P : R×L→ S∪ {0} be any
mapping (this mapping can be understood as an (R × L)-matrix with entries
belonging to S or equal to 0). The Rees matrix semigroup M0(S;L,R;P ) over S

is defined on the set (L × S × R) ∪ {0}, where 0 is a new zero element, by the
multiplication formula

(l, s, r) · (l′, s′, r′) =

{

(l, s · P (r, l′) · s′, r′) if P (r, l′) 6= 0 ,

0 if P (r, l′) = 0 .
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2.2 Rational semigroups

Now we recall the notion of a rational semigroup, which was introduced by
Sakarovitch in [12].

A rational transducer is a 6-tuple (A,B,Q, q0, Qf , E), where A is a finite
input alphabet, B is a finite output alphabet, Q is a finite set of states, q0 ∈ Q
is an initial state, Qf ⊆ Q is a set of final states, and E ⊆ Q × A∗ × B∗ × Q
is a finite set of oriented edges between states, each of them labelled by a word
read from the input and a word sent to the output. The relation realized by the
transducer consists of all pairs (v, w) ∈ A∗ × B∗, where v and w are obtained
by concatenating input and output words of the edges of some path from the
initial state to a final state. A function from A∗ to B∗ is called rational if it can
be realized by a rational transducer.

A semigroup S is rational if there exist a finite set A, an onto homomorphism
α : A+

։ S and a rational function β : A+ → A+ satisfying αβ = α and
ker(β) = ker(α). This means that S is isomorphic to the semigroup defined on
the set β(A+) by the rule u · v = β(uv).

An important property of rational monoids is that they satisfy Kleene’s the-
orem:

Proposition 1 (Sakarovitch [12]). In every rational monoid, the family of

rational sets is equal to the family of recognizable sets.

When dealing with rational monoids, we will call rational sets regular as
in free monoids. Because rational functions algorithmically preserve regularity,
a language L in a rational monoid is regular if and only if the language βα−1(L)
in A∗ is regular. Moreover, rational operations on regular languages in a rational
monoid can be performed algorithmically as we can calculate with the corre-
sponding subsets βα−1(L) of β(A+) using the obvious rules, e.g. βα−1(K ·L) =
β(βα−1(K) · βα−1(L)).

The class of rational semigroups possesses several useful closure properties
with respect to basic semigroup constructions. In our considerations, the follow-
ing two constructions will be employed.

Proposition 2 (Sakarovitch [12]). The class of rational semigroups is algo-

rithmically closed under taking Rees factors by regular ideals.

Proposition 3. Let M be a rational monoid with identity element 1. Let L and

R be finite sets and P : R × L → M ∪ {0} a mapping such that P (ρ, λ) = 1
for certain λ ∈ L and ρ ∈ R. Then the Rees matrix semigroup M0(M;L,R;P )
over M is rational and can be algorithmically constructed.

Proof. Let A be a finite set, let α : A+
։ M be an onto homomorphism and

β : A+ → A+ a rational function satisfying αβ = α and ker(β) = ker(α). Take
the word u ∈ A+ such that βα−1(1) = {u}, and the words ur,l ∈ A+, for
l ∈ L and r ∈ R satisfying P (r, l) 6= 0, such that βα−1(P (r, l)) = {ur,l}. Let
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us consider the finite set B = (L × A × R) ∪ {0} and the auxiliary mapping
µ : L×A∗ ×R → B+ defined for l ∈ L, r ∈ R, n ∈ IN0 and a1, . . . , an ∈ A as

µ(l, a1 · · · an, r) = (l, a1, ρ)(λ, a2, ρ) · · · (λ, an−1, ρ)(λ, an, r) .

Then we define a homomorphism γ : B+ → M0(M;L,R;P ) by the rules γ((l, a, r)) =
(l, α(a), r) and γ(0) = 0. This homomorphism is onto because for every l ∈ L,
s ∈ M and r ∈ R there exist n ∈ IN and a1, . . . , an ∈ A such that α(a1 · · · an) =
s, which immediately gives (l, s, r) = γµ(l, ua1 · · · anu, r). This suggests us to
define a function δ : B+ → B+ by setting δ(B∗0B∗) = {0} and

δ((l1, a1, r1) · · · (ln, an, rn)) = µ(l1, uβ(a1ur1,l2a2 · · ·urn−1,lnan)u, rn)

if P (ri, li+1) 6= 0 for i = 1, . . . , n− 1, and δ((l1, a1, r1) · · · (ln, an, rn)) = 0 other-
wise. Then it can be directly verified that γδ = γ and ker(δ) = ker(γ).

It remains to show how to construct a rational transducer realizing δ. First
note that it is enough to deal with words which are not mapped to 0, because
δ−1(0) is the regular language

B∗0B∗∪
⋃

{B∗(l, a, r)(l′, a′, r′)B∗ | l, l′ ∈ L, a, a′ ∈ A, r, r′ ∈ R, P (r, l′) = 0 } .

Let (A,A,Q, q0, Qf , E) be a rational transducer realizing β. Because β is a func-
tion, we can assume that the input label of each edge is a letter, i.e. E ⊆
Q×A×A∗ ×Q. Then the non-zero part of δ can be realized by the transducer

(B,B, (Q×R) ∪ (L×Q) ∪ {q0, qf}, q0, {qf}, F )

with one final state qf , where

F = { (q0, (l, a, r), µ(l, uβ(a)u, r), qf) | l ∈ L, a ∈ A, r ∈ R }

∪ { (q0, (l, a, r), µ(l, uv, ρ), (q, r)) | l ∈ L, r ∈ R, (q0, a, v, q) ∈ E }

∪ { ((l, p), (l, a, r), µ(λ, vu, r), qf) | l ∈ L, r ∈ R, (p, a, v, q) ∈ E, q ∈ Qf }

∪ { ((l, p), (l, a, r), µ(λ, v, ρ), (q, r)) | l ∈ L, r ∈ R, (p, a, v, q) ∈ E }

∪ { ((p, r), ε, µ(λ, v, ρ), (l, q)) | l ∈ L, r ∈ R, P (r, l) 6= 0, (p, ur,l, v, q) ∈ tr(E) } ,

where tr(E) denotes the set

{ (q1, a1 · · · an, u1 · · ·un, qn+1) | n ∈ IN, (q1, a1, u1, q2), . . . , (qn, an, un, qn+1) ∈ E }

of all results obtained by moving along a path in E. ⊓⊔

3 Free monoids

In this section we consider the FPP in a monoid M with identity element 1 and
zero element 0, and satisfying the following conditions:
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1. There exists a mapping ℓ : M\{0} → IN0 assigning to each non-zero element
of M its length, and satisfying ℓ(xy) ≥ ℓ(x) + ℓ(y) for all x, y ∈ M such that
xy 6= 0.

2. For every u, v, w, t ∈ M satisfying uv = wt 6= 0, there exists x ∈ M such
that either ux = w and xt = v or wx = u and xv = t.

3. The languages {0} and {1} in M are recognizable.

Remark 1. Any free monoid with the length of a word defined in the usual way
and with a zero element added satisfies the above conditions.

Lemma 2. Let M be an arbitrary monoid satisfying condition 2. Let m,n ∈
IN, m ≤ n, and w, v1, . . . , vm ∈ M be such that wn = v1 · · · vm 6= 0. Then

there exist k ∈ IN0, k < m, and elements x, y ∈ M satisfying v1 · · · vkx = wk,

yvk+2 · · · vm = wn−k−1 and vk+1 = xwy.

Proof. Let k ∈ IN0 be the smallest number such that there exists y ∈ M for which
wk+1y = v1 · · · vk+1 and yvk+2 · · · vm = wn−k−1. Such a number certainly exists
since this holds for k = m−1 with y = wn−m. If k = 0 then it is sufficient to put
x = 1. Otherwise, we apply property 2 of M to the decomposition wk · (wy) =
(v1 · · · vk) · vk+1. First assume that we have wkx = v1 · · · vk and xvk+1 = wy for
a certain x ∈ M. Then we obtain also xvk+1 · · · vm = wyvk+2 · · · vm = wn−k,
which contradicts the minimality of k. Therefore there exists x ∈ M satisfying
v1 · · · vkx = wk and xwy = vk+1, as required. ⊓⊔

Let L ⊆ ℓ-1(IN) be an arbitrary recognizable language in M consisting of
elements of non-zero length, and such that L+ is also recognizable. Let σ : M ։

S be a homomorphism onto a finite semigroup recognizing the languages L, L+,
{0} and {1}. Consider the mapping τ : M → ℘(S3) ∪ {0} defined by the rules
τ(0) = 0 and

τ(w) = { (σ(x), σ(y), σ(z)) | x, y, z ∈ M, w = xyz }

for w ∈ M \ {0}.

Lemma 3. For every monoid M satisfying condition 2, the kernel of τ is a con-

gruence of M.

Proof. Let v, w ∈ M \ {0}. Since σ recognizes {0}, we have vw = 0 if and only if
σ(vw) = 0, which holds exactly when ζηϑκλµ = 0 for every (ζ, η, ϑ) ∈ τ(v) and
(κ, λ, µ) ∈ τ(w). And from property 2 it immediately follows that if vw 6= 0, then
the triple (α, β, γ) ∈ S3 belongs to τ(vw) if and only if there exist (ζ, η, ϑ) ∈ τ(v)
and (κ, λ, µ) ∈ τ(w) satisfying at least one of the following conditions:

1. α = ζηϑκ, β = λ and γ = µ;
2. α = ζ, β = ηϑκλ and γ = µ;
3. α = ζ, β = η and γ = ϑκλµ.

Therefore the kernel of τ is a congruence. ⊓⊔
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By Lemma 3 there exists a unique semigroup operation on τ(M) such that
τ is a homomorphism. Let us denote by T the subsemigroup τ(L+) of τ(M).

Remark 2. Note that if τ(v) = τ(w), then in particular σ(v) = σ(w). Therefore,
the homomorphism τ recognizes all languages recognized by σ, and it also means
that τ(v) JT τ(w) implies σ(v) JS σ(w). Further observe that the identity
element τ(1) ∈ τ(M) does not belong to T since τ recognizes {1}.

Theorem 1. Let M be an arbitrary monoid satisfying properties 1 through 3.

Then for any recognizable language L ⊆ ℓ-1(IN) in M such that L+ is also

recognizable, and for σ, S, τ and T defined above, the following conditions are

equivalent:

1. L possesses the FPP.

2. For all w ∈ L+, there exists n ∈ IN such that wn ∈ L≤n.

3. Every non-zero regular J -class of T contains some element of τ(L).
4. For all w ∈ L+ \ {0} such that τ(w) belongs to a regular J -class of T, there

exist y ∈ L and x, z ∈ L∗ satisfying w = xyz and σ(y) JS σ(w).

5. L+ = L≤(j+1)h

, where j is the maximal size of a J -class of S and h is the

length of the longest chain of J -classes in T.

Proof. 1 =⇒ 2 is trivial.
2 =⇒ 3. Let J be a non-zero regular J -class of T. Then there exists w ∈

L+ \ {0} such that τ(w) is an idempotent belonging to J . Let n ∈ IN be such
that wn ∈ L≤n. Then by Lemma 2 one can find k ∈ IN0 and elements x, y ∈ M

and u, v ∈ L∗ satisfying ux = wk, yv = wn−k−1 and xwy ∈ L. Therefore we
have

τ(u)τ(xwy)τ(v) = τ(wn) = τ(w) and

τ(xwyv)τ(w)τ(uxwy) = τ(xwn+2y) = τ(xwy) .

This shows that τ(xwy) ∈ J as required.
3 =⇒ 4. Let w ∈ L+ \ {0} be such that τ(w) belongs to a regular J -class

of T. Then there exists u ∈ L satisfying τ(u) JT τ(w). Therefore τ(w) = τ(tuv)
for certain t, v ∈ L∗. By the definition of τ , one can find elements x, y, z ∈ M for
which w = xyz, σ(x) = σ(t), σ(y) = σ(u) and σ(z) = σ(v). Because σ recognizes
both L and L∗, this in particular means that y ∈ L and x, z ∈ L∗. Finally, we
have also σ(y) = σ(u) JS σ(w) due to Remark 2.

4 =⇒ 5. Let us prove that L+ ∩ τ−1(J) ⊆ L≤(j+1)hJ −1 for every J -class J
of T, where hJ denotes the length of the longest chain of J -classes in T greater
or equal to J . We proceed by induction on hJ . Let w ∈ L+ ∩ τ−1(J).

If the class J is non-regular, consider the longest prefix x ∈ L∗ \ τ−1(J) of w
such that there exist y ∈ L and z ∈ L∗ satisfying w = xyz. Then τ(xy) ∈ J and
therefore τ(z) /∈ J , as J is not regular. Hence, by the induction hypothesis, we
obtain

w ∈ L≤2((j+1)hJ−1−1)+1 ⊆ L≤(j+1)hJ −1 .
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If w = 0 then w = xz for some x, z ∈ L+ \ {0} and we get w ∈ L≤(j+1)hJ −1

as in the previous case.
If J is regular and non-zero, denote the J -class of σ(w) in S by I and

consider a decomposition w = w0v1w1v2 · · · vnwn, where w0, w1, . . . , wn ∈ L∗

and v1, v2, . . . , vn ∈ L∩ σ−1(I), such that ℓ(v1) + ℓ(v2) + · · ·+ ℓ(vn) is maximal
(note that this number is bounded by ℓ(w)), and among such decompositions
the number n is minimal.

If n > |I| then Lemma 1 implies that there exist k, l ∈ {1, . . . , n}, k < l, such
that σ(vkwk · · ·wl−1vl) = σ(vk). Because σ recognizes L, this in particular means
that vkwk · · ·wl−1vl ∈ L∩σ−1(I), contradicting the choice of the decomposition
of w. Thus, we have n ≤ |I|.

Assuming τ(wi) ∈ J for some i ∈ {0, . . . , n}, by condition 4 we obtain el-
ements y ∈ L and x, z ∈ L∗ satisfying wi = xyz and σ(y) JS σ(wi). Since
σ(wi) ∈ I can be derived using Remark 2, this means that σ(y) ∈ I, which
contradicts the maximality of the decomposition of w. Therefore τ(wi) /∈ J for
all i ∈ {0, . . . , n}, and so the induction hypothesis gives

w ∈ L≤(|I|+1)((j+1)hJ−1−1)+|I| ⊆ L≤(j+1)hJ −1 .

5 =⇒ 1 is trivial. ⊓⊔

Remark 3. Condition 2 was conjectured to be equivalent to the FPP by Linna [10],
and later this was proved true for free monoids by Hashiguchi [4].

Let us now present examples demonstrating that both ingredients of the
construction of the semigroup T (i.e. the decomposition of words to triples and
the restriction to τ(L+)) are essential.

Example 1. Let us consider the language L = {a} ∪ bA∗ over the alphabet A =
{a, b}. This language clearly does not possess the FPP. Since L satisfies L+ =
A+, the syntactic homomorphism σ of L recognizes all the languages L, L+

and {ε}. The syntactic monoid of L has four elements α, β, γ and δ, which
correspond to the languages {ε} = σ−1(α), {a} = σ−1(β), aA+ = σ−1(γ) and
bA∗ = σ−1(δ). The only regular J -class of σ(A+) is {γ, δ}, and it contains the
element δ ∈ σ(L) (note that the same is true also for the subsemigroup σ(L+)).

But in the semigroup T = τ(L+), there is really a regular J -class which does
not contain any element of τ(L), namely the J -class of the idempotent

τ(a6) = { (ζ, η, ϑ) | γ ∈ {ζ, η, ϑ} ⊆ {α, β, γ} } .

In order to verify this, let us take an arbitrary element of T which is J -equivalent
to τ(a6), and assume that it belongs to τ(L). Such an element must be of the
form τ(va6w), where v, w ∈ L∗. Because τ recognizes L, we have va6w ∈ L, and
therefore va6w ∈ bA∗. Since τ(va6w) JT τ(a6), there exist x, y ∈ L∗ satisfying
τ(xva6wy) = τ(a6). Then τ(xva6wy) contains the triple (σ(x), σ(va6w), σ(y)) =
(σ(x), δ, σ(y)), which cannot belong to τ(a6), contradicting the previous equality.
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Example 2. The language L = {ab} ∪ {ab, ba}∗ba{ab, ba}∗ over the alphabet
A = {a, b} also does not have the FPP. Again, the syntactic homomorphism σ
of L recognizes the languages L, L+ and {ε}. We are going to verify that every
regular J -class of τ(A+) containing some element of τ(L+) contains also an
element of τ(L). Because

τ(L+) = τ({ab, ba}+) = τ(L) ∪ τ(ab(ab)+) ,

it is enough to deal with the J -classes of τ(A+) containing τ((ab)n) for n ≥ 2. For
n ≤ 5, we have τ−1τ((ab)n) = {(ab)n}, since the τ -image of each of these words
is characterized by the presence of some triples formed from the two different
elements σ(ab) and σ(ab(ab)+). Therefore for n ≤ 5, the element τ((ab)n) forms
a non-regular singleton J -class of τ(A+). Further, one can calculate that τ((ab)6)
is an idempotent, and τ((ab)n) = τ((ab)6) for every n ≥ 6. In this case, one gets
τ((ab)6) Jτ(A+) τ((ba)

7) ∈ τ(L).

Corollary 1. The FPP is uniformly decidable for regular languages consisting

of elements of non-zero length in rational monoids satisfying conditions 1 and 2.

Proof. First, note that condition 3 holds for every rational monoid, and so The-
orem 1 can be applied. By condition 5 of Theorem 1, it is enough to construct
a semigroup S recognizing L, L+, {0} and {1}, and test whether L+ = L≤m,

for m = n2n3

, where n is the cardinality of S. ⊓⊔

Based on the results of Kirsten [8], the author [9] observed that each language
recognized by a given finite semigroup S has the FPP if and only if S is a chain
of simple semigroups, i.e. for all s, t ∈ S, either st JS s or st JS t. Let us now
show how one can derive this fact using Theorem 1 instead of Kirsten’s results.

Corollary 2. Let M be a monoid satisfying properties 1 through 3, and let S be

a finite semigroup which is a chain of simple semigroups. Then every language

L ⊆ ℓ-1(IN) in M recognized by some homomorphism ρ : M → S, and such that

L+ is also recognizable, has the FPP.

Proof. We are going to verify that condition 3 of Theorem 1 holds. Consider
n ∈ IN and arbitrary elements w1, . . . , wn ∈ L such that τ(w1 · · ·wn) is an idem-
potent, and choose any i ∈ {1, . . . , n} for which ρ(wi) belongs to the smallest of
the J -classes of S determined by the elements ρ(w1), . . . , ρ(wn). Because S is
a chain of simple semigroups, we have ρ(wi) JS ρ(w1 · · ·wn). Let m be the cardi-
nality of the J -class of ρ(wi) in S. Applying Lemma 1 to the sequence resulting
from concatenating 2m+1 copies of the sequence ρ(w1), . . . , ρ(wn), and to the set
N = {i, 2n+ i, . . . , 2mn+ i} (i.e. N consists of all odd occurrences of ρ(wi)), we
obtain a positive integer k such that ρ(wi) = ρ(wi · · ·wn(w1 · · ·wn)kw1 · · ·wi).
This shows that wi · · ·wn(w1 · · ·wn)kw1 · · ·wi ∈ L. On the other hand, we have
τ(w1 · · ·wn) = τ((w1 · · ·wn)k+2) since τ(w1 · · ·wn) is an idempotent, and there-
fore the element τ(wi · · ·wn(w1 · · ·wn)kw1 · · ·wi) ∈ τ(L) belongs to the same
J -class of T as τ(w1 · · ·wn). Hence, Theorem 1 implies that L has the FPP. ⊓⊔
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4 Monoids defined by deletions

Let G be a monoid generated by a finite set A whose word problem can be solved
by a confluent regular system of deletion rules R = {w → ε | w ∈ R }, where
R ⊆ A+ is a regular language. In other words, we have an onto homomorphism
γ : A∗

։ G such that for every v, w ∈ A∗,

γ(v) = γ(w) ⇐⇒ norm(v) = norm(w) ,

where norm(w) denotes the normal form of w with respect to R. We will also
use the notation norm(L) = { norm(w) | w ∈ L } for a language L ⊆ A∗.

Lemma 4. The language D = {w ∈ A∗ | norm(w) = ε } is context-free and

algorithmically computable from R. For every regular language L ⊆ A∗, the

language norm(L) is regular and can be algorithmically computed using R and L.

Proof. Let (A,Q, q0, Qf , δ) be a deterministic finite automaton recognizing R.
The language D can be defined by a context-free grammar with the set of non-
terminals Q∪{S} (where S is the initial symbol) and the derivation rules S → q0,
q → aSδ(q, a) for every q ∈ Q and a ∈ A, q → ε for q ∈ Qf , S → SS and S → ε.

Let d /∈ A be a new symbol and consider the context-free substitution ϕ
from (A ∪ {d})∗ to A∗ defined by the rule ϕ(d) = D and identical otherwise.
Let ψ : (A∪{d})∗ → A∗ be the homomorphism sending d to ε and leaving other
symbols unchanged. Then norm(L) = ψ(ϕ−1(L))\A∗RA∗ and since both inverse
context-free substitution and homomorphism effectively preserve regularity, the
language norm(L) is regular and can be algorithmically computed. ⊓⊔

Let γ(L) ⊆ G be a rational language defined by a regular language L ⊆ A∗;
by Lemma 4 we can assume that L ⊆ norm(A∗). Let the language L be given
by a homomorphism σ : A∗ → S to a finite monoid S recognizing the three
languages L, norm(A∗) and {ε}.

We are going to use σ to construct a monoid M where deletions of R are
performed symbolically, and a language K in this monoid such that γ(L) has
the FPP in G if and only if K has the FPP in M. To achieve this, we need to
avoid sequences of elements of L which are reduced to the empty word using R,
and calculate only with those which are not completely deleted. The following
lemma shows that such a modification does not affect the FPP because all deleted
sequences can be produced using only a bounded number of words from L.

Lemma 5. For given regular languages R and L, one can algorithmically cal-

culate a positive integer m such that

ε ∈ norm(L+) =⇒ ε ∈ norm(L≤m)

and for all x, y, z, u ∈ A∗ and w ∈ L+ satisfying yz ∈ L and xu ∈ L, we have

norm(zwx) = ε =⇒ ∃x̄, z̄ ∈ A∗, w̄ ∈ L≤m : yz̄, x̄u ∈ L & norm(z̄w̄x̄) = ε ,

norm(zw) = ε =⇒ ∃z̄ ∈ A∗, w̄ ∈ L≤m : yz̄ ∈ L & norm(z̄w̄) = ε ,

norm(wx) = ε =⇒ ∃x̄ ∈ A∗, w̄ ∈ L≤m : x̄u ∈ L & norm(w̄x̄) = ε .
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Proof. For every r, s ∈ S we can calculate the context-free language Lr,s =
σ−1(r)L+σ−1(s)∩D. For each of these languages we test whether it is non-empty,
and if Lr,s 6= ∅, we find any word in Lr,s, which belongs to σ−1(r)Lmr,sσ−1(s)
for a certain mr,s ∈ IN. We set m = max{mr,s | r, s ∈ S, Lr,s 6= ∅ }. Since
σ recognizes both L and {ε}, we can easily verify the required properties. ⊓⊔

Now we construct, for the language L, a rational monoid to which we are
going to apply results of the previous section. Let M be defined on the set
(S × norm(A∗) × S) ∪ {1, 0}, where 1 is the identity element and 0 is the zero
element, by the rule

(p, u, q)(r, v, s) =

{

(p, uv, s) if uv ∈ norm(A∗) & ε ∈ norm(σ−1(q)L∗σ−1(r)) ,

0 otherwise,

for every p, q, r, s ∈ S and u, v ∈ norm(A∗). Intuitively, the words u and v are
factors of the resulting concatenation which are not affected by deletions when
producing the normal form. And the elements q and r represent any suitable
words from σ−1(q) and σ−1(r), which originated as a suffix and a prefix, respec-
tively, of certain words from L, and which can be deleted using R together with
several words from L between them.

We define the length of elements of M as ℓ((r, v, s)) = |v| and ℓ(1) = 0.

Lemma 6. The above defined M is a rational monoid, which can be algorith-

mically constructed from R and L and satisfies conditions 1 and 2.

Proof. Because A∗ \ norm(A∗) = A∗RA∗ is an ideal of A∗, the set I = (S ×
A∗RA∗ × S) ∪ {0} is an ideal of the Rees matrix semigroup M0(A∗; S,S;P )
over A∗. Therefore M is a monoid as it is isomorphic to

(M0(A∗; S,S;P )/I)1 ,

where P is defined by the formula

P (q, r) =

{

ε if ε ∈ norm(σ−1(q)L∗σ−1(r)) ,

0 otherwise.

Since the finitely generated free monoid A∗ is rational and P is computable
and satisfies P (1, 1) = ε, by Proposition 3 the semigroup M0(A∗; S,S;P ) is
rational too and can be algorithmically constructed. In order to prove that M is
also rational, let us consider the equivalence relation ∼I on M0(A∗; S,S;P )
defined by the rules

(p, u, q) ∼I (r, v, s) ⇐⇒ p = r & σ(u) = σ(v) & q = s ,

0 ∼I (r, v, s) ⇐⇒ v ∈ A∗RA∗ .

Because σ recognizes norm(A∗), the relation ∼I is easily seen to be a congruence
of M0(A∗; S,S;P ) of finite index recognizing I. Hence, the ideal I is algorith-
mically regular, and by Proposition 2 the monoid M is rational and can be
computed from M0(A∗; S,S;P ).
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One can easily verify that condition 1 is true even in the stronger form with
ℓ(xy) = ℓ(x) + ℓ(y). Condition 2 trivially holds if one of the elements is the
identity element. Otherwise, we have

(p, uv, s) = (p, u, q)(r, v, s) = (p̄, ū, q̄)(r̄, v̄, s̄) = (p̄, ūv̄, s̄)

for certain p, q, r, s, p̄, q̄, r̄, s̄ ∈ S and u, v, ū, v̄ ∈ norm(A∗). If |u| ≤ |ū| then there
exists x ∈ norm(A∗) such that ux = ū and xv̄ = v, and we immediately obtain
(p, u, q)(r, x, q̄) = (p̄, ū, q̄) and (r, x, q̄)(r̄, v̄, s̄) = (r, v, s) as required. The case
|u| > |ū| can be treated symmetrically. ⊓⊔

Let us consider the following language in M:

K = { (σ(x), y, σ(z)) | x, y, z ∈ A∗, y 6= ε, xyz ∈ L }

Lemma 7. The language K is regular and a congruence of M of finite index

recognizing K can be algorithmically constructed from R and L.

Proof. We prove that K is recognized by the congruence ∼ of M corresponding
to ∼I . This congruence has two one-element classes {0} and {1} and on the set
S × norm(A∗) × S it is defined as

(p, u, q) ∼ (r, v, s) ⇐⇒ p = r & σ(u) = σ(v) & q = s .

Take an element (σ(x), y, σ(z)) of K, where x, y, z ∈ A∗ are such that y 6= ε and
xyz ∈ L, and assume that (r, v, s) ∼ (σ(x), y, σ(z)). Then r = σ(x), σ(v) = σ(y)
and s = σ(z), and consequently also σ(xvz) = σ(xyz). Therefore we have v 6= ε
and xvz ∈ L since σ recognizes both {ε} and L. Thus, the element (r, v, s) =
(σ(x), v, σ(z)) belongs to K. ⊓⊔

Proposition 4. The language γ(L) ⊆ G has the FPP if and only if the language

K ⊆ M has the FPP.

Proof. Let us first assume that γ(L) possesses the FPP, i.e. that there exists
k ∈ IN such that norm(L+) = norm(L≤k). We are going to prove that K+\{0} =
K≤k+2 \ {0}, which is sufficient to verify the FPP for K. Let (r, y, s) be an
arbitrary non-zero element of K+. Then

(r, y, s) = (σ(x1), y1, σ(z1)) · · · (σ(xl), yl, σ(zl))

for some xi, yi, zi ∈ A∗ satisfying yi 6= ε and xiyizi ∈ L, for i = 1, . . . , l. In
particular, this implies y = y1 · · · yl ∈ norm(A∗). It suffices to consider the
case of l ≥ 3. By the definition of multiplication in M, we can assume that for
every i = 1, . . . , l − 1 there exists wi ∈ L∗ satisfying norm(ziwixi+1) = ε (note
that zi and xi can be replaced by another elements of σ−1σ(zi) and σ−1σ(xi),
respectively, since σ recognizes L). Now we have

w1x2y2z2w2 · · ·wl−2xl−1yl−1zl−1wl−1 ∈ L+ ,
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which means that there exists u ∈ L≤k such that

norm(w1x2y2z2w2 · · ·wl−2xl−1yl−1zl−1wl−1) = norm(u) .

Because y2 · · · yl−1 ∈ norm(A∗), we obtain

norm(z1uxl) = norm(z1w1x2y2z2w2 · · ·wl−2xl−1yl−1zl−1wl−1xl) = y2 · · · yl−1 .

Let us now consider one sequence of deletions using R producing y2 · · · yl−1

from z1uxl, and group together all neighbouring letters which are not deleted.
As L ⊆ norm(A∗) holds, this regrouping is of the form

z1 = ȳ1z̄1, u = v0x̃1ỹ1z̃1v1 · · · vn−1x̃nỹnz̃nvn, xl = x̄lȳl ,

for certain n ∈ {0, . . . , k}, ȳ1, z̄1, x̄l, ȳl ∈ A∗, x̃i, ỹi, z̃i ∈ A∗, for i = 1, . . . , n, and
vi ∈ L∗, for i = 0, . . . , n, which satisfy ỹi 6= ε, x̃iỹiz̃i ∈ L, for i = 1, . . . , n,

norm(z̄1v0x̃1) = norm(z̃ivix̃i+1) = norm(z̃nvnx̄l) = ε ,

for i = 1, . . . , n−1, and ȳ1ỹ1 · · · ỹnȳl = y2 · · · yl−1 (if n = 0 then norm(z̄1v0x̄l) =
ε). This immediately gives

(r, y, s) = (σ(x1), y1ȳ1, σ(z̄1))(σ(x̃1), ỹ1, σ(z̃1)) · · · (σ(x̃n), ỹn, σ(z̃n))(σ(x̄l), ȳlyl, σ(zl)) ,

where each element in the decomposition belongs to K (note that σ(x1y1ȳ1z̄1) =
σ(x1y1z1) ∈ σ(L)), and therefore (r, y, s) ∈ K≤k+2.

In order to prove the converse, let K+ = K≤k for some k ∈ IN. We will
verify that norm(L+) = norm(L≤m(k+1)+k), where m is the number guaranteed
by Lemma 5. Let u be an arbitrary word from the language L+. We have to
show norm(u) ∈ norm(L≤m(k+1)+k). The first statement of Lemma 5 allows us
to assume that norm(u) 6= ε. Because L ⊆ norm(A∗), the word u can be written
in the form

u = v0x1y1z1v1 · · · vl−1xlylzlvl ,

for a certain l ∈ IN, where xi, yi, zi ∈ A∗ satisfy yi 6= ε and xiyizi ∈ L, for
i = 1, . . . , l, vi ∈ L∗, for i = 0, . . . , l, norm(u) = y1 · · · yl and

norm(v0x1) = norm(zivixi+1) = norm(zlvl) = ε ,

for i = 1, . . . , l− 1. This implies that

(σ(x1), y1 · · · yl, σ(zl)) = (σ(x1), y1, σ(z1)) · · · (σ(xl), yl, σ(zl)) ∈ K l .

By the assumption, there exist n ∈ IN, n ≤ k, and x̃i, ỹi, z̃i ∈ A∗ such that ỹi 6= ε
and x̃iỹiz̃i ∈ L, for i = 1, . . . , n, which satisfy

(σ(x1), norm(u), σ(zl)) = (σ(x̃1), ỹ1, σ(z̃1)) · · · (σ(x̃n), ỹn, σ(z̃n)) .

According to the definition of the operation of M, words x̃i, for i = 2, . . . , n,
and z̃i, for i = 1, . . . , n − 1, can be chosen so that there exist wi ∈ L∗, for i =
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1, . . . , n−1, satisfying norm(z̃iwix̃i+1) = ε. By Lemma 5 we can find x̄i, z̄i ∈ A∗,
for i = 1, . . . , n, and w̄i ∈ L≤m ∪ {ε}, for i = 0, . . . , n, such that x̄iỹiz̄i ∈ L, for
i = 1, . . . , n, and

norm(w̄0x̄1) = norm(z̄iw̄ix̄i+1) = norm(z̄nw̄n) = ε ,

for i = 1, . . . , n−1 (to get norm(w̄0x̄1) = ε, note that x1ỹ1z̃1 ∈ L and norm(v0x1) =
ε). Therefore we have

norm(u) = ỹ1 · · · ỹn = norm(w̄0x̄1ỹ1z̄1w̄1 · · · w̄n−1x̄nỹnz̄nw̄n) ,

and so norm(u) belongs to norm(L≤m(k+1)+k) as required. ⊓⊔

Theorem 2. The FPP is uniformly decidable for rational languages in finitely

generated monoids whose word problem is solved by a confluent regular system

of deletions.

Proof. For given regular languages R and L, we can construct by Lemmas 6
and 7 the rational monoid M and the regular language K ⊆ M such that testing
whether γ(L) has the FPP in G is equivalent to testing whether K has the FPP
in M (by Proposition 4). Because K contains only elements of positive length,
this can be algorithmically decided using Corollary 1. ⊓⊔
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