
The Simplest Language Where

Equivalence of Finite Substitutions

Is Undecidable

Michal Kunc ⋆

Department of Mathematics and Statistics, Masaryk University,
Janáčkovo nám. 2a, 602 00 Brno, Czech Republic,

kunc@math.muni.cz, http://www.math.muni.cz/~kunc/

Abstract. We show that it is undecidable whether two finite substitu-
tions agree on the binary language a

∗

b. This in particular means that
equivalence of nondeterministic finite transducers is undecidable even for
two-state transducers with unary input alphabet and whose all transi-
tions start from the initial state.

1 Introduction

Existence of solutions of equations over words was proved decidable in a break-
through paper of Makanin [12]. It is now also well known that solvability of
word equations is decidable even for infinite rational systems of equations [2,
1, 5]. However, if we consider instead of equations over words equations over
languages where the only operation is concatenation, the solvability problem
becomes much more complicated.

If constants in equations are allowed to be any regular languages, existence of
arbitrary solutions becomes undecidable already for very simple systems of equa-
tions [9]. But there is no such result about equations with only finite constants,
and we also have virtually no knowledge about the solvability of finite systems of
equations over finite or regular languages, i.e. where only finite or regular solu-
tions are allowed. On the other hand, it is known that already for a very simple
fixed rational system of such equations, it is even undecidable whether given
finite languages form its solution. This can be equivalently formulated as unde-
cidability of equivalence of two finite substitutions on a fixed regular language.
Such a result was first proved for the regular language a{b, c}∗d by Lisovik [11],
and later improved to the language ab∗c in [8]. In this paper we prove that the
same undecidability result actually holds even for the simplest language where
the problem is not trivially decidable, namely for the language a∗b (note that
for each language over a one-letter alphabet it is always sufficient to perform
a certain fixed finite number of tests).

These results about finite substitutions can be also interpreted as undecid-
ability of the equivalence problem for very restricted classes of finite transducers,

⋆ Supported by the Grant no. 201/06/0936 of the Grant Agency of the Czech Republic.

2 Michal Kunc

continuing the long lasting search for such restrictions initiated in 1968 by the
undecidability result of Griffiths [4] for general transducers (see [8] for a more
comprehensive overview of related results). From this point of view, our result
corresponds to transducers over unary input alphabet having only two states
and no transitions starting from the final state. Therefore the result provides in
this direction the smallest class where the equivalence problem is undecidable.

We assume the reader to be familiar with basic notions of formal language
theory, which can be found for instance in [13]. As usual, we denote by X∗ the
set of all words arising by concatenating elements of X together with the empty
word ε. The length of a word w ∈ A∗ over an alphabet A is written as |w|.
The concatenation of two words u, v ∈ A∗ is denoted by uv. The operation of
concatenation is extended to languages by the rule KL = { uv | u ∈ K, v ∈ L }.
If some words u, v, w ∈ A∗ satisfy uv = w, then u and v are called a prefix and
a suffix of w, respectively, and we write u = wv−1 and v = u−1w. We will also
use the notation A−1L = {w ∈ A∗ | Aw ∩ L 6= ∅ }. And if uvw = z for some
u, v, w, z ∈ A∗, then v is called a factor of z.

2 Main Result

We are going to prove our result in the following form:

Theorem 1. It is undecidable whether given three finite languages K, L, M
satisfy KnM = LnM for every non-negative integer n.

This result can be easily translated to undecidability results for the problems
of equivalence of finite substitutions on a∗b and equivalence of finite transducers.
If we consider for finite languages K, L, M the substitutions ϕ, ψ : {a, b}∗ → A∗

defined by ϕ(a) = K, ψ(a) = L and ϕ(b) = ψ(b) = M , then Theorem 1 can be
directly reformulated in terms of deciding equivalence of finite substitutions as
follows:

Corollary 1. Equivalence of finite substitutions on the binary language a∗b is
undecidable.

As in [8], the language a∗b can be replaced by a two-state automaton with
outputs of loops in the initial state defined according to K or L and outputs of
transitions leading to the final state defined according to M ; this way our result
immediately implies undecidability of equivalence of finite transducers of a very
special form.

Corollary 2. It is undecidable whether given two nondeterministic two-state
finite transducers with unary input alphabet, whose all transitions start from the
initial state, are equivalent.

Equivalence of Finite Substitutions 3

3 Proof of the Result

The rest of the paper is devoted to proving Theorem 1. The proof generally fol-
lows the idea used to prove the analogous result in [8] for the equality NKnM =
NLnM . We encode into our problem the universality problem for blind counter
automata with all states final; these automata were first studied by Greibach [3],
and the universality problem for the restricted class of blind counter automata
we consider was proved undecidable by Lisovik [10] (see also [6]). A blind counter
automaton consists of a nondeterministic finite automaton and one counter that
can assume arbitrary integer values. Each transition of the automaton reads
a letter from the input and possibly modifies the counter by either adding or
subtracting one. No information about the current value of the counter is avail-
able to the automaton. The automaton accepts a given word if, starting from
the initial state and zero-valued counter, it can read the word so that at the end
the counter returns back to zero. We can assume that the automaton works over
a binary alphabet {a, b} (see [7, Corollary 1.2]).

Formally, such an automaton is a triple S = (S, 1, δ), where S = {1, . . . , s}
is its set of states, that we denote simply by numbers, 1 is the initial state, and
δ = {t1, . . . , tt} ⊆ S × S × {a, b} × {−1, 0, 1} is the set of transitions, where
a transition tq = (i, j, x, k) starting from the state i and leading to the state j
is labelled by x and has value k. Without loss of generality, we additionally
assume that the initial state 1 is not reachable from the other states and that all
transitions starting from the initial state have value zero. The set of all states
reachable from a state i by a path labelled by a word v ∈ {a, b}∗ and having
the sum of values of its transitions p will be denoted δ∗(i, v, p). The automaton
accepts a word v ∈ {a, b}∗ if δ∗(1, v, 0) 6= ∅.

In order to prove Theorem 1, we construct for each such automaton S finite
languages K, L, M such that the automaton accepts all words if and only if
these languages satisfy KnM = LnM for every n.

The main difference from the construction in [8] is that we have to encode
into the languages K and L not only transitions of the automaton and their
labels and values, but also the initial state.

The words inKnM encoding computations of S consist of many concatenated
copies of the words (wa)3 and (wb)3, where w is a certain word containing only
auxiliary letters distinct from a and b, which can be cut in different places
to represent the current state of the computation or the currently performed
transition. A word read by the automaton S represented by a given element of
KnM is obtained by replacing every copy of (wa)3 by a and every copy of (wb)3

by b. The values of transitions are encoded as the number of words from K
needed to construct the corresponding copy of (wa)3 or (wb)3. For zero-valued
transitions, the corresponding word is constructed using one element of K; for
decrementing transitions, already one half of an element of K builds the whole
word; and for incrementing transitions, one and a half element of K is needed.

In order to achieve this, all words in K and L will be in fact constructed by
concatenating two words from a certain language L1 of basic building blocks.

4 Michal Kunc

The language L ⊇ K is constructed so that LnM contains in addition to
the words of KnM exactly words obtained by concatenating n copies of words
(wa)3 and (wb)3, so it allows to count the number of performed transitions and
to compare it with the values obtained by accumulating the numbers during the
production of a word in KnM . These numbers are equal if and only if the sum
of transition values of the computation corresponding to the word from KnM
is zero. Therefore the equality KnM = LnM becomes true precisely if all words
over {a, b} correspond to some computation of S that resets the counter to zero.

This is achieved by constructing L by adding to the language K two words
(the sublanguage J below) that start this counting. Since these initial words
belong to L, they can actually occur anywhere in the power Ln, and therefore
we need many auxiliary words in K for building words obtained in Ln by using
words from J inside the product.

Finally, the language M serves for stopping the computation at any state by
completing the currently unfinished copy of w.

The languages K, L, M will be defined over the alphabet

A = {a, b,#, $, a1, . . . , as, b1, . . . , bt, c1, . . . , ct, e, ē, f, f̄ , g, ḡ} .

First, consider the word w = #a1 · · · as$eēf f̄gḡb1c1 · · · btct, and note that
every letter occurs only once in w. We denote by xw the suffix of w starting
with x ∈ A. Let wx = w(xw)−1 be the corresponding prefix, and let xwy =
(wx)−1w(xw)−1 be the factor of w determined by letters x, y ∈ A. The fact that
the automaton S is in a state i will be represented by cutting the word w right
before the corresponding letter ai. Similarly, we will cut w before bq or cq if
the automaton is just performing the transition tq. Both letters bq and cq are
needed to deal with transitions incrementing the counter (to separate the three
blocks making up the corresponding copy of (wa)3 or (wb)3), only one of them
is needed for zero-valued transitions, and none for decrementing ones.

Now we take the two words responsible for starting counting in Ln:

J = {(wa)2we, (wb)
2wf}

Then we define an auxiliary language L0, which is a union of several languages
defined below. The first part of L0 consists of the two words from J and some
additional words used to compensate these two words whenever they occur in Ln

somewhere else than at the very beginning:

{#−1, ε,#, e, f, g}(wa)2we{$
−1, ε, $, ē, f̄} ∪

{#−1, ε,#, e, f, g}(wb)2wf{ē
−1, ε, $, ē, f̄} ⊆ L0

The rest of counting is performed by means of the words

{ewawg, fwbwg, gwawawe, gwbwbwf} ⊆ L0 .

These words will be compensated by

$wawg{f̄
−1, $, ē, f̄} ∪ ēwbwg{f̄

−1, $, ē, f̄} ∪

f̄wawawe{$
−1, $, ē, f̄} ∪ f̄wbwbwf {ē

−1, $, ē, f̄} ⊆ L0 .

Equivalence of Finite Substitutions 5

Now we add to L0 some words for every transition tq = (i, j, x, k). If it is an
initial transition, i.e. i = 1, then we add the words (wx)2wbq

and bq
wxwaj

. If
this transition decrements the counter, i.e. k = −1, then we add only the word

ai
wx(wx)2waj

. If k = 0 and i 6= 1, we add to L0 the words ai
wxwxwbq

and

bq
wxwaj

. And finally, if k = 1 then we add the words ai
wxwbq

, bq
wxwcq

and

cq
wxwaj

. This concludes the definition of L0.
We will denote by F the language consisting of all factors of words from

{wa,wb}∗. Let L1 consist of

L′
1 = $wawg{#, e, f} ∪ ēwbwg{#, e, f} ∪ f̄wawawe{#, f, g} ∪ f̄wbwbwf{#, e, g}

and of all words of the form xuy, where x ∈ {ε, $, ē, f̄}, u ∈ L0 and y ∈
{ε,#, e, f, g}, such that either u /∈ F or

x 6= ε =⇒ xu /∈ F and y 6= ε =⇒ uy /∈ F .

We will also use the notations K0 = L0 \ J and K1 = L1 \ J . Note that in
particular L0 ⊆ L1 and K0 ⊆ K1.

Finally, define K = K2
1 , L = L2

1 and

M = {ε} ∪
⋃

i6=1

{ai
wg, f̄ai

wg} .

Claim 1. For every n ≥ 1, the languages K, L, M satisfy

LnM = KnM ∪ {(wa)3, (wb)3}nwg .

Proof. Since L ⊆ K, in order to prove the claim, it is enough to verify the
inclusions

{(wa)3, (wb)3}nwg ⊆ LnM , (1)

LnM ⊆ KnM ∪ {(wa)3, (wb)3}nwg . (2)

The inclusion (1) follows by induction on n using the empty word from M and
the formulas

(wa)3wg = (wa)2we · ewawg ∈ L ,

(wb)3wg = (wb)2wf · fwbwg ∈ L

for the basis of the induction and

{(wa)3, (wb)3}n(wa)3wg = {(wa)3, (wb)3}nwg · gwawawe · ewawg ⊆ Ln+1 ,

{(wa)3, (wb)3}n(wb)3wg = {(wa)3, (wb)3}nwg · gwbwbwf · fwbwg ⊆ Ln+1

for the induction step.
In order to verify (2) we take any 2n+ 1-element sequence σ belonging to

L1 × · · · × L1
︸ ︷︷ ︸

2n times

×M

6 Michal Kunc

whose concatenation does not belong to {(wa)3, (wb)3}nwg, and successively
modify σ to replace all words from J in this sequence by words from K1 without
changing neither the length of the sequence nor the resulting concatenation. We
distinguish several cases according to the word in σ directly preceding the word
from J . When writing parts of σ, we separate neighbouring words in the sequence
by means of the multiplication sign.

Let us start with the case of a word from J preceded by a word from L′
1.

Then the word from J can be replaced using one of the following rules:

$wawg{#, e, f} · J = $wawf̄ · f̄{#, e, f}J ⊆ K0 ·K1

ēwbwg{#, e, f} · J = ēwbwf̄ · f̄{#, e, f}J ⊆ K0 ·K1

f̄wawawe{#, f, g} · J = f̄wawaw$ · ${#, f, g}J ⊆ K0 ·K1

f̄wbwbwf{#, e, g} · J = f̄wbwbwē · ē{#, e, g}J ⊆ K0 ·K1 .

Next we deal with words from L1 with y = ε, i.e. of the form xu, where
x ∈ {ε, $, ē, f̄} and u ∈ L0. First, observe that no word from L0 ends on a or b,
and therefore xu# ∈ K1. This allows us to replace any word from J following xu
by means of the inclusion

xu · J = xu# · #−1J ⊆ K1 ·K0 .

Now consider the other words from L1, i.e. of the form xuy, where x ∈
{ε, $, ē, f̄}, u ∈ L0 and y ∈ {#, e, f, g}. In this case we have xu ∈ L1. If xu ∈ K1

then we can use

xuy · J ⊆ K1 ·K0 .

And if xu ∈ J then xu ∈ K0{$, ē} and from the inclusion yJ ⊆ L0 \F we obtain

xuy · J ⊆ K0{$, ē}(L0 \ F) ⊆ K0 ·K1 .

It remains to deal with a word from J that is the first word of σ. We can
assume that it is already the only word from J in σ. Let us take the longest
initial part ρ of σ which is also an initial part of some of the sequences of the
form

{(wa)2we · ewawg , (wb)
2wf · fwbwg} · {gwawawe · ewawg , gwbwbwf · fwbwg}

∗ .

If the length of ρ is greater than one, we replace every word belonging to ρ except
for the last one according to the following rules: (wa)2we by (wa)2w$ ∈ K0,
(wb)2wf by (wb)2wē ∈ K0, ewawg by $wawf̄ ∈ K0, fwbwg by ēwbwf̄ ∈ K0,

gwawawe by f̄wawaw$ ∈ K0 and gwbwbwf by f̄wbwbwē ∈ K0. Observe that
this modification does not affect the concatenation of these words of ρ except
for losing one letter at the end, which is one of $, ē and f̄ , depending on what
the last word of ρ is. This letter together with the last word of ρ forms one of
the following words, that remain to be dealt with: $wawg , ēwbwg , f̄wawawe and

f̄wbwbwf . If the sequence ρ consists of only one word, then we have to deal with

Equivalence of Finite Substitutions 7

this sole word, which belongs to J . Let us denote this remainder of ρ in both
cases by r, and let v be the word that follows r in σ.

First assume that the length of ρ is maximal possible, i.e. equal to 2n. Then
v ∈M is the last word of σ and the remainder r is either $wawg or ēwbwg. The
last word in σ cannot be the empty word ε ∈ M , since then its concatenation
would belong to {(wa)3, (wb)3}nwg. If the last word in σ is ai

wg ∈M , then it is
sufficient to add to v the redundant letter f̄ of r to obtain the word f̄ai

wg ∈M .
And if the last word in σ is f̄ai

wg ∈ M , then we replace r by one of the words

$wawg f̄ ∈ K0 and ēwbwg f̄ ∈ K0, and v by the word ai
wg ∈M .

Now assume that the length of ρ is smaller than 2n. If v ∈ L′
1 then r · v can

be replaced by a sequence from r{$, ē, f̄} ·A−1L′
1 ⊆ K0 ·K1. Otherwise, we have

v = xuy ∈ K1. If x ∈ {$, ē, f̄} then uy ∈ L1 and we distinguish two cases. For
uy ∈ K1, we replace r · v by rx · uy ∈ K0 ·K1. And for uy ∈ J , we replace it by
rx# · #−1uy ∈ K1 ·K0.

It remains to consider words v where x = ε. In this case we replace r in the
same way as the other words of ρ and denote by z the last letter of r, which is
again one of $, ē and f̄ . It remains to verify that the word zv belongs to K1, so
that we can use it instead of v. This is certainly true if zv does not start with
one of the pairs $e, ēf and f̄ g, since then we can take the letter z for x. So
assume that zv does start with one of these pairs. Observe that v cannot be one
of the words ewawg , fwbwg , gwawawe and gwbwbwf because of the maximality
of ρ. Therefore we have either

v ∈ ewawg{#, e, f} ∪ fwbwg{#, e, f} ∪ gwawawe{#, f, g} ∪ gwbwbwf{#, e, g} ,

which means that zv ∈ L′
1 ⊆ K1, or

u ∈ {e, f, g}(wa)2we{$
−1, ε, $, ē, f̄} ∪ {e, f, g}(wb)2wf{ē

−1, ε, $, ē, f̄} ,

in which case u /∈ F , and so z can be taken for x. ⊓⊔

To describe which words from {(wa)3, (wb)3}nwg belong to KnM we will use
the injective homomorphism ϕ : {a, b}∗ → A∗ defined by the rule ϕ(x) = (wx)3

for x ∈ {a, b}.

Claim 2. For every n ≥ 1, the languages K, M satisfy

KnM ∩ {(wa)3, (wb)3}nwg = {ϕ(v)wg | v ∈ {a, b}n, δ∗(1, v, 0) 6= ∅ } .

Proof. In order to prove the converse inclusion, we show by induction with re-
spect to the length of a word v ∈ {a, b}+ that if i ∈ δ∗(1, v, p) for some state i
and some integer p, then

ϕ(v)wai
∈ K

2|v|+p
0 . (3)

Starting with words of length one, take any x ∈ {a, b} and any transition from
the initial state labelled by x, which is by our initial assumption of the form
tq = (1, j, x, 0). Then

ϕ(x)waj
= (wx)2wbq

· bq
wxwaj

∈ K2
0 .

8 Michal Kunc

Now assume that (3) is true for some v, i and p, and consider any transition
starting from i, i.e. of the form tq = (i, j, x, k) with x ∈ {a, b} and k ∈ {−1, 0, 1}.
If k = −1 then

ϕ(vx)waj
= ϕ(v)wai

· ai
wx(wx)2waj

∈ K
2|vx|+(p−1)
0 .

For k = 0, we have i 6= 1 since the initial state is not reachable by v, and
therefore

ϕ(vx)waj
= ϕ(v)wai

· ai
wxwxwbq

· bq
wxwaj

∈ K
2|vx|+p
0 .

And finally, if k = 1 then

ϕ(vx)waj
= ϕ(v)wai

· ai
wxwbq

· bq
wxwcq

· cq
wxwaj

∈ K
2|vx|+(p+1)
0 .

This proves the induction step.
If we now take v ∈ {a, b}n such that i ∈ δ∗(1, v, 0), then (3) gives us ϕ(v)wai

∈
Kn, which implies

ϕ(v)wg = ϕ(v)wai
· ai
wg ∈ Kn ·M ,

as required.
Now we turn to the direct inclusion. Since all factors of words from the set

{(wa)3, (wb)3}nwg are in F , it is enough to consider only words from K and M
which belong to F . Observe that all words in K ∩F clearly belong to (K0∩F)2,
and that the language K0 ∩ F consists of the words

a1
wawaw$, a1

wawawe, (wa)2w$, a1
wbwbwē, a1

wbwbwf , (wb)2wē,

ewawg , fwbwg, gwawawe, gwbwbwf , $wawf̄ , ēwbwf̄ , f̄wawaw$, f̄wbwbwē

and additionally all words corresponding to the transitions of the automaton S.
It is easy to verify by induction on m that every word u ∈ Km

1 , which is a prefix
of a word from {wa,wb}∗, actually belongs to one of the following sets:

{wa,wb}∗{w$, wē, wf̄}

{ϕ(v)wai
| i ∈ δ∗(1, v, p), m = 2|v| + p }

{ϕ(v)(wx)2wbq
| i ∈ δ∗(1, v, p), tq = (i, j, x, 0) ∈ δ, m = 2|v| + p+ 1 }

{ϕ(v)wxwbq
| i ∈ δ∗(1, v, p), tq = (i, j, x, 1) ∈ δ, m = 2|v| + p+ 1 }

{ϕ(v)(wx)2wcq
| i ∈ δ∗(1, v, p), tq = (i, j, x, 1) ∈ δ, m = 2|v| + p+ 2 }

This in particular shows that u cannot belong to the language {(wa)3, (wb)3}nwg.
SinceM∩F contains, apart from the empty word, only words ai

wg, every element
of KnM ∩ {wa,wb}∗wg belongs to the set

{ϕ(v)wai
· ai
wg | i ∈ δ∗(1, v, p), 2n = 2|v| + p } .

This finally gives

KnM ∩ {(wa)3, (wb)3}nwg ⊆ {ϕ(v)wg | δ∗(1, v, p) 6= ∅, 2n = 2|v| + p, |v| = n }

⊆ {ϕ(v)wg | v ∈ {a, b}n, δ∗(1, v, 0) 6= ∅ } ,

which concludes the proof of the claim. ⊓⊔

Equivalence of Finite Substitutions 9

From these two claims we can now easily prove the main result.

Proof (of Theorem 1). It is sufficient to show that S accepts all words from
{a, b}+ if and only if the languages K, L, M constructed from S satisfy KnM =
LnM for every n. First assume that S accepts all words. Then Claim 2 gives us

KnM ∩ {(wa)3, (wb)3}nwg = ϕ({a, b}n)wg = {(wa)3, (wb)3}nwg ,

and therefore KnM = LnM by Claim 1. Conversely, if KnM = LnM then
Claim 1 implies {(wa)3, (wb)3}nwg ⊆ KnM , which turns Claim 2 into

{ϕ(v)wg | v ∈ {a, b}n, δ∗(1, v, 0) 6= ∅ } = {(wa)3, (wb)3}nwg ,

showing δ∗(1, v, 0) 6= ∅ for every word v ∈ {a, b}n. This proves that every word
in {a, b}+ is accepted by S. ⊓⊔

References

1. Albert, M.H., Lawrence, J.: A proof of Ehrenfeucht’s conjecture. Theoret. Comput.

Sci. 41(1) (1985), 121–123.
2. Culik II, K., Karhumäki, J.: Systems of equations over a free monoid and Ehren-

feucht’s conjecture. Discrete Math. 43(2-3) (1983), 139–153.
3. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter ma-

chines. Theoret. Comput. Sci. 7(3) (1978), 311–324.
4. Griffiths, T.V.: The unsolvability of the equivalence problem for Λ-free nondeter-

ministic generalized machines. J. Assoc. Comput. Mach. 15 (1968), 409–413.
5. Guba, V.S.: Equivalence of infinite systems of equations in free groups and semi-

groups to finite subsystems. Mat. Zametki 40(3) (1986), 321–324.
6. Halava, V., Harju, T.: Undecidability in integer weighted finite automata. Fund.

Inform. 38(1-2) (1999), 189–200.
7. Halava, V., Harju, T.: Undecidability of the equivalence of finite substitutions on

regular language. Theor. Inform. Appl. 33 (1999), 117–124.
8. Karhumäki, J., Lisovik, L.P.: The equivalence problem of finite substitutions on

ab
∗

c, with applications. Internat. J. Found. Comput. Sci. 14(4) (2003), 699–710.
9. Kunc, M.: The power of commuting with finite sets of words. To appear in Theory

Comput. Syst.

10. Lisovik, L.P.: An undecidable problem for countable Markov chains. Kibernetika

(2) (1991), 1–6.
11. Lisovik, L.P.: The equivalence problem for finite substitutions on regular languages.

Dokl. Akad. Nauk 357(3) (1997), 299–301.
12. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Mat.

Sb. 103(2) (1977), 147–236.
13. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin

(1997).

