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1 Introduction

In 1977 Mazurkiewicz [14] proposed free partially commutative monoids as a tool
for describing behaviour of concurrent systems. In this approach one represents el-
ementary actions with letters of a given alphabet; then an observation of a finite run
of a system is just a word over the alphabet. Two words are regarded as describing
the same behaviour whenever they can be obtained from each other by commuting
adjacent occurrences of letters representing concurrent actions. The mathematical
formalization for this concept is provided by considering finitely presented monoids
with their defining relations expressing commutativity of some of their generators.
Possible behaviours of a system then correspond to congruence classes modulo the
defining relations, which are called traces. In this way causal order of actions is dis-
tinguished from the order arising from sequentiality of observations.

1 Definition. Let Σ be a finite set and letI be a symmetric and reflexive binary rela-
tion onΣ . We call I an independence relationon Σ and the undirected graph(Σ , I)
an independence alphabet. The complement of this relationD = (Σ ×Σ)\ I is called
adependence relationand the graph(Σ ,D) adependence alphabet. Let∼I be the con-
gruence of the free monoidΣ∗ generated by the relation{(xy,yx) | (x,y) ∈ I}. The
quotient monoidΣ∗/ ∼I is denoted byM(Σ , I) and called atrace monoid. Elements
of this monoid are calledtraces.

Tracess, t ∈M(Σ , I) are calledindependentif alph(s)×alph(t)⊆ I \ id
Σ

holds.
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Let us recall that acodeis a finite set of words satisfying no non-trivial relation. As
codes naturally correspond to injective morphisms of free monoids, one can use this
characterization to generalize the notion of codes to trace monoids. Therefore a mor-
phism of trace monoids (trace morphism) is called acodingwhenever it is injective.

The basic decision problem of trace codings is the problem of determining whether
a given trace morphism is a coding. A decision procedure for injectivity of word mor-
phisms is well-known and for free commutative monoids injectivity coincides with
linear independence of images of letters. But for trace monoids the problem was
proved undecidable already in [10]. By means of the theorem of Aalbersberg and
Hoogeboom [1] the classical positive results can be extended to the case of codomain
monoids whose independence graph forms a transitive forest. Further work on classi-
fying monoids having the injectivity problem decidable has been done in [7, 9, 13, 15],
but the exact borderline between decidable and undecidable cases is still unknown.

In 1988 Ochmánski [16] formulated several problems about trace codings. One
of his conjectures, which was proved true in 1996 by Bruyère and De Felice, can be
stated as follows. It is easy to see that each trace morphismϕ is determined by a word
morphismψ of the corresponding free monoids through the commutative diagram

Σ∗ ψ−−−→ (Σ ′)∗

ν

y yν ′

M(Σ , I) −−−→
ϕ

M(Σ ′, I ′)

Such morphismsψ are calledliftings of ϕ and they satisfy the following claim.

2 Proposition ([3]). For an arbitrary trace codingϕ, every lifting ofϕ to the corre-
sponding free monoids is a coding.

Another Ochmánski’s question asked to give an algorithm deciding for any given
pair of trace monoids whether there exists a coding between them, i.e. whether the
first of the given monoids is isomorphic to a submonoid of the second one.

3 Definition. Let C be an arbitrary class of trace morphisms. Thetrace coding prob-
lem for the classC (in short C -TCP) asks to decide for given two independence
alphabets(Σ , I) and(Σ ′, I ′) whether there exists a coding fromM(Σ , I) to M(Σ ′, I ′)
belonging toC . If C contains all trace morphisms, then we talk briefly about the trace
coding problem (TCP).

The TCP appears to be rather intractable since there is no obvious enumeration
procedure either for all submonoids of trace monoids being itself trace monoids (due
to the undecidability of the injectivity of morphisms) or for the pairs of monoids where
no coding exists (as there are usually infinitely many candidates for being codings).
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The classical cases of the problem are simple: all finitely generated free monoids can
be embedded into the one with two generators and for embedding a free commutative
monoid into another one we need at least the same number of generators. These
characterizations were generalized in [2] to all instances of the trace coding problem
where the domain monoid is a direct product of free monoids. Some partial results
about the case of domain monoids being free products of free commutative monoids
were obtained in [4]. But in the full generality the problem remained completely open.

In connection with decision problems of trace codings, two particular classes of
trace morphisms were already considered:

• strong morphisms, introduced in [5],
• cp-morphisms, which were introduced in [8] as morphisms associated with

clique-preserving morphisms of independence alphabets.
In order to deal with the general case, we have generalized the latter notion and we re-
fer to the arising morphisms as weak. Let alph :Σ∗→ 2Σ denote thecontentmapping
assigning to every wordu∈ Σ∗ the set of all letters occurring inu.

4 Definition (1.2.4). A morphismϕ : M(Σ , I)→M(Σ ′, I ′) is calledstrongif

∀(x,y) ∈ I \ id
Σ

: alph(ϕ(x))∩alph(ϕ(y)) = /0 .

It is calledweakif alph(ϕ(x))×alph(ϕ(x))⊆ I ′ for all lettersx∈ Σ . And it is called
acp-morphismif it is weak and the image of everyx∈ Σ contains at most one occur-
rence of eacha∈ Σ ′.

We denote the classes of all strong and weak morphisms byS , W respectively.
TheS -TCP is known to be NP-complete due to the following result.

5 Proposition ([8]). Let (Σ , I) and (Σ ′, I ′) be independence alphabets and let H:
Σ → 2Σ ′

be any mapping. Then there exists a strong coding fromM(Σ , I) to M(Σ ′, I ′)
satisfyingalph◦ϕ|

Σ
= H if and only if for every x,y∈ Σ :

H(x)×H(y)⊆ I ′ \ id
Σ ′ ⇐⇒ (x,y) ∈ I \ id

Σ
,

H(x)×H(y)⊆ I ′ =⇒ (x,y) ∈ I .

2 Overview

The thesis consists of five chapters. Basic definitions and known results are recalled
in Chapter 1. In Chapter 2 we study properties of weak morphisms and the so-called
co-strong morphisms. The main result of this section shows that the problem of ex-
istence of weak codings is even more complex than the original problem for general
morphisms. The following Chapter 3 is devoted to proving the decidability of this
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problem for some classes of instances, which entails positive answers for the corre-
sponding cases of the original question. On the other hand, in Chapter 4 we prove
that in general the existence of codings from any given family of trace morphisms
containing all weak codings is undecidable, thus answering the Ochmański’s ques-
tion negatively. The final Chapter 5 is devoted to summarizing the main results.

Most of the material presented in the thesis (except for Section 2.3) is contained in
the paper [12] currently submitted for publication; main ideas of these results were
briefly described in the extended abstract [11].

3 Restricted Classes of Morphisms

Chapter 2 is devoted to the study of classes of trace morphisms defined by additional
requirements on contents of images of generators of the domain monoid.

In Section 2.1 we investigate properties of counter-examples to injectivity for weak
trace morphisms, introduce some techniques for manipulating weak morphisms and
develop several methods of disproving their injectivity.

The aim of Section 2.2 is to describe how the original trace coding problem is
connected with its analogue for weak morphisms. To reveal connections between
weak morphisms and general ones we employ the standard decomposition of traces
into primitive roots of connected components.

A traces∈ M(Σ , I) \ {1} is calledconnectedwhenever the graph(alph(s),D) is
connected. Clearly every traces∈M(Σ , I) can be uniquely decomposed as a product
of independent connected traces, which are referred to asconnected componentsof s.

A traces∈ M(Σ , I) is primitive if it is connected and for everyt ∈ M(Σ , I) and
n∈ N, the equalitys= tn impliesn = 1. It is well-known that any connected traces
is a power of a unique primitive tracet, called theprimitive rootof s.

For a trace morphismϕ : M(Σ , I)→M(Σ ′, I ′), we consider for every letterx∈Σ the
decomposition of the imageϕ(x∼I ) into primitive roots of connected components.
It is a fundamental property of primitive traces that they do not commute unless they
are equal or independent and therefore the substantial information characterizing their
behaviour is their content. So, we introduce sufficiently many new letters for each
possible content with the aim of replacing these primitive roots with them.

6 Definition (2.2.1). Let (Σ , I), (Σ ′, I ′) be independence alphabets. We define the
independence alphabet(Σ ′

Σ
, I ′

Σ
) as follows. LetΣ ′

Σ
= Σ ′∪ (C (Σ ′,D′)×Σ), where

C (Σ ′,D′) denotes the set of all connected subgraphs of(Σ ′,D′) with at lest 2 vertices.
For a wordu∈ (Σ ′

Σ
)∗, define itsextended contentealph(u)⊆ Σ ′ as

ealph(u) = (alph(u)∩Σ
′)∪

⋃
{A | (A,x) ∈ alph(u)\Σ

′} .
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Finally, for α,β ∈ Σ ′
Σ

, set

(α,β ) ∈ I ′
Σ
⇐⇒ ealph(α)×ealph(β )⊆ I ′ or α = β .

In this way we express every morphismϕ as a composition of a weak morphism
and a strong morphism.

7 Proposition (2.2.4).Let ϕ : M(Σ , I)→M(Σ ′, I ′) be a morphism of trace monoids.
Then there exist a weak morphismψ : M(Σ , I)→M(Σ ′

Σ
, I ′

Σ
) and a strong morphism

σ : M(Σ ′
Σ
, I ′

Σ
)→M(Σ ′, I ′) such thatσ ◦ψ = ϕ.

Clearly, if ϕ is a coding, the weak morphismψ must be a coding as well. On the
other hand, we can use Proposition 5 to find a strong coding for prolonging any coding
to the new codomain monoid into a coding to the original one.

8 Proposition (2.2.5).The following conditions are equivalent.
(i) There exists a coding fromM(Σ , I) to M(Σ ′, I ′).

(ii) There exists a weak coding fromM(Σ , I) to M(Σ ′
Σ
, I ′

Σ
).

(iii) There exists a coding fromM(Σ , I) to M(Σ ′
Σ
, I ′

Σ
).

As an immediate consequence of this result we obtain:

9 Theorem (5.1). If C is any class of trace morphisms containing all weak codings,
then there exists an effective reduction of the TCP to theC -TCP.

The following claim, which is proved by shifting calculations to the case of weak
codings using Proposition 8, allows us to restrict to instances of the TCP whose do-
main monoids have connected dependence alphabets.

10 Proposition (2.2.9).Let (Σi , Ii) for i ∈ {1, . . . ,n} and (Σ ′, I ′) be independence
alphabets. Then there exists a coding from∏n

i=1M(Σi , Ii) to M(Σ ′, I ′) if and only if
there existΣ ′

i ⊆ Σ ′, for every i∈ {1, . . . ,n}, such thatΣ ′
i ×Σ ′

j ⊆ I ′\ id
Σ ′ holds for every

i, j ∈ {1, . . . ,n}, i 6= j, and codingsϕi : M(Σi , Ii)→M(Σ ′
i , I

′) for every i∈ {1, . . . ,n}.

11 Theorem (5.2).The TCP is effectively reducible to instances with domain monoids
defined by connected dependence alphabets.

In Section 2.3 we consider the condition obtained by replacing the reference to the
independence relation in the definition of strong trace morphisms with the reference
to the corresponding dependence relation.

12 Definition (2.3.1).We call a morphismϕ : M(Σ , I)→M(Σ ′, I ′) co-strongif

∀(x,y) ∈ D : alph(ϕ(x))∩alph(ϕ(y)) = /0 .

We denote byC S the class of all co-strong trace morphisms.
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We prove that the construction of Section 2.2 can be performed also for the problem
of existence of co-strong codings, i.e. that theC S -TCP is effectively reducible to the
C S ∩W -TCP. There are two main differences between these situations. First, for
co-strong codings the new independence alphabet can be constructed independently
of the domain monoid. Second, in this case it is not enough to consider just one new
monoid; we have to introduce a set of monoids such that every co-strong morphism
factorizes through one of them.

We define the independence relationP(I ′) on the setC (Σ ′,D′) of all connected
subgraphs of(Σ ′,D′) by the rule:

(A,B) ∈P(I ′) ⇐⇒ A×B⊆ I ′ or A = B .

13 Proposition (2.3.7).Let ϕ : M(Σ , I)→M(Σ ′, I ′) be a co-strong morphism. Then
there existΣ1 ⊆ C (Σ ′,D′) satisfying

∀A,B∈ Σ1 : A∩B 6= /0 =⇒ A = B ,

a co-strong and weak morphismψ : M(Σ , I) → M(Σ1,P(I ′)) and a co-strong and
strong morphismσ : M(Σ1,P(I ′))→M(Σ ′, I ′) such thatσ ◦ψ = ϕ.

14 Corollary (2.3.10). For an arbitrary classC of co-strong trace morphisms con-
taining all co-strong and weak codings, there exists an effective reduction of the
C S -TCP to theC -TCP.

By means of proving the corresponding result for weak codings we also show that
if the domain dependence graph does not contain cycles of length 3, then one can
construct a co-strong coding whenever there exists an arbitrary coding.

15 Proposition (2.3.13).Let (Σ , I) and(Σ ′, I ′) be any independence alphabets such
that the graph(Σ ,D) is C3-free. Then there exists a coding fromM(Σ , I) to M(Σ ′, I ′)
if and only if there exists a co-strong coding fromM(Σ , I) to M(Σ ′, I ′).

4 Decidable Cases

In Chapter 3 we show that in some cases the existence of a weak coding between trace
monoidsM(Σ , I) andM(Σ ′, I ′) is equivalent to the existence of a choice of contents of
images of generators ofM(Σ , I) satisfying certain regularity conditions. This choice
is provided by a mappingf : Σ → 2Σ ′

; besides putting requirements onf assuring that
it allows us to define a weak morphism and guarding against linear dependence on free
commutative submonoids, we introduce a condition ensuring unique decipherability
on every submonoid ofM(Σ , I) generated by a subset ofΣ on which the dependence
relation forms a tree. Mappings satisfying these conditions are called wlt-mappings.

A crucial role in our considerations is played by those letters of the codomain al-
phabet which occur in the image of exactly one generator of the domain monoid.
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16 Definition (3.1.1).Let (Σ , I) and(Σ ′, I ′) be independence alphabets. Letf : Σ →
2Σ ′

be an arbitrary mapping and letx∈ X ⊆ Σ . The set ofcentral lettersfor X in f (x)
with respect tof is defined as

CX
f (x) = {a∈ f (x) |(∃y∈ X, b∈ f (y) : (a,b) ∈ D′) &

& (∀y∈ X : a∈ f (y) =⇒ x = y)} .

17 Definition (3.1.2).Let (Σ , I) and(Σ ′, I ′) be independence alphabets andf : Σ →
2Σ ′

a mapping. We callf a wlt-mappingfrom (Σ , I) to (Σ ′, I ′) if it satisfies the fol-
lowing conditions (W), (L) and (T).
(W) — weakness:

For everyx,y∈ Σ : (x,y) ∈ I ⇐⇒ f (x)× f (y)⊆ I ′.
(L) — regularity on linear parts:

For all X ⊆ Σ such thatX×X ⊆ I , there exists an injective mappingρX : X → Σ ′

satisfying∀x∈ X : ρX(x) ∈ f (x).
(T) — regularity on trees:

For all X ⊆ Σ such that(X,D) is a tree, there exist a letterx∈ X and an injective
mappingσX,x : {y∈ X | (x,y) ∈ D}→ Σ ′ such that for ally∈X satisfying(x,y)∈D

it holdsσX,x(y) ∈ f (y) and there existsa∈ CX
f (x) satisfying(a,σX,x(y)) ∈ D′.

Section 3.1 is devoted to discussing properties of wlt-mappings.
In Section 3.2 we first prove that in general the existence of a wlt-mapping is always

necessary for the existence of a weak coding.

18 Lemma (3.2.1).Letϕ : M(Σ , I)→M(Σ ′, I ′) be any weak coding. Thenalph◦ϕ|
Σ

is a wlt-mapping from(Σ , I) to (Σ ′, I ′).

Conversely, for some cases we show that to every wlt-mappingf one can construct
a weak codingϕ such that alph◦ϕ|

Σ
= f and we obtain the following result.

19 Proposition (3.2.3).Let (Σ , I) and (Σ ′, I ′) be independence alphabets such that
either M(Σ , I) is a direct product of free monoids or the graph(Σ ,D) is acyclic.
Then there exists a weak coding fromM(Σ , I) to M(Σ ′, I ′) if and only if there exists
a wlt-mapping from(Σ , I) to (Σ ′, I ′).

In Section 3.3 we present a solution of theW -TCP for all instances which have
the dependence alphabet of the domain monoidC3,C4-free (not containing cycles of
length less than 5) and whose codomain monoid is a direct product of free monoids.
Because the property of being a direct product of free monoids is preserved by the
construction of Definition 6, we obtain also the corresponding positive result for the
TCP by means of Proposition 8. But unlike in the cases covered by Proposition 19,
in this situation it is not true that for every wlt-mappingf there exists a codingϕ
such that alph◦ϕ|

Σ
= f . Our approach is based on calculating how many of the
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free submonoids of the codomain monoid have their elements employed by a given
wlt-mapping. We show that there are in fact always enough letters for constructing
some morphism whose injectivity is easy to prove.

20 Proposition (3.3.4).Let (Σ ,D) be an arbitrary C3,C4-free dependence alphabet
and letM(Σ ′, I ′) be a direct product of m free monoids over at least two generators
and n free one-generated monoids. Let M be the number of non-trivial connected
components of the graph(Σ ,D) and let N be the number of trivial ones. Let ai , bi for
i ∈ {1, . . . ,m} and ci for i ∈ {1, . . . ,n} be distinct letters and consider the monoid

M(Σ1, I1) =
m

∏
i=1
{ai ,bi}

∗×
n

∏
i=1
{ci}

∗ .

Then the following statements are equivalent.
(i) There exists a weak coding fromM(Σ , I) to M(Σ ′, I ′).

(ii) There exists a coding fromM(Σ , I) to M(Σ ′, I ′).
(iii) There exists a weak coding fromM(Σ , I) to M(Σ1, I1).
(iv) There exists a wlt-mapping from(Σ , I) to (Σ1, I1).
(v) |Σ |−M−N≤m and|Σ |−M ≤m+n.

As a direct consequence of Propositions 19 and 20 we obtain:

21 Theorem (5.3).TheW -TCP restricted to instances with independence alphabets
(Σ , I) and(Σ ′, I ′) satisfying one of the following conditions is decidable.

(i) M(Σ , I) is a direct product of free monoids.
(ii) The graph(Σ ,D) is acyclic.

(iii) The graph(Σ ,D) is C3,C4-free andM(Σ ′, I ′) is a direct product of free monoids.

Because the reduction described in Proposition 8 preserves the domain monoid,
we immediately deduce the following statements about general codings.

22 Corollary ([2]). The restriction of the TCP to instances whose domain monoids
are direct products of free monoids is decidable.

23 Corollary (5.5). The TCP restricted to instances with domain monoids defined by
acyclic dependence alphabets is decidable.

Proposition 20 also partially answers the question of Diekert [6] about the number
of free monoids needed for encoding a given trace monoid into their direct product.

24 Theorem (5.6).Let(Σ ,D) be a C3,C4-free dependence alphabet. Then there exists
a coding fromM(Σ , I) to ({a,b}∗)m if and only if m≥ |Σ |−M, where M is the number
of non-trivial connected components of the graph(Σ ,D).

Finally, the aim of Section 3.4 is to show that none of the assumptions of Proposi-
tion 20 can be avoided.
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5 The General Case

Chapter 4 is devoted to proving the undecidability of the TCP by a reduction of the
complement of the Post’s correspondence problem (coPCP), which is well-known not
to be recursively enumerable. The proof proceeds in two steps via the problem of
existence of weak codings with partially prescribed contents of images of letters.

The aim of Section 4.1 is to describe how the problem of existence of weak codings
satisfying certain requirements on contents of images of letters can be effectively
reduced to the TCP. We use two mappingsµ,ν : Σ → 2Σ ′

to specify these restrictions
on contents. A weak morphismϕ : M(Σ , I) → M(Σ ′, I ′) is called(µ,ν)-weakif it
satisfies for allx∈ Σ the conditionµ(x)⊆ alph(ϕ(x))⊆ ν(x).

First, we show how to specify mandatory letters defined byµ using only the map-
ping ν . There is nothing to take care of forx ∈ Σ such that|ν(x)| = 1 because
alph(ϕ(x)) = ν(x) is satisfied for everyν-weak codingϕ. The idea of the construc-
tion is to enrich each of the original alphabets with the same setΘ of new letters and
defineν(y) = {y} for everyy∈Θ ; since the behaviour of an arbitraryν-weak cod-
ing on these letters is obvious, they can serve as a skeleton for prescribing contents
of images of other letters. More precisely, to ensure that the image ofx under every
ν-weak coding containsa∈ Σ ′, we introduce a letter(x,a) ∈Θ dependent onx in the
domain alphabet and dependent only on the lettera in the codomain alphabet.

In a similar way we show that one can manage the content requirements even with-
out the mappingν . This time, we add to the alphabets mutually dependent cliques
of independent letters, each of them having sufficiently distinct size. Then one can
verify that images of elements of a given clique in the domain alphabet under a weak
coding use almost exclusively letters from the clique of the same size in the codomain
alphabet. So, in order to deal with the requirements for a letterx∈ Σ , we introduce
a clique which has all of its elements independent onx in the domain alphabet and
independent exactly on letters allowed in the image ofx in the codomain alphabet.
Because images of independent letters under a weak morphism always contain only
independent ones, this ensures that prohibited letters are never used. And since the
letters added to the codomain alphabet according to Definition 6 do not form in the in-
dependence alphabet any cliques bigger than those already existing, this construction
functions in the same way even if we use Proposition 8 to pass to the TCP.

Altogether, we obtain the following result.

25 Proposition (4.1.2 + 4.1.3).Let(Σ , I) and(Σ ′, I ′) be independence alphabets such
that the monoidM(Σ , I) is a free product of at least two non-trivial free commutative
monoids. Letµ,ν : Σ → 2Σ ′

be mappings satisfying for all x,y∈ Σ :

x I y, x 6= y =⇒ µ(x) = µ(y) = /0 ,

ν(x)×ν(x)⊆ I ′, x I y =⇒ ν(x) = ν(y) .
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Then one can effectively construct independence alphabets(Σ1, I1) and(Σ ′
1, I

′
1) such

that the following statements are equivalent.
(i) There exists a(µ,ν)-weak coding fromM(Σ , I) to M(Σ ′, I ′).

(ii) There exists a weak coding fromM(Σ1, I1) to M(Σ ′
1, I

′
1).

(iii) There exists a weak coding fromM(Σ1, I1) to M((Σ ′
1)Σ1

,(I ′1)Σ1
).

(iv) There exists a coding fromM(Σ1, I1) to M(Σ ′
1, I

′
1).

In Section 4.2 we construct a reduction of the coPCP to the problem of existence
of (µ,ν)-weak codings. It is enough to deal with those instances of the PCP where
neighbouring letters are always distinct. This enables us not to care about the numbers
of occurrences of letters in images under(µ,ν)-weak morphisms.

For every suitable instanceP of the PCP, we construct two independence alphabets
(Σ , I) and(Σ ′, I ′) and mappingsµ,ν : Σ → 2Σ ′

in such a way that all assumptions of
Proposition 25 are satisfied. In the outcome of our construction, counter-examples
to injectivity for (µ,ν)-weak morphisms correspond to solutions of the instanceP.
The domain alphabetΣ = Ω×{1,2} consists of one pair of letters for each element of
a certain setΩ . Letters from these pairs appear on opposite sides of counter-examples
to injectivity and correspond there to each other according to their first coordinates.
For each elementω ∈ Ω , the images of(ω,1) and(ω,2) underµ andν are together
used as one rule for a computation.

Computations of counter-examples to injectivity we deal with consist in construct-
ing and prolonging potential initial parts of such counter-examples, which we call
semi-equalities. We say that(u,v) ∈ Σ∗ × Σ∗ is a semi-equalityfor a morphism
ϕ : M(Σ , I)→ M(Σ ′, I ′) if there exists, t ∈ (Σ ′)∗ such thatϕ(u)s∼I ′ ϕ(v)t. We call
this semi-equalitynon-trivial if there do not exist wordsw, r ∈ Σ∗ such thatuw∼I vr.

If (u,v) is a semi-equality for a morphismϕ : M(Σ , I)→M(Σ ′, I ′), we can consider
the tracesu′,v′ ∈M(Σ ′, I ′) consisting of those occurrences of letters inϕ(u) andϕ(v)
which have no corresponding occurrence inϕ(v), ϕ(u) respectively. Then the pair
(u′,v′) is called thestateof (u,v) and the pair(red(u′), red(v′)) the reduced stateof
(u,v), where red(s) denotes the trace obtained froms by removing, for everya∈ Σ ′,
from each block of occurrences ofa which can be moved together by interchanging
neighbouring independent letters all but one occurrence.

All of the information we need to explore possible continuations of a semi-equality
is contained in its state. And every semi-equality for a weak morphism whose state
consists entirely of independent letters can be prolonged into a counter-example:

26 Lemma (2.1.22).Let ϕ be a weak morphism fromM(Σ , I) to M(Σ ′, I ′) such that
there exists a non-trivial semi-equality(u,v) for ϕ with a state(u′,v′) which satisfies
alph(u′v′)×alph(u′v′)⊆ I ′. Thenϕ is not a coding.

Because a counter-example has to be found regardless of numbers of occurrences
of letters in the images of elements ofΣ , the reduced state contains exactly the in-
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formation common to all the possible cases. The original alphabet of the instanceP
is made part of the alphabetΣ ′. A computation of a solution ofP is simulated by
appending the pairs of elements ofΣ to an already constructed semi-equality in the
way determined by its reduced state and by dependences between elements ofΣ ′ until
Lemma 26 can be applied; letters of the original alphabet are thus accumulated in the
desired way.

Finally, we define a special(µ,ν)-weak morphismϕ from M(Σ , I) to M(Σ ′, I ′)
and prove the following result.

27 Proposition (4.2.1).The following statements are equivalent.
(i) P has no solution.

(ii) ϕ is a coding.
(iii) There exists a(µ,ν)-weak coding fromM(Σ , I) to M(Σ ′, I ′).

As a side result, Proposition 27 immediately implies that injectivity is not decidable
for cp-morphisms, which reproves the main result of [7].

Propositions 25 and 27 together give an effective reduction of the coPCP to the
TCP and consequently the undecidability of the TCP.

28 Theorem (5.7).The TCP is not recursively enumerable.

The same assertion for certain classes of trace morphisms holds due to Theorem 9.

29 Corollary (5.8). If C is any class of trace morphisms containing all weak codings,
then theC -TCP is not recursively enumerable.
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