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Basic Notions

Semigroup S: set equipped with an associative binary operation -
Monoid M : semigroup with identity element1l (z-1=1-x = x)
Group (G: monoid where every element has an inverse (- rl=zx"1. 2= 1)
Subgroup of a semigroup = subsemigroup which is a group
(identity element of the subgroup need not be 1, but has to be idempotent, i.e. £ - * = )

Smallest monoid containing a semigroup S

. S if S is a monoid
S+ =
S U {1} if S contains no identity element

Homomorphism p: S — T ... p(zy) = @(x)p(y)
Monoid homomorphism ... additionally (1) = 1

Congruence pon S: equivalence p C S x Ssatisfyingz p 2’ &y py — xy p 2’y

Kernel of a homomorphism ¢: S — T
ker(p) = { (z,y) € S x5 | w(z) = ¢(y) }

Congruences = kernels of homomorphisms.



Words

A ... finite alphabet

A* ... monoid of all finite words over A with concatenation as operation
semigroup AT C A* ... empty word € excluded

Homomorphisms A* — M and A™ — S uniquely defined by any choice of images of letters.

Language L C A* recognized by a homomorphism ¢: A* — M to a finite monoid, if
L =@ YF)forsome FF C M.

Language L. C A™ recognized by a homomorphism ¢: AT — S to a finite semigroup, if
L= (F)forsome FF C S.

recognizable = reqgular

recognizing homomorphism provides a deterministic automaton for both L and its reverse:
set of states M
Oa(x) = x - ¢(a)
0L (2) = p(a) - @
initial state 1, accepting states I’



Ordered Semigroups

Ordered semigroup: monotone partial order < on S,ie.z < 2’ &y <1y — axy < 2’y

(ordinary semigroup ordered by =)
F C Supwardclosedw.rt. < ... ifz <yandx € F,theny € F

Language L C A* recognized by a homomorphism ¢: A* — M to a finite ordered monoid
(M, <),if L =@ 1(F) forsome ' C M upward closed w.rt. <.

Homomorphism ¢: A* — (M, <) induces a monotone quasiorder on A*:
u<,v = p(u) < )

(quasiorder = reflexive and transitive relation)
L C A* recognized by ¢ <= L upward closed w.rt. <,

Conversely, any monotone quasiorder < on A* determines a congruence on A*:
w~w = w<uw&uw <w
A*/ ~ ordered monoid: w~ < w'~ <— w <

projection homomorphismv: A* — A* /~



Syntactic Homomorphism

L ... alanguage over A
contexts of w € A* in L: Cr(w)=Ao(u,v) |u,v e A", uwv € L}

Syntactic monotone quasiorder of L on A*:
forw,w € A*, w<pw < Cp(w) C Cp(w)
Syntactic congruence = the corresponding equivalence relation:
w~pw = w<puw &w <pw
My = A*/ ~p  syntactic (ordered) monoid (with ordering induced by <)
wr: A* — A*/ ~p  syntactic homomorphism

M smallest (ordered) monoid recognizing L with respect to division (quotient of a submonoid)
M, finite <= L regular

for L C At: S = A"/~ syntactic semigroup

additional letters in alphabet —- new zero in the syntactic monoid (0 - £ = x - 0 = 0)

¢ (w) is idempotent if and only if Vu, v € A*,n € N: uwv € L <= uw™v € L



Products of elements of semigroups versus recognizing languages:
evaluation homomorphism:

eval: M* — M eval(xy...2,) =1 Ty

©: A* — M homomorphism
substitution f from M ™ to A* definedby f(z) ={a € A | p(a) = x }
Thenp Y (z)= f({z1... 2, E M* |21+ -2, = })



Transformations
@ ... a(finite) set

Full transformation monoid 7 (@) ... all mappings () — () with composition as operation

A = (Q, A, J) deterministic automaton without initial and final states
0q: @ — @ actionofa € A

determines homomorphism ¢: A* — 7 (Q), where p(a) = d,
w(w) = & extended transition function

{6* | we AT } subsemigroup of 7 (@) ... transition semigroup 7 (A) of A
e generated by 0, fora € A
e recognizes all languages accepted by A

transition monoid = 7 (A) U {idg }

syntactic semigroup = transition semigroup of the minimal automaton

Every semigroup S is isomorphic to a subsemigroup of 7 (S*):

0(y) =y = S={d, |z €S}

Partial transformations:  P7(Q) C 7(Q U {s}), where s is a new sink state



Group Languages

Finite transformation semigroup is a group
<—> contains only permutations
<—> minimal automaton is dually deterministic
<— minimal automaton does not contain the pattern

~
@

(automaton cannot remember letters, only counts)



Relations

Full relation monoid R(Q) 2 7 (Q) ... all binary relations on () with composition as operation

(p,q) €Eco0d <= Are: (p,r)ea& (r,q) €06

A = (Q, A, d) non-deterministic automaton without initial and final states

ba ={(p,q) €Q xQ|(p,a,q) € }foralac A

determines homomorphism ¢: A* — R(Q)), where p(a) = d,

subsemigroup of R(Q) generated by mappings 9, recognizes all languages accepted by A



Monogenic Subsemigroups

x € S generates the subsemigroup (z) = {z" |n € N}
Case 1:  (x) infinite, isomorphic to (N, +)
p g2 > a3 s
Case 2: there exist smallest index 2 > 1 and period p > 1 such that TP = gt

N

- '\.
/.

{2, ..., 2P~ 1} cyclic subgroup of S
¥ = lim 2™ = z!°' unique idempotent in (), identity element of the subgroup
n—=o

periodic semigroup = all monogenic subsemigroups are finite
finite —— periodic

idempotents are exactly elements % forx € S



Green’s Relations

I C S left (right) ideal of S ... ST C I (IS C I)
I C Sidealof S... SIS C 1T

left (right) ideal generated by x € S ... Stz (xS
ideal generated by x € S ... StxS?!

Green’s quasiorders:

y<px <= SlyC Sy <= ye Sz
y<pz <= yS!' CzS! <— yeczS!
y<sxv < StyStC SlzS! «— yc StzS!

Y<cT = Yz <rx2

Y<rRT = 2y <R 2T

StaSt ={yeS|ly<sz}

Green’s equivalence relations:

r Ly <= y<pz&y<pz < Stz =Sy
TRy < y<pz&ky<rpzr < zS'=yS!
rJy <= y<sa&y<saz < StxsSt=9s!



guasiorders induce partial ordering of the corresponding classes
multiplying element from any side ~» descending in the ordering of [/ -classes

multiplying element from the left (right) ~» descending in the ordering of L(R)-classes

In a monoid, invertible elements form the top ./ -class, which is a group.
Zero always forms a one-element bottom ./ -class.

Every semigroup has at most one minimal / -class.



Lemma: LoR =RoL

Proof:
rRyLz = y=xs,x=yt,z=uy,y = vz
w=uyt =ur =zt — x =yt = vzt = vuylt = vw, z = Uy = uxrs = uYts = ws

.8
H
X Y
u- | Tv
w z
H
-1

Remaining Green’s equivalences: H=LNRKR, D=LoR
rDy < sRNYLA() <— zLNYR #
HCLMR)SDCJ

eggbox ... D-class row ... R-class column ... L-class cell ... H-class



Bijections Between HH-Classes

.8
H
T y
u- | T v
w z
H
-1

-s and -t mutually inverse bijections between L-classes of x and ¥, which preserve R-classes

u- and v- mutually inverse bijections between R -classes of x and w, which preserve L-classes

~>  bijections between all H-classes in a D-class



Examples:

A*-

u <, v < visasuffix of u

u <R vV <= wvisaprefixof u

u <7 v <= v is afactor of u

uJv <<= uDv <<= ulv <<= uRv <= uHv << u=wv

( -trivial semigroup)

T(Q)
p<ro < Im(p)
p <r o0 < ker(p)
p<g o < [Im(p)| < |Im(o)]

pDo <« pJo < [Im(p)| = Im(o)|



Schutzenberger Groups

M monoid, H H-class of M
(right) Schiitzenberger group I'(H ):  all bijections of H of the form x +— xs, where s € M

D(H)| = [H]

Schutzenberger groups of H-classes in the same D-class are isomorphic.

For every H-class H, either H> N H = () or H is a subgroup maximal w.r.t. inclusion and

isomorphic to its Schitzenberger group.

Maximal subgroups are precisely H{-classes containing an idempotent.



Theorem: In every finite (periodic) semigroup, D = J.

Proof:
rJy = 3p,q,steSx=pyq y=sxt
y = spyqt = (sp)°y(qt)® = --- = (sp)?y(qt)” = (sp)*(sp)“y(qt)* = (sp)“y
v Lyqg  r=p-yq
yq = (sp)“yq = (sp)“ 'spyq = (sp)“ s - @
yRyqg  y=yqt)” =yq-t(qt)!



Example:  subsemigroup of P7 (2)

=
y- | T xy
T | yx Y
0
I ¢ —>o Y e<— o
LY ° ° Yyr. e °



Similar example:  subsemigroup of P7 (2)

=
Yyl T xy
1| yz y
0
I o—> o Y. Y —
LY ° ° Yr. ¢ — > o



More interesting example:  subsemigroup of 7 (3)

s
T: .5. xQ:l .3 Y
U @
2 l/o@ 2 ‘>o 22

x and z belong to the same L-class of 7 (3)



Basic Properties of Green’s Relations in Finite Semigroups

Lemma: S finite semigroup, x,y € S suchthatx <, yandx J y. Thenx L y.
Proof: x = sy = y = tou = tsyu = (ts)“yu® = (ts)* " tsy = (ts)“ 1tz
Reformulations: In any finite semigroup:

or<s15s = xRuxS
oL <Y — T <gY

Corollary: In any finite semigroup, sxt H x — sx 'H xt 'H x.

Proof: st <, x,x <p sx,sx J x



Lemma: If x and y are J -equivalent elements of a finite semigroup, then xy J x if and only if

there exists an idempotent e such that z £ e R y. In that case, we have z 'R xy L y.

Proof of “<—=":
r=3sey=et — xy = seet = xt
-1
H
x Y
s 1

|
<




Lemma: If x and y are [/ -equivalent elements of a finite semigroup, then xy J x if and only if

there exists an idempotent e such that z £ e R y. In that case, we have x ‘R xy L .
Proof of “=—-":

ry <rr&xyJxr = xyRx

vy <cy&ayJy = zy Ly

r=1xys &y =try — (tr)? = totarys = trys = tw

Y
H

te | 1z

@ |



Recalling example:  subsemigroup of P7 (2)

=
Yyl T xy
1| yz y
0
I o—> o Y. Y —
LY ° ° Yr. ¢ — > o



Regular Elements

Y is a (semigroup) inverse of z, if xyr = x & yry =y
x € S'is regular = has an inverse

x belongs to a subgroup — x is regular

y inverse of v = xy and yx are idempotents in the same D-class

Y
H
X LY
y- | T -
yxr Y
%
‘T

xr € Sregular < Jy,z2 € S:x = (yz)?y  (nverseis z(yz)“ 1)



Examples:

AT no regular elements

T(Q)
pis idempotent <= Vq € Im(p): p(q) = ¢
p belongs to a subgroup <= p|im(p): Im(p) — Im(p) is a bijection

<= Im(p) forms a transversal (set of representatives) of ker(p)

every element is regular



Regular D-Classes

Example:

a D-class of 7 (3) with two-element H-classes

r e |y f | O O
z g |w Ut 4
O OO Ojd 0O O

€.

‘\.3 f

O U U

Idempotents R-related to x are € and f. Idempotents L-related to x are e and g.

Z has 4 inverses: x (group inverse), v, 2, U.



Regular D-Classes

Regular D-class — equivalent definitions:
1) Contains an idempotent.

2) Contains a regular element.

3) Every element is regular.

4) Every L-class and every R-class contains an idempotent.

2 — 3 ryr=x,yry =y, 2 = 8, T = 2t
2(ty)z = zyxs = xs = z, (ty)z(ty) = tyxy =ty

In a finite semigroup, a D-class is regular if and only if it contains some elements x and y

together with their product xy.

regular D-class ... products can stay there for arbitrarily many multiplications

Every idempotent is a left identity for its R -class and a right identity for its L-class.

Proof: t = es — exr —ees =es =



Theorem: (Miller & Clifford 1956)
There is a bijection between inverses of x and pairs of idempotents (e, f) suchthate R x L f;

there exists exactly one inverse y such thate £ y ‘R f, and it satisfies ry = e and yx = f.

Proof: ife = xs,takey = fs

r(fs)r=zxsr=er ==

(fs)x(fs) = fszs = fse= fs

*S

H
T e
J Y




Consequence:
Idempotents e and f belong to the same D-class if and only if there exist mutually inverse

elements x and ¢ such thate = xy and f = yux.
'Y

—

y- | T

J =yx Y

«—
X

Consequence:

Two H-classes in the same D-class, which contain an idempotent, are isomorphic subgroups.

Proof: isomorphism z — yzx, where x and y are mutually inverse elements such that e = xy

and f = yz.



0-Simple Semigroups

Simple semigroup = has no proper ideal = has only one [/ -class

Null semigroup ... S2 = {0}

0-simple semigroup ... S? # {0} & exactly two ideals {0}, S (two J-classes {0}, S'\ {0}
S simple = S U {0} 0-simple

A finite semigroup S is simple <= Vz,y € S: 2¥ 7! = 2 & (zyz)¥ = 2¥.

Regular language is recognizable by a finite simple semigroup if and only if its minimal

automaton does not contain the pattern

Equivalent formulation:

For any letters a, b € A, Im((Sa) forms a transversal (set of representatives) of ker(éb).



Structure of D-Classes

Rees quotient:

Tidealof S,  S/I=(S\I)u{0}

(subset I C S downward closed w.r.t. J becomes zero of S/ )
corresponds to congruences of the formidg U I X [

Divisibility in regular D-classes:
D regular D-class, e € D idempotent, xt R e =— x € eDande € D
Y

—

x e =1xy

[ =yx Y

«—
‘L

Consequence:
Dregular Dclass,z,y € D — dze€e D:xe€zD&zexD &ye Dz& z € Dy



Principal Factors

Principal factors of a finite semigroup S:

e bottom D-class (= least ideal) is a simple semigroup

e D non-regular D-class = D U {0} = S'DS'/(S'DS' \ D) is a null-semigroup
e D regular D-class = D U {0} = SDS/(SDS \ D) is a 0-simple semigroup

Principal factors of homomorphic images:
S, T finite semigroups, ¢ : S — I’ onto homomorphism
VeeS, zeT: 2<7p(r) < Jy<72x: 0y ==z

D a D-class of T', choose = 7 -minimal in ¢~ 1(D)
Theny <7 = ¢(y) <7 p(x). — D is the image of D

Every principal factor of I’ is image of a principal factor of .S' via homomorphism induced by (.

Every (maximal) subgroup of T’ is of the form (&) for a (maximal) subgroup G of S.
Proof:
e € T idempotent = exists idempotent f € S: o(f) = e & f J-minimalin ¢! (eH)

(p(y) He = o(y”) = o
eH = p(fH): x € Ssatisfiesp(x) He = o(fof) =¢(x)& fef H f



Classification of Finite O-Simple Semigroups

Rectangular bands: R and L arbitrary finite sets
multiplicationon R x L: (r,£) - (', £") = (r, 1)
(rl) R (r',0) < r=r' (r, ) L (r' 0 <= =1

all H-classes are trivial groups

S simple = "H is a congruence, S/’H is a rectangular band and all H-classes are

iIsomorphic groups

Rees matrix semigroup: R and L finite sets, (G finite group
P = (per)eer, rer ... L x R-matrix with entries in G U {0} and with at least one

non-zero entry in every row and every column
multiplication on MY (R, L, G, P) = (R x G x L) U{0}:

(r,g-perr - g", ") ifpers #0

(T,g,g) ’ (r/’g/’gl) —
0 if pgrr =0

Matrix representation of M°(R, L, G, P):
(r, g, £) corresponds to the matrix with only one non-zero entry g in the position (7, £)
sandwich multiplication: M - N = M PN



Theorem: (Rees 1940)
A finite semigroup is 0-simple if and only if it is isomorphic to some 9M°(R, L, G, P).

Proof:

S ... 0-simple semigroup

(= ... Schutzenberger group of the non-zero D-class
R ... the set of R-classes, L ... the set of L-classes

choose a group H-class and elements ¢, and sy, forr € Rand ¢ € L

5 0
G Sy
tr' l
r Ly t'rgsf

Every element can be uniquely expressed in the form ¢,.gsy, forr € R, g € Gand ¢ € L.
(trgse)(trg'se) =t (gsetr g’ )se  ~>  setpe. = spt,. € GU{0}

Finite simple semigroups: all entries of P belong to GG



Repetitions in Products

Lemma: (cancellation rule in a [/ -class)

In every finite semigroup: * J vy J 2 J Yy = xyz — Yy = yz.

Proof: 4y R yz, x-is a bijection between R-classes of y and xy

Repetitions in products staying in the same 7 -class:

Lemma: J a J-class of a finite semigroup, x1 - - -, € J, [{i | x; € J}| > |J|.

Then there exist 7 < j suchthatx;,z; € Jandz; ---x; = ;.

Proof:

k smallest such that z;, € J

Vi>kixp--z;€J =

dk <i<j:xy,x; € J &y i =) - - - T; (by pigeonhole principle)
T i1 J X T Tig1- 2 T (g - Xim1)Ti(Tig1 - x5)
cancellationrule — x;---x; = x;



Finite Power Property

L possesses the finite power property <= In: LT =LUL?U---U L"

Does a given regular language L have the finite power property?
decidable (Hashiguchi 1979, Simon 1978)

Construction: (Birget & Rhodes 1984)
@: AT — S homomorphism recognizing L and L™
define mapping 7: AT — ©(S5?)
T(w) = { (o), p(u), o(v)) [ t,u,v € AT, w =tuv }
T induces a semigroup operation on 7(LT) C ©(S?) ~» T homomorphism

Theorem: For a regular language L, the following conditions are equivalent: (MK 2006)
e [ possesses the finite power property.
e Forallw € LT, there exists n such that w™ € LU --- U L™,
e Every regular D-class of 7(L™) contains some element of 7(L).
ot = LU...uLU+D"
7 ... maximal size of a J-class of S

h ... length of the longest chain of 7 -classes in 7(L ™)



Star-Free Languages and Aperiodic Semigroups

star-free language — definable by rational expression with union, concatenation and

complementation (without Kleene star)

Example: A = {a,b}, (ab)™ = al N 0bN Daad N ObY is star-free

Aperiodic semigroup S — equivalent definitions:
oVr e San: "t =27 (vt =a¥)

e periodic semigroup where all subgroups are trivial

Prohibited pattern in minimal automaton:

cycle labelled by a non-primitive word w™, n > 2  (counter-free automaton)

Lemma: Periodic semigroup is aperiodic <= H is trivial.

Proof y = s &z =ty = y = tys = t“ys¥ =t“Tlys® =ty ==z



M finite monoid, x, x1,...,x, € M.

Task: Describe all products y = x1 - - - &, satisfying y H x using union, concatenation,

complementation and descriptions of products belonging to higher ./ -classes.

Lemma: 1T, HT <

1. x1---x; R x forsome i < n,
2. T; X, L xforsomei <n,
3. X1y 27 T.

Proofof “<—=": y=x1---xp
Yy>72x&Yy<prr&y<prr — yRz&yLcx

These three conditions can be expressed using characterizations for higher / -classes by

considering positions 7, where they become true (1 and 2) or false (3). This is a local event.

Lemma:

x1---x; R xforsomer <= existstzsuchthatxy --x;—1 >7xandx;---x; R x.

Proof of “=—=": take the smallest? suchthatx;---x; R x



Lemma: &1 -+ Xy, Fg T <> either z; # 7 x for some i

OF Tjy1-* Tj_1 >g xrandx,; - x; *7 xforsomei < j.

Proof of “=—>": Take ? < j suchthatx; - --x; zj x and 7 — 7 is smallest possible.
i=j = x;, fgx
<] = Y=Tiy1- " Tjm1 25T
y>rxiy>gx and Yy >Rryr; >g T (minimality of x;yx ;)
Assumey J x. Thenz;y J yxr; J y,andsox;y L yandyxr; R y.
X

Y Y&

iy LiYxj

xi - -x; = x;yx; J y J x, contradiction

Therefore y > 7 .



Theorem: Regular language L is star-free <= ML) is aperiodic. ~ (Schiitzenberger 1965)

Proof: “=—=>" direct verification

“«—="(: A* — M homomorphism, where M is a finite aperiodic monoid, i.e. H-trivial
We prove that go_l(:c) is star-free for all z € M by induction downwards on > 7

e highest 7 -class = {1}:

e (1) =A"\ (A" {ac Alp(a) #1} A"
e induction step:

pw) =z <= p(w) Ha

o 1(x) = (RA*N A*L) \ A*JA*

R = U{gp 'Wa|yeM,ac A, y>72, ypla) Rz}

L=|J{ao ' W) yeM acA y>52 pla)yLa}
J={a€Al|pla) 27z}
UU{agp Yyb|lye M, a,be A, y >z, ¢(a b) #7 x}

M is H-trivial = ¢~ !(y) definable by induction assumption

Example: M((a?)") is a two-element group == (a?)" is not star-free



Occurrences of Idempotents in Products

S finite semigroup, F/(.S) the set of idempotents of S

Lemma: Vn > |S|: S =S-E(S)-S
Proof: 1,...,Z, € S
case 1. x1 - - - x; all different — some of them is idempotent

case2: r1---x; — X1 LiLi41 Ly —> X1 :ZC1°'°ZCi(£C7;_|_1'“£Cj)w

Theorem: For every finite semigroup S and k > 2 there exists n such that for every
x1,...,T, € Sthereisanidempotente € F(S)and0 < i1 < --- < iy < n satisfying
Ti41 T, =eforall < j <l <n.

follows directly from Ramsey’s theorem: graph nodes = positions inthe word x1 ... X,

colours = elements of S

Hall & Sapir 1996: S has n non-idempotent elements — every sequence of 2" elements

contains a factor evaluating to an idempotent (optimal value)



Factorization Forests

w: A* — M homomorphism to a finite monoid

factorization forest of (:
d: {we A* | |w| > 2} — (AT)" such that
if d(w) = (wy, ..., w,) then:
Dw=wi...wy
2) |w;| < |w|
AIn >3 = p(w)=plw)="-=p(w,) is idempotent
d provides for every word w a tree with root labelled by w, nodes labelled by its factors and

leaves by letters, which expresses successive factorizations of w up to letters.

Node with more than two successors —> all labels evaluate to the same idempotent.

height of d: (height of the highest tree)
h(a) =0 fora e A
h(w) = max{h(wy),...,h(w,)} +1 ifd(w) = (w,...,wy)

h(d) = sup{ h(w) |w e AT}



Example:

M = (Z,+)/2Z (two-element group)

o: {a,b}T = M  (a) =1, p(b) = 0 (identity element)
Minimal height of a factorization forest for ¢ is 5:

if [w|, odd, w = b¥aw, then

if [w|, even, w = bFoabt ... abk", then

((a,bF1a) ifn=2ky=ky=0
d(w) = < (b,...,b,ab*a,b,...,b, ... ab"=1a,b,...,b) otherwise
N — N—— N——
\ ko ko kn

word abbbabbbabbbabbba requires tree of height 5



Theorem: (Simon 1990, Kufleitner 2008)
Every morphism from A* to a finite monoid M has a factorization forest of height 3| M| — 1.

(tight bound for all finite groups; for aperiodic monoids height 2| M | is sufficient)

Proof idea: inductive construction w.r.t. ./ -classes
long products staying in the same 7 -class:
T1,...,Tp, L1 T, belong to the same J-class —
H-class of x; 41 - - 2 ; uniquely determined by R-class of ;11 and L-class of X
Tig1 2 T 2 &Tig1- x5 <pxj = Tiy1---T; L xj)
consider repetitions of the pairs (:r;q;ﬁ, ZCZ'_|_1R)

factors between places with the same pair belong to the same H-class

Equivalent formulation: For every homomorphism ¢ to a finite monoid there exists a regular
expression representing A* where Kleene star is applied only to languages L satisfying

(L) = {e} for some idempotent e.

Example of application: decidability of limitedness of distance automata (Simon 1990)



Polynomials

monomial of degree k over A
... language of the form A{ai A7 - - - ax A}, wherea; € Aand A; C A

polynomial = finite union of monomials

(languages of level 3/2 of the Straubing-Thérien concatenation hierarchy)

Factorization forest d gives for every w € AT a monomial Pd(w) of degree at most oh(d).
Py(a) ={a}fora € A

Pij(w) = Py(w1) - Py(ws) ifd(w) = (wq, ws)

Py(w) = Py(wy) - alph(w)™ - Py(w,) ifd(w) = (w1, ..., w,) withn > 3

Theorem: (Arfi 1991)

For a regular language L C A* the following conditions are equivalent:

1) L is a polynomial.

2) L is recognizable by a finite ordered monoid (M, <) where every idempotente € E (M) is
the least element of the subsemigroupe - {x € M |e <72}  -e.

) Vo, w e A*: pr(w) = ¢r(w?) & alph(v) C alph(w) = w <p wow



Proof of “2 — 1™

: A™ — M recognizes finite unions of languages { w € A* w) > x forx € M.
2 2

d ... factorization forest of ¢ of height 3| M |
Weverify { w € A* | p(w) > 2} = | Pa(w)

Jon

(this is a polynomial because degrees are bounded by

p(w)>z
23[M]y

w € Py(w)
It is sufficient to prove by induction that v € Py(w) = ¢(v) > ¢(w).

If d(w) = (wy,ws) thenv € Py(w) = Py(wy) - Py(ws)
= v = 0102, 9(v1) = p(w), p(v2) = p(wz)
= ¢(v) = p(v1v2) > plwrwz) = p(w)

If d(w) = (w1, ..., w,)withn > 3thenv € Py(w) = Py(wy) - alph(w)™ - Py(wy,)
—> v = ViUV, p(v1) > e(w1), p(vy) > w(w,), alph(u) C alph(w)

= p(u) e{z e M|pw)<ga}

= ¢(v) = p(v)p(u)p(vn) 2 pwi)p(u)p(wn) = p(w)p(u)e(w) = p(w)



Well Quasiorders



Recognizing Languages by Monotone Quasiorders

Monotone quasiorder < on A*: uw<ov&u<v — uu <vv

L recognized by < ... L upward closed w.r.t. <

monotone quasiorder < recognizes L. <= < contained in the syntactic quasi-order of L
(u<v = Cr(u) CCr(v) = u<pv)

Special case:

recognized by a congruence = union of its classes = recognized by the quotient monoid

recognizing by finite ordered monoids = recognizing by monotone quasiorders with finite index

Are there quasiorders on A™ with infinite index which recognize only regular languages?

all upward closed languages are regular <= all downward closed languages are regular

(closure under complementation)



Well Quasiorders (Wqo)

w € Lminimalin L C A*wrt. < <— VMuel:u<w = w< u)

Equivalent definitions of well quasiorder < on A*:
e Every infinite sequence of words contains an infinite ascending subsequence.

e For every infinite sequence (w; )72 there exist i < j such that w; < w;.
e Contains neither infinite descending chains E nor infinite antichains e e e ---

e Every upward closed language over A is finitely generated.
e Every non-empty language over A has some minimal element, but only finitely many
non-equivalent minimal elements.

e There is no infinite ascending sequence of upward closed languages.
Special case: Congruence of finite index is a monotone well quasiorder.

recognizing by monotone well quasiorders = recognizing by well partially ordered monoids



Theorem: (Ehrenfeucht & Haussler & Rozenberg 1983, de Luca & Varricchio 1994)
For any language L. C A™ the following conditions are equivalent:

1) L is regular.

2) L is upward closed w.r.t. a monotone wqgo on A*.

3) L is upward closed w.r.t. a left-monotone wqgo on A* and w.r.t. a right-monotone wqgo on A*.
(language upward closed w.r.t. a right-monotone wgo need not be regular)

Proof of “3 — 1"
Left and right syntactic quasiorders SKL and <’ are wqos.
w<bw = VueA uwel = ww €L) «— CL(w)C
w<Tw = (WweA"wvel = wvel) < C}(w)C Cy(w)
L non-regular = exists infinite sequence (w;)$2,, where C} (w;) # C4 (w;)
contains subsequence (uz),fil strictly increasing w.r.t. <€L

e.i<j = C%(w)C CL(uy)
CY (u;) is upward closed w.rt. <7 :

veCl(w)&v <t v = u; € CL(v) CCL(Y) = v € CL(w)
(CEL (u;))52 strictly increasing sequence of languages upward closed w.r.t. <7

contradicts that <’ is wgo



Nash-Willlams Minimal Bad Sequence Argument

How to prove a quasiorder to be wqo?

(X, <) ... aquasiordered set
X“ ... the set of infinite sequences (z;)2,, where x; € X
()2, € X“ bad sequence ... Vi,j: i <j = x; £ x;

<1 another quasiordering on .X, ~ the corresponding equivalence relation
quasiorder X “ lexicographically w.r.t. <:
()21 D (yi)52, <= eitherVi: x; ~ y;
ordn: x, <y, &Vi<n:x;~uy;
Lemma:

If X contains no infinite descending sequence w.r.t. < and < is not a wqo,

then there exists a bad sequence for < minimal w.r.t. <,

Proof: Inductively choose x; minimal w.r.t. < such that x1, ..., x; can be prolonged into a bad

sequence.

Proof method for wqo property:

Take a bad sequence and construct a smaller one.



Derivation Relations of Context-Free Rewriting Systems

Example: “scattered subword” relation

al...an < Ug@iUq . . .aply

context-free rewriting system R = {¢ —a|a € A}

< is the derivation relation =7, of I}

<is wqo (Higman 1952):
(w; )2, bad sequence minimal w.r.t. length quasiorder
infinitely many w; start with the same letter a:  w;, = avgfork =1,...,00
wi,...,Wi;—-1,V1,V2,... isabadsequence smaller than the original one

—> every language closed under inserting letters is regular

Unitary context-free systems:
R={e—w|weIl} where ] C A* finite
(to obtain standard context-free system, replace every rule € — w with rules a — aw and

a — waforalla € A)

Examples:
I = A: “scattered subword” relation
I ={aa|ae€ A}: generates Dyck language



Unitary Context-Free Systems

Theorem: (Ehrenfeucht & Haussler & Rozenberg 1983, D’Alessandro & Varricchio 2005)
For every unitary system R = {5 — W | wel } the following conditions are equivalent:

e =% isawgqo on (alph([))”

o =risawqgoon{w|e =% w}

o {w|ec=%w}isregular

e [ is unavoidable over alph([)

I C AT unavoidable over A — equivalent definitions:
e every infinite word over A has a factor belonging to

e there are only finitely many finite words over A without factors from [

o dn: A" C A*[ A~

Examples: A = {a, b}
I = {a?,b*} avoidable, I = {a?,b?, ab} unavoidable



General Context-Free Systems

Theorem: (Bucher & Ehrenfeucht & Haussler 1985)
For every context-free rewriting system R, the following conditions are equivalent:
e =7 isawqgoon A*
e {awa|ac A, we A", a=7% awa } is unavoidable over A
e{aw|ace A, we AT, a=FawtU{wa|a€ A we AT, a=% wal
is unavoidable over A

Are these conditions decidable?

Unavoidability is decidable for regular sets: I unavoidable <= A* \ A*I A* finite

But sets in these conditions are context-free.



Context-Free Derivations Defined by Homomorphisms

w: A* — (M, <) homomorphism
R={a—wl|lacA we A", pla) < p(w)}

S S — *
notation: jcp = :>R

u:>;’;v = U=4ay...an, a; € A
&V =101...U,, V; € AT
& p(a;) < p(vi)
=5 € <¢

w(A) = M = sufficient to take finite
R={a—bclabcc A pla)=pbc)jU{a—0b|pla) <)}

=, isawgo = sufficient to take finite

R={a—w|acA wemin{uec AT ||ul>2, p(a) < p(u)}}



Example:

M = (Z,+)/2Z (two-element group)

<lis =

o: {a,b}T = M  ¢(a) =1, p(b) = 0 (identity element)

* .
=2

a3 bab aba

\//\\/ \/A\/
\/ \/

a=7%a%, b=} b*|ba’b| babab {a?,b?, ba*b, babab} is unavoidable

Therefore :>:"0 is a wqo.

Example:

©o(a) # o(a?) = 0, two incomparable elements

—* is not wgo: a”

o cannot be rewritten; a“ avoids all awa such that a :>:‘0 awa



Theorem: (Bucher & Ehrenfeucht & Haussler 1985)
For every context-free rewriting system R, the following conditions are equivalent:

1) Foreveryregular L C A*, {w | Ju € L: u =7 w } is regular.

2)Foreverya € A, {w | a =7} w }isregular.

3) There exists homomorphism : A* — M to a finite ordered monoid such that :>}§z = :>:;.
Proof:

3= 2 a=phw <= pw)e{reM|z>¢)}

2 = 1. substitute {w |a =5 w }foreverya € Ain L

1 = 3. p4: AT — M, syntactic homomorphism to ordered monoid for { w | a =5 w }

p: AT — M = H M, gp(w) — (Soa(w))aEA

acA
o(b) < p(w) <= Va € AVu,v € A*: a =5 ubv = a =7 uwv

< b=>Rw



Problem: For which homomorphisms ¢ : A* — M to a finite ordered monoid is :>;'; wqo?

Theorem: (MK 2005)
For every homomorphism : A* — M to a finite unordered monoid (i.e. < is =),

ig*p isawgo <= @(A*) is a chain of simple semigroups.

Chain of simple semigroups S — equivalent definitions:
¢S =51U---USy,, where S; are pairwise disjoint, S; - S; € Spax{i
e Forevery x,y € S eitherxy J xorxy J .

S; ... simple semigroups, J -classes of S

Open problem: What about for arbitrary ordered monoids?



Computability of Closure

Is the upward closure of languages w.r.t. wgo :>ji% computable?
closure computable — emptiness problem decidable

For scattered subword ordering:
emptiness problem decidable & effective intersection with regular languages — computable
(van Leeuwen 1978)

(holds, in particular, for context-free languages)

In general: unknown even for closure of one letter.



Are there other monotone quasiorders than wqgos that recognize only regular languages?

Theorem:

For every decidable monotone quasiorder < on A* satisfyingu < v = |u| < |v|,
the following conditions are equivalent:

e All upward closed languages are regular.

e All upward closed languages are recursive.

e < is awqo.

(applies to all derivation relations of non-erasing context-free systems)



Wqos Defined by Other Rewriting Systems

Shuffle analogue:
rewriting rules w — w W, foru € 1,

i.e. wy ... W, — WoUiW] ...UWy, foruy ... u, €1

Theorem: (Haussler 1985)

—*isawqo <= [ is subsequence unavoidable

regularity conditions for permutable and periodic languages based on wqos defined by rewriting

(de Luca & Varricchio)



Closure Properties of Well Quasiorders

Closure properties corresponding to operations on finite monoids:

substructures: < monotone wgo on A* and f: B* — A* homomorphism
C quasiorder inducedon B*: uw C v <= f(u) < f(v)
Then C is a monotone wqo on B*.

quotients: < wqoon A* and C O < quasiorderon A* — L wqgoon A*

products: < and C monotone wgqos on A* — < N C monotone wqo on A*

< wgo on X and C quasiorder on Y
f: X — Y onto mapping satisfyingx <y = f(z) C f(y)
Then CisawqgoonY .

<wgoon X and C wgoonY = componentwise quasiorderingon X X Y is awqo



< wgo on X

quasiordering of X *:

ap...am Eby...b, &= J1 <0 < - <y <nsuchthata; < b;,
(infinite rewriting system: ¢ — a,a — b,fora < b, a,b € X)

Higman 1952: C isawgoon X ™

F ... the set of subsets of X upward closed w.r.t. <

D is notin generalwgo on F ~- Dbetter quasiorders

C is a wqo on the set of finitely generated downward closed subsets of X

(isomorphic to a subset of (F, D))



Language Equations



Language equation = equation over some algebra of languages
e constants: languages over A

® operations: concatenation, Boolean operations, ...

e finite set of variables V = { X1, ..., X, }

e solution: mapping ac: V — p(A*)

e long ago: explicit systems of polynomial equations — context-free languages

e today: renewed interest, surprising recent results

What are we interested in?
® expressive power, properties of solutions
e decidability of existence and uniqueness of solutions

e algorithms for finding (minimal and maximal) solutions



Explicit Systems of Equations
Corresponding to Basic Models of Computation



Description of Regular Languages

Example:

b
Xlz{g}UX2°CL X2:X1'bUX2'a

Regular languages = components of smallest (largest, unique) solutions of explicit systems
mn
Xi:KiUUXj°Lj7Z' izl,...,n
J=1
of left-linear equations with finite constants /; and L ;

Matrix notation: union instead of summation
row vectors X = (X;) and S = (K;), matrix R = (L, ;)
X=S5S+XR



Solving Explicit Systems of Left-Linear Equations

Theorem: (one direction of Kleene theorem)
Components of the smallest solution of the system X = S + X R can be constructed

from entries of R and S using U, - and .

The system as an automaton:
e language I; ; labels the transition from state j to state ¢

e a word from .S} is read when entering the automaton at state ¢

Proof:
The smallest solutionof X = S + XRis SR*, where R* = E+ R+ R?> + - --.
Inductive formula for computing R* as a block matrix:

*

A B (A+ BD*C)*  A*B(D + CA*B)*
C D D*C(A+ BD*C)* (D + CA*B)*



Description of Context-Free Languages

Example: Dyck language of correct bracketings over A = {(, ) }:
context-free grammar: X1 — e | Xao X, Xy — (X7)

system of language equations: X1 ={{e}UXy- X4 Xo ={(}-X1-{)}

Ginsburg & Rice 1962:
context-free languages — components of smallest (largest, unique) solutions of explicit systems
X, =F 1=1,...,n
of polynomial equations with finite PP; C (A U V)*

elegant matrix notation for some normal forms



Quadratic Greibach Normal Form

Every context-free grammar generating only non-empty words can be algorithmically modified so
that right-hand sides of rules belong to AV? U AV U A.

Construction: (Rosenkrantz 1967)

Start with Chomsky normal form, i.e. right hand sides in V2 U A.
Matrix notation: X = S 4+ XR,
where .S is a vector over p(A) and R is a matrix over p()).
Equivalently: X = SR*
Replace R* with matrix of new variables: X =SY Y = F + RY
In R replace every occurrence of variable X, with the set (SY ), C AV.

Remove e-rules.



Generalizations of Context-Free Languages

Conjunctive languages (Okhotin 2001):

e analogy of alternating finite automata and Turing machines for context-free grammars
e additionally intersection allowed in equations

® we can specify that a word satisfies certain syntactic conditions simultaneously

e for unary alphabet, smallest solutions are in EXPTIME and can be EXPTIME-complete
(Jez & Okhotin 2008)

(context-free unary languages are regular = ultimately periodic)

encoding in positional notation, e.g. binary notation of { a?" | n e N} is regular 10*



Linear conjunctive languages:

exactly languages accepted by one-way real-time cellular automata (Okhotin 2004)

«— Input word

< output value

Examples:

{wew | w € {a,b}" }, {a™b"c"™ | n € N}, all computations of a Turing machine



All Boolean Operations

Okhotin 2003:
components of unique (smallest, largest) solutions =

— recursive (recursively enumerable, co-recursively enumerable) languages

Boolean grammars (Okhotin 2004):

e semantics defined only for some systems
e generalization of conjunctive languages
® parsing using standard techniques

e C DTIME(n?) N DSPACE(n)
e used to give a formal specification of a simple programming language

Okhotin 2007:
equations with concatenation and any clone of Boolean operations

(concatenation and symmetric difference: universal)

Arithmetical hierarchy:
e components of largest and smallest solutions w.r.t. lexicographical ordering
® |evels characterized by the number of variables in equations (Okhotin 2005)



Implicit Equations



Equations over Words

® constants are letters, for variables only words are substituted

e for instance, solutions of equation xba = abx are exactly z = a(ba)"™, where n € Ny

e term unification modulo associativity

e PSPACE algorithm deciding satisfiability, EXPTIME algorithm finding all solutions
(Makanin 1977, Plandowski 2006)

e Conjecture: Satisfiability problem is NP-complete.

e satisfiability-equivalent to language equations with only letters as constants and concatenation:

shortlex-minimal words of an arbitrary language solution form a word solution

Satisfiability of language equations by arbitrary languages is undecidable for
e equations with finite constants, union and concatenation

e systems of equations with regular constants and concatenation (MK 2007)



Conjugacy of Languages

KM = ML ... languages K and L are conjugated via a language M
Words u and v are conjugated <— v can be obtained from u by cyclic shift.

MK 2007:
Conjugacy of regular languages via any language containing € is not decidable.
Satisfiability of systems K X = X L, A* X = A* is not decidable for regular languages K, L.

Cassaigne & Karhumaki & Salmela 2007:

Conjugacy of finite bifix codes via any non-empty language is decidable.

Open questions:
e removal of the requirement on €
e conjugacy of finite languages (satisfiability of equations with finite constants)

® conjugacy via regular or finite languages (satisfiability by regular or finite languages)



ldentity checking problem for regular expressions:

f, g regular expressions with variables X1, ..., X,, (union, concatenation, Kleene star, letters)

Does f(L1,...,Ly) = g(L1,...,Ly,) hold for arbitrary (regular) languages L1, ..., L,?
e trivially decidable (treat variables as letters and compare regular languages)
e decidable also with the shuffle operation (Meyer & Rabinovich 2002)

® open problems for expressions with intersection

Rational systems: (defined by a finite transducer)

Every rational system of word equations is algorithmically equivalent to some of its finite
subsystems —— satisfiability of rational systems of word equations is decidable.
(Culik Il & Karhumaki 1983, Albert & Lawrence 1985, Guba 1986)

Do given finite languages form a solution of the system { X" Z =Y"Z | n € N }?
undecidable (Lisovik 1997, Karhumaki & Lisovik 2003, MK 2007)



Language Inequalities Defining Basic Automata

Minimal automaton of a language L:

state reached by w € A* = largest solution of the inequality w - X,, C L
X = Xuwa

initial state X .

final states X,,, where w € L

Universal automaton of a language L

— smallest non-deterministic automaton admitting morphism from every automaton accepting L

state = maximal solution of the inequality X - Y C L
(X,Y) 5 (X)Y') <= aY' CY <= XaCX'
(X,Y) initial state <= ¢ € X

(X,Y)finalstate <= €Y



General Results About Language Inequalities

Jez & Okhotin 2008: Even for unary alphabet, finite constants, concatenation and union:

components of unique (smallest, largest) solutions =

— recursive (recursively enumerable, co-recursively enumerable) languages

Example: Minimal solutions of X UY = L are precisely disjoint decompositions of L.

In the presence of union and concatenation, interesting properties are demonstrated
by maximal solutions.



Systems of Inequalities with Constant Right-Hand Sides

P, C L, L; C A* regular, P; C (AU V)" arbitrary

maximal solutions: (Conway 1971)
e finitely many, all of them regular
e for context-free expressions P;: algorithmically regular
® every solution is contained in a maximal one

e all components are recognized by the syntactic homomorphism of the languages L;

Analogy: preservation of regularity by arbitrary inverse substitutions:
Largest solution of the inequality o(X) C A* \ Lis X = A*\ (o~ 1(L)).

Systems of equations with constant right-hand sides:
P =1, L; € A* regular, P; C (AU YV)* regular expression

e satisfiability by arbitrary (finite) languages is EXPSPACE-complete (Bala 2006)

e |s satisfiability decidable if P; can contain intersection?



General Left-Linear Inequalities

KoUX,KiU---UX, K, C LoUX,L,U---UX,L,

Kj, Lj regular —> basic properties of the inequality can be expressed using
formulae of monadic second-order theory of infinite |A\-ary tree

Example: bU Xa C X U Xba

X isasolution <= X(b) A (Va: X(2) = (X(za)V Iy: X(y) Az =ybd))
X minimal <= VY : (Yisasoluton AVx: Y(r) = X(z)) =
— (Va: X(z) = Y(2))

minimal solutions: e = “X holds” o = “X does not hold”
a ¢ a ©
SN N NN

Rabin 1969 —— algorithmically solvable using tree automata

a*Ub: ba™ :

very special case of set constraints (letters as unary functions)

EXPTIME-complete (even when complementation is allowed) (1994-2006)



Yet More General Left-Linear Inequalities

KoUX,KiU---UX, K, C LoUX,L,U---UX,L,

K ; arbitrary, L ; regular

largest solution: (MK 2005)
® reqular
e for context-free KX 4+ algorithmically regular

e direct construction of the automaton accepting the solution



Concatenations on the Right

Previous cases:

...CL constants on the right fix the context
XKU...CXLU... local modifications on one side

Next task:

...C XLY general concatenations on the right

We need to classify words according to their decompositions with respect to constant languages.



A Quasiorder for Dealing with Concatenations on the Right

Applying well-quasiorders to inequalities:

Construct a wgo on A* such that every solution is contained in an upward closed solution.

Systems of inequalities P; C ();

P, C (AU V)* arbitrary

(2; ... regular expressions over variables and languages recognizable by
a homomorphism ¢ : A* — (M, <)

Recalling definition:

U=5,0 <= U=Ga1...0n, c A
&V =11...Up,v; € AT
& p(a;) < o(v;)



Theorem: All maximal solutions are recognizable by the quasiorder ic*p.

Proof: « arbitrary solution
define 3(X) ={ue€ A" | e a(X):v=] u}, forevery X € V
B(X) 2 a(X)
(3 is a solution:
u€ fB(P;) = JvealP):v=7,u (because = is monotone)
we prove by induction on structure of ();:
vEa(Qi) &v=7u = ueB(Q;)
e subexpression of Q;, v € afe), v =7 u
e cvariable: u € 3(e) by definition of (3
e cconstant:  u € afe) C F(e) because p(u) > p(v)
e ¢ union or intersection:  u € 3(e) by induction hypothesis
ec=c¢1- €3 V=01 Vs U1 €aler) vy € ales)
definition of :>:‘0 — U = Up - U9, V1 :>:‘0 U1, U9 :>:‘0 U9
induction hypothesis = uq € ((e1), us € B(es) = u € f(e)

Every component of 3 is a finite union of languages of the form

(a1 ... an)sz =7 ((plar))<) -0 ({¢lan))<),  whereas,

(MK 2005)

a0 €A



Inequalities with Restrictions on Constants

Systems of inequalities P, C ();

P; C (AU V)* arbitrary

(); ... regular expressions over variables and languages recognizable by finite simple semigroups
(or all together by a finite chain of finite simple semigroups)

(can contain infinite unions and intersections, provided only finitely many constants are used)

MK 2005:

e All maximal solutions are regular.

e The class of polynomials of group languages is closed under taking maximal solutions
of such systems.

e If L is recognizable by a finite chain of finite simple semigroups, then every union

of powers of L is regular. (X C | L7, forarbitrary N C N)
neN



Semi-commutation Inequalities

XK CLX K arbitrary, L regular

largest solution:
e always regular (MK 2005)
e for context-free K : algorithmically recursive

e if ' and L finite and all words in K longer than all in L: algorithmically regular (Ly 2007)

Game: position: w € A*
attacker: chooses u € K
plays w — wu
defender: choosesv € L
WU = VW

plays wu — w

largest solution = all winning positions of the defender



Encoding Defender’s Strategies for Initial Word w

Labelled tree:
defender moves along the edges — removes prefixes of w

label = ~ -class of the current remainder of w

Example: w = abed, L = {a, ab, abede, be, ¢, cd, da}



Well-quasiordering Trees

w < v ...winning strategies of the defender for w can be used also for v

Example: [
s~ =5
/\/// \\QL
i\\ t < >t
- /\\
P _ q P q

Largest solution is upward closed with respect to <.

Kruskal 1960: < is wgo.



Simple Equations Possessing Universal Power

MK 2005:
Every co-recursively enumerable language can be described as the largest solution of any of the

following systems with regular constants K, L, M and V.

XK CLX XK CLX XK CLX
XCM XM CNX MX C XN

Special case: XL = LX
e formulated by Conway 1971
® positive results:

at most three-element languages, regular codes (Karhumaki & Latteux & Petre 2005)

MK 2007:
There exists a finite language L such that the largest solution C(L) of X L = LX is not

recursively enumerable.



Example: L regular, but C(L) non-regular

A:{aybacaeaéafafvgua}

L ={c.ef,ga,e, fg.fé.ag.é.4f, fgbag} UcM U McU
U A*DA*DA* U (A\ {cH)*b(A\ {cH)* \ N

M = efgatba* Uga*ba*§f Ua*ba*gfé U fga*ba*

N = {6f97 fg7gag} -a*ba” - {6,§,§f,§fé}

encodes simultaneous decrementation of two counters and zero-test

Configuration:  [[[e] f]gla"ba™ [g[f[é]]]



Simultaneous Decrementation of Both Counters

Attacker forces defender to remove one a on each side:

efgaba™

'

efga™ba" - §f — fga™ba"§f

l

ga™ba™ g f fgamban§f°c°c¢ L*. A

€fgCLm_1bCLn_1



Games That Can Be Encoded (Jeandel & Ollinger)

Example: a2Afk//,~*
. A*ba A*
d/ ’
a b~
————————— ® - o
ab
O e o e ° g

e — attacker should play modification on the left
o = defender should play — — — moadification on the right

position of the game: a vertex of the graph and a word

labels of attacker’s vertices: allowed words

labels of edges: words to be added by attacker or removed by defender

e when attacker modifies on one side, defender has to modify on the other

e bipartite graph for each type of edges

e at most one common vertex for any two connected components of different types

e only one type of edges leading from each of attacker’s vertices

e non-empty labels of edges only around one attacker’s vertex for each type of edges



Some Open Problems

e satisfiability of equations with concatenation (and union) over finite or regular languages
e satisfiability of equations with concatenation and finite constants

e Conjecture: (Ratoandromanana 1989)
Among codes, equation XY = Y X has only solutions of the form X = L™, Y = L".

Equivalently: Every code has a primitive root.

e regularity of solutions of other simple systems of inequalities, for example:
KXLCMX
KX CLX, XMCXN

® existence of algorithms for finding regular solutions
e methods for proving properties of conjunctive and Boolean grammars
e existence of non-trivial shuffle decomposition X LLI'Y = L of a regular language L

® existence of non-trivial unambiguous decompositions of regular languages



