Structure of Finite Semigroups and Language Equations

Michal Kunc
Masaryk University Brno
Outline

Structure of finite semigroups:

1) Green’s relations
2) Factorization forests
3) Examples of applications to regular languages

Well quasiorders

Systems of language equations:

1) Explicit
2) Implicit
Basic Notions

Semigroup S: set equipped with an associative binary operation \cdot

Monoid M: semigroup with identity element 1 \((x \cdot 1 = 1 \cdot x = x) \)

Group G: monoid where every element has an inverse \((x \cdot x^{-1} = x^{-1} \cdot x = 1) \)

Subgroup of a semigroup = subsemigroup which is a group
(Identity element of the subgroup need not be 1, but has to be idempotent, i.e. $x \cdot x = x$)

Smallest monoid containing a semigroup S:

\[
S^1 = \begin{cases}
S & \text{if } S \text{ is a monoid} \\
S \cup \{1\} & \text{if } S \text{ contains no identity element}
\end{cases}
\]

Homomorphism $\varphi: S \to T$ \(\varphi(xy) = \varphi(x)\varphi(y) \)

Monoid homomorphism \(\ldots \) additionally $\varphi(1) = 1$

Congruence ρ on S: equivalence $\rho \subseteq S \times S$ satisfying $x \rho x' \& y \rho y' \implies xy \rho x'y'$

Kernel of a homomorphism $\varphi: S \to T$:

\[\ker(\varphi) = \{(x, y) \in S \times S | \varphi(x) = \varphi(y)\}\]

Congruences = kernels of homomorphisms.
Words

A . . . finite alphabet

$A^* . . . \text{monoid of all finite words over } A \text{ with concatenation as operation}$

semigroup $A^+ \subseteq A^* . . . \text{empty word } \varepsilon \text{ excluded}$

Homomorphisms $A^* \rightarrow M$ and $A^+ \rightarrow S$ uniquely defined by any choice of images of letters.

Language $L \subseteq A^*$ recognized by a homomorphism $\varphi : A^* \rightarrow M$ to a finite monoid, if

$L = \varphi^{-1}(F)$ for some $F \subseteq M$.

Language $L \subseteq A^+$ recognized by a homomorphism $\varphi : A^+ \rightarrow S$ to a finite semigroup, if

$L = \varphi^{-1}(F)$ for some $F \subseteq S$.

recognizable = regular

recognizing homomorphism provides a deterministic automaton for both L and its reverse:

set of states M

$\delta_a(x) = x \cdot \varphi(a)$

$\delta^r_a(x) = \varphi(a) \cdot x$

initial state 1, accepting states F
Ordered Semigroups

Ordered semigroup: monotone partial order \(\leq \) on \(S \), i.e. \(x \leq x' \) & \(y \leq y' \) \(\implies \) \(xy \leq x'y' \)
(ordinary semigroup ordered by \(= \))

\(F \subseteq S \) upward closed w.r.t. \(\leq \) \(\ldots \) if \(x \leq y \) and \(x \in F \), then \(y \in F \)

Language \(L \subseteq A^* \) recognized by a homomorphism \(\varphi : A^* \rightarrow M \) to a finite ordered monoid \((M, \leq)\), if \(L = \varphi^{-1}(F) \) for some \(F \subseteq M \) upward closed w.r.t. \(\leq \).

Homomorphism \(\varphi : A^* \rightarrow (M, \leq) \) induces a monotone quasiorder on \(A^* \):

\[u \leq_{\varphi} v \iff \varphi(u) \leq \varphi(v) \]
(quasiorder = reflexive and transitive relation)

\(L \subseteq A^* \) recognized by \(\varphi \) \(\iff \) \(L \) upward closed w.r.t. \(\leq_{\varphi} \)

Conversely, any monotone quasiorder \(\leq \) on \(A^* \) determines a congruence on \(A^* \):

\[w \sim w' \iff w \leq w' \& w' \leq w \]

\(A^*/\sim \) ordered monoid: \(w \sim \leq w' \sim \iff w \leq w' \)

projection homomorphism \(\nu : A^* \rightarrow A^*/\sim \)
Syntactic Homomorphism

$L \ldots$ a language over A

contexts of $w \in A^*$ in L: $C_L(w) = \{(u, v) \mid u, v \in A^*, uwv \in L\}$

Syntactic monotone quasiorder of L on A^*:

for $w, w' \in A^*$, $w \leq_L w' \iff C_L(w) \subseteq C_L(w')$

Syntactic congruence = the corresponding equivalence relation:

$w \sim_L w' \iff w \leq_L w' \& w' \leq_L w$

$M_L = A^*/\sim_L$ syntactic (ordered) monoid (with ordering induced by \leq_L)

$\varphi_L: A^* \rightarrow A^*/\sim_L$ syntactic homomorphism

M_L smallest (ordered) monoid recognizing L with respect to division (quotient of a submonoid)

M_L finite $\iff L$ regular

for $L \subseteq A^+$: $S_L = A^+/\sim_L$ syntactic semigroup

additional letters in alphabet \implies new zero in the syntactic monoid ($0 \cdot x = x \cdot 0 = 0$)

$\varphi_L(w)$ is idempotent if and only if $\forall u, v \in A^*, n \in \mathbb{N}: uwv \in L \iff uw^nv \in L$
Products of elements of semigroups versus recognizing languages:

evaluation homomorphism:

\[\text{eval}: M^* \to M \quad \text{eval}(x_1 \ldots x_n) = x_1 \cdots x_n \]

\(\varphi: A^* \to M \) homomorphism

substitution \(f \) from \(M^* \) to \(A^* \) defined by

\[f(x) = \{ a \in A \mid \varphi(a) = x \} \]

Then \(\varphi^{-1}(x) = f(\{ x_1 \ldots x_n \in M^* \mid x_1 \cdots x_n = x \}) \)
Transformations

Q . . . a (finite) set

Full transformation monoid $\mathcal{T}(Q)$. . . all mappings $Q \rightarrow Q$ with composition as operation

$\mathcal{A} = (Q, A, \delta)$ deterministic automaton without initial and final states

$\delta_a : Q \rightarrow Q$ action of $a \in A$

determines homomorphism $\varphi : A^* \rightarrow \mathcal{T}(Q)$, where $\varphi(a) = \delta_a$

$\varphi(w) = \delta_w^*$ extended transition function

$\{ \delta_w^* \mid w \in A^+ \}$ subsemigroup of $\mathcal{T}(Q)$. . . transition semigroup $\mathcal{T}(\mathcal{A})$ of \mathcal{A}

• generated by δ_a for $a \in A$

• recognizes all languages accepted by \mathcal{A}

transition monoid $= \mathcal{T}(\mathcal{A}) \cup \{ \text{id}_Q \}$

syntactic semigroup $= \text{transition semigroup of the minimal automaton}$

Every semigroup S is isomorphic to a subsemigroup of $\mathcal{T}(S^1)$:

$\delta_x(y) = y \cdot x \quad S \cong \{ \delta_x \mid x \in S \}$

Partial transformations: $\mathcal{PT}(Q) \subseteq \mathcal{T}(Q \cup \{ s \})$, where s is a new sink state
Group Languages

Finite transformation semigroup is a group

\[
\iff \text{contains only permutations}
\iff \text{minimal automaton is dually deterministic}
\iff \text{minimal automaton does not contain the pattern}
\]

(automaton cannot remember letters, only counts)
Relations

Full relation monoid \(\mathcal{R}(Q) \supseteq \mathcal{T}(Q) \) ... all binary relations on \(Q \) with composition as operation
\[
(p, q) \in \sigma \circ \delta \iff \exists r \in Q: (p, r) \in \sigma \land (r, q) \in \delta
\]

\(A = (Q, A, \delta) \) non-deterministic automaton without initial and final states
\[
\delta_a = \{ (p, q) \in Q \times Q \mid (p, a, q) \in \delta \} \text{ for all } a \in A
\]
determines homomorphism \(\varphi: A^* \to \mathcal{R}(Q) \), where \(\varphi(a) = \delta_a \)
subsemigroup of \(\mathcal{R}(Q) \) generated by mappings \(\delta_a \) recognizes all languages accepted by \(A \)
Monogenic Subsemigroups

$x \in S$ generates the subsemigroup $\langle x \rangle = \{ x^n \mid n \in \mathbb{N} \}$

Case 1: $\langle x \rangle$ infinite, isomorphic to $(\mathbb{N}, +)$

\[
\begin{array}{c}
x \\
\rightarrow x^2 \\
\rightarrow x^3 \\
\rightarrow \cdots
\end{array}
\]

Case 2: there exist smallest index $i \geq 1$ and period $p \geq 1$ such that $x^{i+p} = x^i$

\[
\begin{array}{c}
x \\
\rightarrow x^2 \\
\rightarrow \cdots \\
\rightarrow x^i = x^{i+p} \\
\rightarrow \cdots
\end{array}
\]

\[
\{ x^i, \ldots, x^{i+p-1} \} \text{ cyclic subgroup of } S
\]

\[
x^\omega = \lim_{n \to \infty} x^n = x^{|S|!} \text{ unique idempotent in } \langle x \rangle, \text{ identity element of the subgroup}
\]

periodic semigroup $= \text{ all monogenic subsemigroups are finite}$

finite \implies periodic

idempotents are exactly elements x^ω for $x \in S$
Green’s Relations

$I \subseteq S$ left (right) ideal of S . . . $SI \subseteq I$ ($IS \subseteq I$)
$I \subseteq S$ ideal of S . . . $SIS \subseteq I$

left (right) ideal generated by $x \in S$. . . S^1x (xS^1)
ideal generated by $x \in S$. . . S^1xS^1

Green’s quasiorders:

$y \leq_L x \iff S^1y \subseteq S^1x \iff y \in S^1x$
$y \leq_R x \iff yS^1 \subseteq xS^1 \iff y \in xS^1$
$y \leq_J x \iff S^1yS^1 \subseteq S^1xS^1 \iff y \in S^1xS^1$

$y \leq_L x \implies yz \leq_L xz$
$y \leq_R x \implies zy \leq_R zx$

$S^1xS^1 = \{ y \in S \mid y \leq_J x \}$

Green’s equivalence relations:

$x \mathcal{L} y \iff y \leq_L x \& y \leq_L x \iff S^1x = S^1y$
$x \mathcal{R} y \iff y \leq_R x \& y \leq_R x \iff xS^1 = yS^1$
$x \mathcal{J} y \iff y \leq_J x \& y \leq_J x \iff S^1xS^1 = S^1yS^1$
quasiorders induce partial ordering of the corresponding classes
multiplying element from any side \(\leadsto \) descending in the ordering of \(J \)-classes
multiplying element from the left (right) \(\leadsto \) descending in the ordering of \(L(R) \)-classes

In a monoid, invertible elements form the top \(J \)-class, which is a group.
Zero always forms a one-element bottom \(J \)-class.
Every semigroup has at most one minimal \(J \)-class.
Lemma: $\mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$

Proof:
\[x \mathcal{R} y \mathcal{L} z \implies y = xs, x = yt, z = uy, y = vz \]
\[w = uyt = ux = zt \implies x = yt = vzt = vuyt = vw, z = uy = uxs = uyts = ws \]

\[
\begin{array}{cc}
 x & y \\
 u \downarrow & \uparrow v \\
 w & z \\
\end{array}
\]

\[
\begin{array}{cc}
 & u \downarrow \\
 w & \leftarrow t \\
 & \uparrow v \\
\end{array}
\]

Remaining Green's equivalences:
\[H = \mathcal{L} \cap \mathcal{R}, \quad D = \mathcal{L} \circ \mathcal{R} \]
\[x \mathcal{D} y \iff x\mathcal{R} \cap y\mathcal{L} \neq \emptyset \iff x\mathcal{L} \cap y\mathcal{R} \neq \emptyset \]
\[H \subseteq \mathcal{L}(\mathcal{R}) \subseteq \mathcal{D} \subseteq \mathcal{J} \]

eggbox ... \mathcal{D}-class row ... \mathcal{R}-class column ... \mathcal{L}-class cell ... \mathcal{H}-class
Bijective Between \mathcal{H}-Classes

- s and t mutually inverse bijections between \mathcal{L}-classes of x and y, which preserve \mathcal{R}-classes
- $u \cdot$ and $v \cdot$ mutually inverse bijections between \mathcal{R}-classes of x and w, which preserve \mathcal{L}-classes
- \sim bijections between all \mathcal{H}-classes in a \mathcal{D}-class
Examples:

\(A^*:\)

\[u \leq_L v \iff v \text{ is a suffix of } u\]

\[u \leq_R v \iff v \text{ is a prefix of } u\]

\[u \leq_J v \iff v \text{ is a factor of } u\]

\[u \mathcal{J} v \iff u \mathcal{D} v \iff u \mathcal{L} v \iff u \mathcal{R} v \iff u \mathcal{H} v \iff u = v\]

(\(\mathcal{J}\)-trivial semigroup)

\(\mathcal{T}(Q):\)

\[\rho \leq_L \sigma \iff \text{Im}(\rho) \subseteq \text{Im}(\sigma)\]

\[\rho \leq_R \sigma \iff \ker(\rho) \supseteq \ker(\sigma)\]

\[\rho \leq_J \sigma \iff |\text{Im}(\rho)| \leq |\text{Im}(\sigma)|\]

\[\rho \mathcal{D} \sigma \iff \rho \mathcal{J} \sigma \iff |\text{Im}(\rho)| = |\text{Im}(\sigma)|\]
Schützenberger Groups

M monoid, $H \mathcal{H}$-class of M

(right) Schützenberger group $\Gamma(H)$: all bijections of H of the form $x \mapsto xs$, where $s \in M$

$|\Gamma(H)| = |H|$

Schützenberger groups of \mathcal{H}-classes in the same \mathcal{D}-class are isomorphic.

For every \mathcal{H}-class H, either $H^2 \cap H = \emptyset$ or H is a subgroup maximal w.r.t. inclusion and isomorphic to its Schützenberger group.

Maximal subgroups are precisely \mathcal{H}-classes containing an idempotent.
Theorem: In every finite (periodic) semigroup, $D = J$.

Proof:

$x \mathcal{J} y \implies \exists p, q, s, t \in S^1: x = pyq, y = sxt$

$y = spyqt = (sp)^2y(qt)^2 = \cdots = (sp)^\omega y(qt)^\omega = (sp)^\omega (sp)^\omega y(qt)^\omega = (sp)^\omega y$

$x \mathcal{L} yq: \quad x = p \cdot yq$

$yq = (sp)^\omega yq = (sp)^{\omega - 1} spyq = (sp)^{\omega - 1} s \cdot x$

$y \mathcal{R} yq: \quad y = y(qt)^\omega = yq \cdot t(qt)^{\omega - 1}$
Example: subsemigroup of $\mathcal{PT}(2)$

\[x^2 = y^2 = 0 \quad xyx = x \quad yxy = y \]
Similar example: subsemigroup of $\mathcal{PT}(2)$

\[
\begin{array}{c|cc}
\cdot y & \cdot x \\
\hline
y \cdot & x & xy \\
\hline
x \cdot & yx & y \\
\hline
0 \\
\end{array}
\]

\[
x: \bullet \rightarrow \bullet \quad y: \bullet \leftarrow \bullet
\]

\[
xy: \bullet \quad \bullet \quad yx: \bullet \rightarrow \bullet
\]

\[
x^2 = 0 \quad xyx = x \quad yxy = y
\]
More interesting example: subsemigroup of $\mathcal{T}(3)$

x and z belong to the same \mathcal{L}-class of $\mathcal{T}(3)$
Basic Properties of Green’s Relations in Finite Semigroups

Lemma: S finite semigroup, $x, y \in S$ such that $x \leq_L y$ and $x \unlhd y$. Then $x \equiv_L y$.

Proof: $x = sy \implies y = txu = tsyu = (ts)^\omega yu\omega = (ts)^{\omega-1}tsy = (ts)^{\omega-1}tx$.

Reformulations: In any finite semigroup:

- $x \leq_J xs \implies x \equiv_R xs$
- $x <_L y \implies x <_J y$

Corollary: In any finite semigroup, $sxHx \implies sxHxtHx$.

Proof: $sx \leq_L x, x \leq_R sx, sx \unlhd x$
Lemma: If \(x \) and \(y \) are \(\mathcal{J} \)-equivalent elements of a finite semigroup, then \(xy \mathcal{J} x \) if and only if there exists an idempotent \(e \) such that \(x \mathcal{L} e \mathcal{R} y \). In that case, we have \(x \mathcal{R} xy \mathcal{L} y \).

Proof of “\(\Leftarrow \)”:

\[x = se, \quad y = et \quad \Rightarrow \quad xy = seet = xt \]

\[
\begin{array}{c|c|c}
 x & xy \\
 \hline
 e & y \\
 \hline
\end{array}
\]

\[s \cdot \uparrow \]

\[t \rightarrow \]
Lemma: If x and y are \mathcal{J}-equivalent elements of a finite semigroup, then $xy \mathcal{J} x$ if and only if there exists an idempotent e such that $x \mathcal{L} e \mathcal{R} y$. In that case, we have $x \mathcal{R} xy \mathcal{L} y$.

Proof of “\Longrightarrow”:

\[
xy \leq \mathcal{R} x \& xy \mathcal{J} x \Longrightarrow xy \mathcal{R} x
\]

\[
xy \leq \mathcal{L} y \& xy \mathcal{J} y \Longrightarrow xy \mathcal{L} y
\]

\[
x = xys \& y = txy \Longrightarrow (tx)^2 = ttxys = txys = tx
\]
Recalling example: subsemigroup of $\mathcal{PT}(2)$

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>xy</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>xy</td>
<td>y</td>
</tr>
<tr>
<td>x</td>
<td>yx</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

$x^2 = 0$
$xyx = x$
$yxy = y$
Regular Elements

y is a (semigroup) inverse of x, if $xyx = x \& yxy = y$

$x \in S$ is regular $= \text{has an inverse}$

x belongs to a subgroup $\Rightarrow x$ is regular

y inverse of x $\Rightarrow xy$ and yx are idempotents in the same D-class

$x \in S$ regular $\iff \exists y, z \in S: x = (yz)^\omega y$ \quad (inverse is $z(yz)^{\omega^{-1}}$)
Examples:

A^+: no regular elements

$T(Q)$:

ρ is idempotent $\iff \forall q \in \text{Im}(\rho) : \rho(q) = q$

ρ belongs to a subgroup $\iff \rho|_{\text{Im}(\rho)} : \text{Im}(\rho) \to \text{Im}(\rho)$ is a bijection

$\iff \text{Im}(\rho)$ forms a transversal (set of representatives) of $\ker(\rho)$

every element is regular
Regular \mathcal{D}-Classes

Example:

A \mathcal{D}-class of $\mathcal{I}(3)$ with two-element \mathcal{H}-classes

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td></td>
<td></td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td>\Box</td>
</tr>
</tbody>
</table>

Idempotents \mathcal{R}-related to x are e and f. Idempotents \mathcal{L}-related to x are e and g.

x has 4 inverses: x (group inverse), y, z, u.

\[x\]
\[e\]
\[f\]
\[g\]
Regular D-Classes

Regular D-class — equivalent definitions:

1) Contains an idempotent.
2) Contains a regular element.
3) Every element is regular.
4) Every L-class and every R-class contains an idempotent.

2 \implies 3:

\[
xyx = x, \quad yxy = y, \quad z = xs, \quad x = zt
\]

\[
z \cdot t x \rightarrow y xy
\]

\[
z(ty)z = xyxs = xs = z, \quad (ty)z(ty) = tyxy = ty
\]

In a finite semigroup, a D-class is regular if and only if it contains some elements x and y together with their product xy.

Every idempotent is a left identity for its R-class and a right identity for its L-class.

Proof: $x = es \implies ex = ees = es = x$
Theorem: (Miller & Clifford 1956)
There is a bijection between inverses of x and pairs of idempotents (e, f) such that $e \mathcal{R} x \mathcal{L} f$; there exists exactly one inverse y such that $e \mathcal{L} y \mathcal{R} f$, and it satisfies $xy = e$ and $yx = f$.

Proof: if $e = xs$, take $y = fs$

\[
\begin{align*}
x(fs)x &= xsx = ex = x \\
(fs)x(fs) &= fsex = fse = fs
\end{align*}
\]

\[
\begin{array}{c|c}
 x & e \\
 \hline
 f & y \\
\end{array}
\]

\[
\begin{array}{c|c}
 & s \\
 \hline
 s & \\
\end{array}
\]
Consequence:
Idempotents e and f belong to the same D-class if and only if there exist mutually inverse elements x and y such that $e = xy$ and $f = yx$.

\[
\begin{array}{c|c|c}
 x & e = xy & f = yx \\
\hline
 y \cdot & & y \\
\hline
 f = yx & y & \\
\hline
 x \cdot & & \\
\end{array}
\]

Consequence:
Two H-classes in the same D-class, which contain an idempotent, are isomorphic subgroups.

Proof: isomorphism $z \mapsto yzx$, where x and y are mutually inverse elements such that $e = xy$ and $f = yx$.
0-Simple Semigroups

Simple semigroup = has no proper ideal = has only one \mathcal{J}-class

Null semigroup ... \(S^2 = \{0\} \)

0-simple semigroup ... \(S^2 \neq \{0\} \) & exactly two ideals \(\{0\} \), \(S \) (two \(\mathcal{J} \)-classes \(\{0\} \), \(S \setminus \{0\} \))

\(S \) simple \(\implies \) \(S \cup \{0\} \) 0-simple

A finite semigroup \(S \) is simple \(\iff \) \(\forall x, y \in S : x^{\omega+1} = x \) & \((xyx)^\omega = x^\omega \).

Regular language is recognizable by a finite simple semigroup if and only if its minimal automaton does not contain the pattern

\[
\begin{align*}
&\bullet \xrightarrow{a} \bullet \xrightarrow{b} \bullet \\
&\bullet \xrightarrow{a} \bullet \xrightarrow{b} \bullet
\end{align*}
\]

Equivalent formulation:

For any letters \(a, b \in A \), \(\text{Im}(\delta_a) \) forms a transversal (set of representatives) of \(\ker(\delta_b) \).
Structure of \mathcal{D}-Classes

Rees quotient:
I ideal of S, \[S/I = (S \setminus I) \cup \{0\} \]
(subset $I \subseteq S$ downward closed w.r.t. \mathcal{J} becomes zero of S/I)
corresponds to congruences of the form $\text{id}_S \cup I \times I$

Divisibility in regular \mathcal{D}-classes:
D regular \mathcal{D}-class, $e \in D$ idempotent, $x \mathcal{R} e \implies x \in eD$ and $e \in xD$

Consequence:
D regular \mathcal{D}-class, $x, y \in D \implies \exists z \in D : x \in zD \& z \in xD \& y \in Dz \& z \in Dy$
Principal Factors

Principal factors of a finite semigroup S:

- bottom \mathcal{D}-class (≡ least ideal) is a simple semigroup
- D non-regular \mathcal{D}-class $\implies D \cup \{0\} = S^1 DS^1 / (S^1 DS^1 \setminus D)$ is a null-semigroup
- D regular \mathcal{D}-class $\implies D \cup \{0\} = SDS / (SDS \setminus D)$ is a 0-simple semigroup

Principal factors of homomorphic images:

S, T finite semigroups, $\varphi : S \to T$ onto homomorphism

$\forall x \in S, z \in T : z \leq \mathcal{J} \varphi(x) \iff \exists y \leq \mathcal{J} x : \varphi(y) = z$

D a \mathcal{D}-class of T, choose $x \mathcal{J}$-minimal in $\varphi^{-1}(D)$

Then $y < \mathcal{J} x \implies \varphi(y) < \mathcal{J} \varphi(x)$. $\implies D$ is the image of xD

Every principal factor of T is image of a principal factor of S via homomorphism induced by φ.

Every (maximal) subgroup of T is of the form $\varphi(G)$ for a (maximal) subgroup G of S.

Proof:

$e \in T$ idempotent \implies exists idempotent $f \in S : \varphi(f) = e$ & $f \mathcal{J}$-minimal in $\varphi^{-1}(e\mathcal{H})$

$(\varphi(y) \mathcal{H} e \implies \varphi(y^{\omega}) = e)$

e\mathcal{H} = \varphi(f\mathcal{H}) : x \in S$ satisfies $\varphi(x) \mathcal{H} e \implies \varphi(fxf) = \varphi(x) & fxf \mathcal{H} f$
Classification of Finite 0-Simple Semigroups

Rectangular bands: \(R \) and \(L \) arbitrary finite sets

multiplication on \(R \times L \):
\[
(r, \ell) \cdot (r', \ell') = (r, \ell')
\]
\[
(r, \ell) R (r', \ell') \iff r = r'
\]
\[
(r, \ell) L (r', \ell') \iff \ell = \ell'
\]
all \(\mathcal{H} \)-classes are trivial groups

\(S \) simple \(\implies \mathcal{H} \) is a congruence, \(S/\mathcal{H} \) is a rectangular band and all \(\mathcal{H} \)-classes are isomorphic groups

Rees matrix semigroup: \(R \) and \(L \) finite sets, \(G \) finite group

\[
P = (p_{\ell r})_{\ell \in L, r \in R}
\]
\(L \times R \)-matrix with entries in \(G \cup \{0\} \) and with at least one non-zero entry in every row and every column

multiplication on \(\mathcal{M}^0(R, L, G, P) = (R \times G \times L) \cup \{0\} \):
\[
(r, g, \ell) \cdot (r', g', \ell') = \begin{cases}
(r, g \cdot p_{\ell r'} \cdot g', \ell') & \text{if } p_{\ell r'} \neq 0 \\
0 & \text{if } p_{\ell r'} = 0
\end{cases}
\]

Matrix representation of \(\mathcal{M}^0(R, L, G, P) \):
\((r, g, \ell)\) corresponds to the matrix with only one non-zero entry \(g \) in the position \((r, \ell)\)
sandwich multiplication: \(M \cdot N = MPN \)
Theorem: (Rees 1940)

A finite semigroup is 0-simple if and only if it is isomorphic to some $\mathcal{M}^0(R, L, G, P)$.

Proof:

S . . . 0-simple semigroup

G . . . Schützenberger group of the non-zero D-class

R . . . the set of R-classes, L . . . the set of L-classes

choose a group H-class and elements t_r and s_ℓ, for $r \in R$ and $\ell \in L$

Every element can be uniquely expressed in the form $t_r g s_\ell$, for $r \in R$, $g \in G$ and $\ell \in L$.

$(t_r g s_\ell)(t_r' g' s_\ell') = t_r (g s_\ell t_r' g') s_\ell' \leadsto \text{ set } p_{\ell r} = s_\ell t_r \in G \cup \{0\}$

Finite simple semigroups: all entries of P belong to G
Repetitions in Products

Lemma: (cancellation rule in a \mathcal{J}-class)
In every finite semigroup: $x \mathcal{J} y \mathcal{J} z \mathcal{J} xy = xyz \implies y = yz.$

Proof: $y \mathcal{R} yz$, $x \cdot$ is a bijection between \mathcal{R}-classes of y and xy

Repetitions in products staying in the same \mathcal{J}-class:

Lemma: J a \mathcal{J}-class of a finite semigroup, $x_1 \cdots x_n \in J$, $|\{i \mid x_i \in J\}| > |J|$. Then there exist $i < j$ such that $x_i, x_j \in J$ and $x_i \cdots x_j = x_i$.

Proof:
k smallest such that $x_k \in J$
$\forall j \geq k: x_k \cdots x_j \in J \implies$
$\exists k \leq i < j: x_i, x_j \in J \& x_k \cdots x_i = x_k \cdots x_j$ (by pigeonhole principle)
$x_k \cdots x_{i-1} \mathcal{J} x_i \mathcal{J} x_{i+1} \cdots x_j \mathcal{J} (x_k \cdots x_{i-1})x_i(x_{i+1} \cdots x_j)$
cancellation rule $\implies x_i \cdots x_j = x_i$
Finite Power Property

L possesses the finite power property $\iff \exists n: L^+ = L \cup L^2 \cup \cdots \cup L^n$

Does a given regular language L have the finite power property?

decidable (Hashiguchi 1979, Simon 1978)

Construction: (Birget & Rhodes 1984)

$\varphi: A^+ \rightarrow S$ homomorphism recognizing L and L^+

define mapping $\tau: A^+ \rightarrow \varphi(S^3)$

$$\tau(w) = \{ (\varphi(t), \varphi(u), \varphi(v)) \mid t, u, v \in A^+, w = tuv \}$$

τ induces a semigroup operation on $\tau(L^+) \subseteq \varphi(S^3)$ \sim \tau$ homomorphism

Theorem: For a regular language L, the following conditions are equivalent: (MK 2006)

- L possesses the finite power property.
- For all $w \in L^+$, there exists n such that $w^n \in L \cup \cdots \cup L^n$.
- Every regular D-class of $\tau(L^+)$ contains some element of $\tau(L)$.
- $L^+ = L \cup \cdots \cup L^{(j+1)^h}$

j ... maximal size of a J-class of S

h ... length of the longest chain of J-classes in $\tau(L^+)$
Star-Free Languages and Aperiodic Semigroups

star-free language $= \text{definable by rational expression with union, concatenation and complementation (without Kleene star)}$

Example: $A = \{a, b\}$, $(ab)^* = a\emptyset \cap \emptyset b \cap \emptyset aa\emptyset \cap \emptyset bb\emptyset$ is star-free

Aperiodic semigroup S — equivalent definitions:

• $\forall x \in S \exists n: x^{n+1} = x^n \ (x^\omega+1 = x^\omega)$

• periodic semigroup where all subgroups are trivial

Prohibited pattern in minimal automaton:

cycle labelled by a non-primitive word $w^n, n \geq 2$ (counter-free automaton)

Lemma: Periodic semigroup is aperiodic $\iff \mathcal{H}$ is trivial.

Proof: $y = xs \& x = ty \implies y = tys = t^\omega ys^\omega = t^{\omega+1}ys^\omega = ty = x$
M finite monoid, $x, x_1, \ldots, x_n \in M$.

Task: Describe all products $y = x_1 \cdots x_n$ satisfying $y \mathcal{H} x$ using union, concatenation, complementation and descriptions of products belonging to higher \mathcal{J}-classes.

Lemma: $x_1 \cdots x_n \mathcal{H} x \iff$

1. $x_1 \cdots x_i \mathcal{R} x$ for some $i \leq n$,
2. $x_i \cdots x_n \mathcal{L} x$ for some $i \leq n$,
3. $x_1 \cdots x_n \geq \mathcal{J} x$.

Proof of “\iff”: $y = x_1 \cdots x_n$

$y \geq \mathcal{J} x \& y \leq \mathcal{R} x \& y \leq \mathcal{L} x \implies y \mathcal{R} x \& y \mathcal{L} x$

These three conditions can be expressed using characterizations for higher \mathcal{J}-classes by considering positions i, where they become true (1 and 2) or false (3). This is a local event.

Lemma:

$x_1 \cdots x_i \mathcal{R} x$ for some $i \iff$ exists i such that $x_1 \cdots x_{i-1} > \mathcal{J} x$ and $x_1 \cdots x_i \mathcal{R} x$.

Proof of “\iff”: take the smallest i such that $x_1 \cdots x_i \mathcal{R} x$.
Lemma: \(x_1 \cdots x_n \not\in \mathcal{J} \ x \iff \) either \(x_i \not\in \mathcal{J} \ x \) for some \(i \)
\[\text{or} \ x_{i+1} \cdots x_{j-1} > \mathcal{J} \ x \ \text{and} \ x_i \cdots x_j \not\in \mathcal{J} \ x \ \text{for some} \ i < j.\]

Proof of \(\implies \): Take \(i \leq j \) such that \(x_i \cdots x_j \not\in \mathcal{J} \ x \) and \(j - i \) is smallest possible.

<table>
<thead>
<tr>
<th></th>
<th>(y)</th>
<th>(yx_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i \downarrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_i y)</td>
<td>(x_i yx_j)</td>
<td></td>
</tr>
</tbody>
</table>

\[x_i \cdots x_j = x_i y x_j \in \mathcal{J} \ y \in \mathcal{J} \ x, \ \text{contradiction}\]

Therefore \(y > \mathcal{J} \ x.\)
Theorem: Regular language L is star-free $\iff\ M(L)$ is aperiodic.
(Schützenberger 1965)

Proof: “\implies” direct verification

“\impliedby” $\varphi: A^* \to M$ homomorphism, where M is a finite aperiodic monoid, i.e. \mathcal{H}-trivial

We prove that $\varphi^{-1}(x)$ is star-free for all $x \in M$ by induction downwards on $\geq \mathcal{J}$:

• highest \mathcal{J}-class $= \{1\}$:

$\varphi^{-1}(1) = A^* \setminus (A^* \cdot \{ a \in A \mid \varphi(a) \neq 1 \} \cdot A^*)$

• induction step:

$\varphi(w) = x \iff \varphi(w) \mathcal{H} x$

$\varphi^{-1}(x) = (RA^* \cap A^*L) \setminus A^*JA^*$

$R = \bigcup \{ \varphi^{-1}(y)a \mid y \in M, a \in A, y > \mathcal{J} x, y\varphi(a) \mathcal{R} x \}$

$L = \bigcup \{ a\varphi^{-1}(y) \mid y \in M, a \in A, y > \mathcal{J} x, \varphi(a)y \mathcal{L} x \}$

$J = \{ a \in A \mid \varphi(a) \notin \mathcal{J} x \}$

$\cup \bigcup \{ a\varphi^{-1}(y)b \mid y \in M, a, b \in A, y > \mathcal{J} x, \varphi(a)y\varphi(b) \notin \mathcal{J} x \}$

M is \mathcal{H}-trivial $\implies \varphi^{-1}(y)$ definable by induction assumption

Example: $M((a^2)^*)$ is a two-element group $\implies (a^2)^*$ is not star-free
Occurrences of Idempotents in Products

S finite semigroup, $E(S)$ the set of idempotents of S

Lemma: $\forall n \geq |S|: S^n = S \cdot E(S) \cdot S$

Proof: $x_1, \ldots, x_n \in S$

- case 1: $x_1 \cdots x_i$ all different \implies some of them is idempotent
- case 2: $x_1 \cdots x_i = x_1 \cdots x_i x_{i+1} \cdots x_j \implies x_1 \cdots x_i = x_1 \cdots x_i (x_{i+1} \cdots x_j)^\omega$

Theorem: For every finite semigroup S and $k \geq 2$ there exists n such that for every $x_1, \ldots, x_n \in S$ there is an idempotent $e \in E(S)$ and $0 \leq i_1 < \cdots < i_k \leq n$ satisfying $x_{i_{j+1}} \cdots x_{i_\ell} = e$ for all $1 \leq j < \ell \leq n$.

follows directly from Ramsey’s theorem: graph nodes = positions in the word $x_1 \ldots x_n$
colours = elements of S

Hall & Sapir 1996: S has n non-idempotent elements \implies every sequence of 2^n elements contains a factor evaluating to an idempotent (optimal value)
Factorization Forests

$$\varphi : A^* \to M$$ homomorphism to a finite monoid

factorization forest of $$\varphi$$:

d: \{ w \in A^* \mid |w| \geq 2 \} \to (A^+)^+ \text{ such that }

if $$d(w) = (w_1, \ldots, w_n)$$ then:

1) $$w = w_1 \ldots w_n$$
2) $$|w_i| < |w|$$
3) $$n \geq 3 \implies \varphi(w) = \varphi(w_1) = \cdots = \varphi(w_n)$$ is idempotent

d provides for every word $$w$$ a tree with root labelled by $$w$$, nodes labelled by its factors and leaves by letters, which expresses successive factorizations of $$w$$ up to letters.

Node with more than two successors $$\implies$$ all labels evaluate to the same idempotent.

height of $$d$$: (height of the highest tree)

$$h(a) = 0 \quad \text{for } a \in A$$

$$h(w) = \max\{h(w_1), \ldots, h(w_n)\} + 1 \quad \text{if } d(w) = (w_1, \ldots, w_n)$$

$$h(d) = \sup\{ h(w) \mid w \in A^+ \}$$
Example:

\[M = \left(\mathbb{Z}, + \right) / 2\mathbb{Z} \] (two-element group)

\[\varphi: \{a, b\}^+ \to M \quad \varphi(a) = 1, \varphi(b) = 0 \] (identity element)

Minimal height of a factorization forest for \(\varphi \) is 5:

if \(|w|_a \) odd, \(w = b^k a \hat{w} \), then

\[
d(w) = \begin{cases}
(b^k, a) & \text{if } \hat{w} = \varepsilon \\
(b^k a, \hat{w}) & \text{if } \hat{w} \neq \varepsilon
\end{cases}
\]

if \(|w|_a \) even, \(w = b^{k_0} a b^{k_1} \ldots a b^{k_n} \), then

\[
d(w) = \begin{cases}
(a, b^{k_1} a) & \text{if } n = 2, k_0 = k_2 = 0 \\
(b, \ldots, b, a b^{k_1} a, b, \ldots, b, \ldots, a b^{k_n-1} a, b, \ldots, b) & \text{otherwise}
\end{cases}
\]

word \(abbbabbbabbbabbbabba \) requires tree of height 5
Theorem: (Simon 1990, Kufleitner 2008)

Every morphism from A^* to a finite monoid M has a factorization forest of height $3|M| - 1$.
(tight bound for all finite groups; for aperiodic monoids height $2|M|$ is sufficient)

Proof idea: inductive construction w.r.t. J-classes

long products staying in the same J-class:

- $x_1, \ldots, x_n, x_1 \cdots x_n$ belong to the same J-class \implies
- H-class of $x_{i+1} \cdots x_j$ uniquely determined by R-class of x_{i+1} and L-class of x_j

$$(x_{i+1} \cdots x_j J x_j \& x_{i+1} \cdots x_j \leq L x_j \implies x_{i+1} \cdots x_j L x_j)$$

consider repetitions of the pairs $(x_i L, x_{i+1} R)$

factors between places with the same pair belong to the same H-class

Equivalent formulation: For every homomorphism φ to a finite monoid there exists a regular expression representing A^* where Kleene star is applied only to languages L satisfying $\varphi(L) = \{e\}$ for some idempotent e.

Example of application: decidability of limitedness of distance automata (Simon 1990)
Polynomials

monomial of degree k over A

... language of the form $A_0^* a_1 A_1^* \cdots a_k A_k^*$, where $a_i \in A$ and $A_i \subseteq A$

polynomial $= \text{finite union of monomials}$

(languages of level $3/2$ of the Straubing-Thérien concatenation hierarchy)

Factorization forest d gives for every $w \in A^+$ a monomial $P_d(w)$ of degree at most $2^{h(d)}$:

$P_d(a) = \{a\}$ for $a \in A$

$P_d(w) = P_d(w_1) \cdot P_d(w_2)$ if $d(w) = (w_1, w_2)$

$P_d(w) = P_d(w_1) \cdot \text{alph}(w)^* \cdot P_d(w_n)$ if $d(w) = (w_1, \ldots, w_n)$ with $n \geq 3$

Theorem:

For a regular language $L \subseteq A^*$ the following conditions are equivalent:

1) L is a polynomial.

2) L is recognizable by a finite ordered monoid (M, \leq) where every idempotent $e \in E(M)$ is the least element of the subsemigroup $e \cdot \{x \in M \mid e \leq_J x\}^* \cdot e$.

3) $\forall v, w \in A^* : \varphi_L(w) = \varphi_L(w^2) \& \text{alph}(v) \subseteq \text{alph}(w) \implies w \leq_L wvw$

(Arfi 1991)
Proof of “2 \implies 1”:
\(\varphi : A^* \to M \) recognizes finite unions of languages \(\{ w \in A^* \mid \varphi(w) \geq x \} \) for \(x \in M \).

d \ldots factorization forest of \(\varphi \) of height \(3|M| \)
We verify \(\{ w \in A^* \mid \varphi(w) \geq x \} = \bigcup_{\varphi(w) \geq x} P_d(w) \)
 (this is a polynomial because degrees are bounded by \(2^{3|M|} \))
\(\subseteq: \) \(w \in P_d(w) \)
\(\supseteq: \) It is sufficient to prove by induction that \(v \in P_d(w) \implies \varphi(v) \geq \varphi(w) \).

If \(d(w) = (w_1, w_2) \) then \(v \in P_d(w) = P_d(w_1) \cdot P_d(w_2) \)
 \(\implies v = v_1v_2, \varphi(v_1) \geq \varphi(w_1), \varphi(v_2) \geq \varphi(w_2) \)
 \(\implies \varphi(v) = \varphi(v_1v_2) \geq \varphi(w_1w_2) = \varphi(w) \)

If \(d(w) = (w_1, \ldots, w_n) \) with \(n \geq 3 \) then \(v \in P_d(w) = P_d(w_1) \cdot \operatorname{alph}(w)^* \cdot P_d(w_n) \)
 \(\implies v = v_1uw_n, \varphi(v_1) \geq \varphi(w_1), \varphi(v_n) \geq \varphi(w_n), \operatorname{alph}(u) \subseteq \operatorname{alph}(w) \)
 \(\implies \varphi(u) \in \{ x \in M \mid \varphi(w) \leq \mathcal{J} x \}^* \)
 \(\implies \varphi(v) = \varphi(v_1)\varphi(u)\varphi(v_n) \geq \varphi(w_1)\varphi(u)\varphi(w_n) = \varphi(w)\varphi(u)\varphi(w) \geq \varphi(w) \)
Well Quasiorders
Recognizing Languages by Monotone Quasiorders

Monotone quasiorder \leq on $A^*: \quad u \leq v \land \tilde{u} \leq \tilde{v} \implies u\tilde{u} \leq v\tilde{v}$

L recognized by $\leq \ldots L$ upward closed w.r.t. \leq

monotone quasiorder \leq recognizes $L \iff \leq$ contained in the syntactic quasi-order of L

$(u \leq v \implies C_L(u) \subseteq C_L(v) \implies u \leq_L v)$

Special case:
recognized by a congruence $=$ union of its classes $=$ recognized by the quotient monoid

recognizing by finite ordered monoids $=$ recognizing by monotone quasiorders with finite index

Are there quasiorders on A^* with infinite index which recognize only regular languages?

all upward closed languages are regular \iff all downward closed languages are regular
(closure under complementation)
Well Quasiorders (Wqo)

\(w \in L \text{ minimal in } L \subseteq A^* \text{ w.r.t. } \leq \iff (\forall u \in L: u \leq w \Rightarrow w \leq u) \)

Equivalent definitions of well quasiorder \(\leq \) on \(A^* \):

- Every infinite sequence of words contains an infinite ascending subsequence.
- For every infinite sequence \((w_i)_{i=1}^\infty \) there exist \(i < j \) such that \(w_i \leq w_j \).
- Contains neither infinite descending chains nor infinite antichains.
- Every upward closed language over \(A \) is finitely generated.
- Every non-empty language over \(A \) has some minimal element, but only finitely many non-equivalent minimal elements.
- There is no infinite ascending sequence of upward closed languages.

Special case: Congruence of finite index is a monotone well quasiorder.

recognizing by monotone well quasiorders = recognizing by well partially ordered monoids
Theorem: (Ehrenfeucht & Haussler & Rozenberg 1983, de Luca & Varricchio 1994)

For any language $L \subseteq A^*$ the following conditions are equivalent:

1) L is regular.

2) L is upward closed w.r.t. a monotone wqo on A^*.

3) L is upward closed w.r.t. a left-monotone wqo on A^* and w.r.t. a right-monotone wqo on A^*.

(language upward closed w.r.t. a right-monotone wqo need not be regular)

Proof of “3 \implies 1”:

Left and right syntactic quasiorders \leq^L_ℓ and \leq^r_L are wqos.

$w \leq^L_\ell w' \iff (\forall u \in A^*: uw \in L \implies uw' \in L) \iff C^\ell_L(w) \subseteq C^\ell_L(w')$

$w \leq^r_L w' \iff (\forall v \in A^*: vw \in L \implies w'v \in L) \iff C^r_L(w) \subseteq C^r_L(w')$

L non-regular \implies exists infinite sequence $(w_i)_{i=1}^\infty$, where $C^\ell_L(w_i) \neq C^\ell_L(w_j)$

contains subsequence $(u_i)_{i=1}^\infty$ strictly increasing w.r.t. \leq^L_ℓ

i.e. $i < j \implies C^\ell_L(u_i) \subset C^\ell_L(u_j)$

$C^\ell_L(u_i)$ is upward closed w.r.t. \leq^r_L:

$v \in C^\ell_L(u_i) \& v \leq^r_L v' \implies u_i \in C^r_L(v) \subseteq C^r_L(v') \implies v' \in C^\ell_L(u_i)$

$(C^\ell_L(u_i))_{i=1}^\infty$ strictly increasing sequence of languages upward closed w.r.t. \leq^r_L

contradicts that \leq^r_L is wqo
Nash-Williams Minimal Bad Sequence Argument

How to prove a quasiorder to be wqo?

\((X, \leq)\) ... a quasiordered set

\(X^\omega\) ... the set of infinite sequences \((x_i)_{i=1}^{\infty}\), where \(x_i \in X\)

\((x_i)_{i=1}^{\infty} \in X^\omega\) bad sequence ... \(\forall i, j: i < j \implies x_i \not\leq x_j\)

\(\leq\) another quasiordering on \(X\), \(\sim\) the corresponding equivalence relation

quasiorder \(X^\omega\) lexicographically w.r.t. \(\leq\):

\((x_i)_{i=1}^{\infty} \leq (y_i)_{i=1}^{\infty} \iff\) either \(\forall i: x_i \sim y_i\)

or \(\exists n: x_n \triangleright y_n \land \forall i < n: x_i \sim y_i\)

Lemma:

If \(X\) contains no infinite descending sequence w.r.t. \(\leq\) and \(\leq\) is not a wqo, then there exists a bad sequence for \(\leq\) minimal w.r.t. \(\leq\).

Proof: Inductively choose \(x_i\) minimal w.r.t. \(\leq\) such that \(x_1, \ldots, x_i\) can be prolonged into a bad sequence.

Proof method for wqo property:

Take a bad sequence and construct a smaller one.
Derivation Relations of Context-Free Rewriting Systems

Example: “scattered subword” relation

\[a_1 \ldots a_n \leq u_0 a_1 u_1 \ldots a_n u_n \]

context-free rewriting system \(R = \{ \varepsilon \to a \mid a \in A \} \)

\(\leq \) is the derivation relation \(\Rightarrow^*_R \) of \(R \)

\(\leq \) is wqo (Higman 1952):

\[(w_i)_{i=1}^{\infty} \] bad sequence minimal w.r.t. length quasiorder

infinitely many \(w_i \) start with the same letter \(a \):

\[w_{i_k} = av_k \text{ for } k = 1, \ldots, \infty \]

\(w_1, \ldots, w_{i-1}, v_1, v_2, \ldots \) is a bad sequence smaller than the original one

\[\implies \] every language closed under inserting letters is regular

Unitary context-free systems:

\[R = \{ \varepsilon \to w \mid w \in I \}, \text{ where } I \subseteq A^* \text{ finite} \]

(to obtain standard context-free system, replace every rule \(\varepsilon \to w \) with rules \(a \to aw \) and \(a \to wa \) for all \(a \in A \))

Examples:

\(I = A \): “scattered subword” relation

\(I = \{ a\bar{a} \mid a \in A \} \): generates Dyck language
Unitary Context-Free Systems

Theorem: (Ehrenfeucht & Haussler & Rozenberg 1983, D’Alessandro & Varricchio 2005)

For every unitary system $R = \{ \varepsilon \rightarrow w \mid w \in I \}$, the following conditions are equivalent:

- \Rightarrow^*_R is a wqo on $(\text{alph}(I))^*$
- \Rightarrow^*_R is a wqo on $\{ w \mid \varepsilon \Rightarrow^*_R w \}$
- $\{ w \mid \varepsilon \Rightarrow^*_R w \}$ is regular
- I is unavoidable over $\text{alph}(I)$

$I \subseteq A^+$ unavoidable over A — equivalent definitions:

- every infinite word over A has a factor belonging to I
- there are only finitely many finite words over A without factors from I
- $\exists n: A^n \subseteq A^*IA^*$

Examples: $A = \{a, b\}$

$I = \{a^2, b^2\}$ avoidable, $I = \{a^2, b^2, ab\}$ unavoidable
General Context-Free Systems

Theorem: (Bucher & Ehrenfeucht & Haussler 1985)

For every context-free rewriting system \(R \), the following conditions are equivalent:

- \(\Rightarrow^*_R \) is a wqo on \(A^* \)
- \(\{ awa \mid a \in A, w \in A^*, a \Rightarrow^*_R awa \} \) is unavoidable over \(A \)
- \(\{ aw \mid a \in A, w \in A^+, a \Rightarrow^*_R aw \} \cup \{ wa \mid a \in A, w \in A^+, a \Rightarrow^*_R wa \} \) is unavoidable over \(A \)

Are these conditions decidable?

Unavoidability is decidable for regular sets: \(I \) unavoidable \(\iff A^* \setminus A^*IA^* \) finite

But sets in these conditions are context-free.
Context-Free Derivations Defined by Homomorphisms

\[\varphi : A^* \rightarrow (M, \leq) \text{ homomorphism} \]

\[R = \{ a \rightarrow w \mid a \in A, w \in A^+, \varphi(a) \leq \varphi(w) \} \]

notation: \(\Rightarrow^\varphi \equiv \Rightarrow^*_R \)

\[u \Rightarrow^\varphi v \iff u = a_1 \ldots a_n, a_i \in A \]

\[\& v = v_1 \ldots v_n, v_i \in A^+ \]

\[\& \varphi(a_i) \leq \varphi(v_i) \]

\[\Rightarrow^\varphi \subseteq \leq_\varphi \]

\[\varphi(A) = M \implies \text{sufficient to take finite} \]

\[R = \{ a \rightarrow bc \mid a, b, c \in A, \varphi(a) = \varphi(bc) \} \cup \{ a \rightarrow b \mid \varphi(a) \leq \varphi(b) \} \]

\[\Rightarrow^\varphi \text{ is a wqo} \implies \text{sufficient to take finite} \]

\[R = \{ a \rightarrow w \mid a \in A, w \in \min \{ u \in A^+ \mid |u| \geq 2, \varphi(a) \leq \varphi(u) \} \} \]
Example:

\[M = (\mathbb{Z}, +)/2\mathbb{Z} \quad \text{(two-element group)} \]

\[\leq \text{is } = \]

\[\varphi : \{a, b\}^+ \to M \quad \varphi(a) = 1, \varphi(b) = 0 \quad \text{(identity element)} \]

\[\Rightarrow^* \varphi : \]

\[\ldots \]

\[
\begin{array}{c}
\text{ab}^2 & a^3 & \text{bab} & b^2a & \text{aba} & a^2b & \text{ba}^2 & b^3 \\
\text{ab} & \text{ba} & \text{a} & \text{a}^2 & b & b^2 & \text{b} & \text{b}^2 \\
\text{a} & \text{b} & \text{a}^3 & \text{b}^2 & \text{babab} & \{a^3, b^2, ba^2b, babab\} \text{ is unavoidable} \\
\end{array}
\]

Therefore \(\Rightarrow^* \varphi \) is a wqo.

Example:

\[\varphi(a) \neq \varphi(a^2) = 0, \text{two incomparable elements} \]

\[\Rightarrow^* \varphi \text{ is not wqo: } a^k \text{ cannot be rewritten; } a^{\omega} \text{ avoids all } awa \text{ such that } a \Rightarrow^* \varphi awa \]
Theorem: (Bucher & Ehrenfeucht & Haussler 1985)

For every context-free rewriting system R, the following conditions are equivalent:

1) For every regular $L \subseteq A^*$, $\{ w \mid \exists u \in L : u \Rightarrow^*_R w \}$ is regular.

2) For every $a \in A$, $\{ w \mid a \Rightarrow^*_R w \}$ is regular.

3) There exists homomorphism $\varphi : A^* \rightarrow M$ to a finite ordered monoid such that $\Rightarrow^*_R = \Rightarrow^*_\varphi$.

Proof:

3 \implies 2: $a \Rightarrow^*_R w \iff \varphi(w) \in \{ x \in M \mid x \geq \varphi(a) \}$

2 \implies 1: substitute $\{ w \mid a \Rightarrow^*_R w \}$ for every $a \in A$ in L

1 \implies 3: $\varphi_a : A^+ \rightarrow M_a$ syntactic homomorphism to ordered monoid for $\{ w \mid a \Rightarrow^*_R w \}$

$\varphi : A^+ \rightarrow M = \prod_{a \in A} M_a \quad \varphi(w) = (\varphi_a(w))_{a \in A}$

$\varphi(b) \leq \varphi(w) \iff \forall a \in A \forall u, v \in A^* : a \Rightarrow^*_R ubv \implies a \Rightarrow^*_R uwv$

$\iff b \Rightarrow^*_R w$
Problem: For which homomorphisms $\varphi : A^* \to M$ to a finite ordered monoid is \Rightarrow^*_φ wqo?

Theorem: (MK 2005)

For every homomorphism $\varphi : A^* \to M$ to a finite unordered monoid (i.e. \leq is $=$),

\Rightarrow^*_φ is a wqo $\iff \varphi(A^*)$ is a chain of simple semigroups.

Chain of simple semigroups S — equivalent definitions:

- $S = S_1 \cup \cdots \cup S_n$, where S_i are pairwise disjoint, $S_i \cdot S_j \subseteq S_{\max\{i,j\}}$
- For every $x, y \in S$ either $xy \mathcal{J} x$ or $xy \mathcal{J} y$.

$S_i \ldots$ simple semigroups, \mathcal{J}-classes of S

Open problem: What about for arbitrary ordered monoids?
Computability of Closure

Is the upward closure of languages w.r.t. wqo \(\Rightarrow^*_R \) computable?

closure computable \(\implies \) emptiness problem decidable

For scattered subword ordering:
emptiness problem decidable \& effective intersection with regular languages \(\implies \) computable
(van Leeuwen 1978)
(holds, in particular, for context-free languages)

In general: unknown even for closure of one letter.
Are there other monotone quasiorders than wqos that recognize only regular languages?

Theorem: (Bucher & Ehrenfeucht & Haussler 1985)

For every decidable monotone quasiorder \(\leq \) on \(A^* \) satisfying \(u \leq v \implies |u| \leq |v| \), the following conditions are equivalent:

- All upward closed languages are regular.
- All upward closed languages are recursive.
- \(\leq \) is a wqo.

(applies to all derivation relations of non-erasing context-free systems)
Wqos Defined by Other Rewriting Systems

Shuffle analogue:

rewriting rules \(w \rightarrow w \upharpoonright u \), for \(u \in I \),
i.e. \(w_0 \ldots w_n \rightarrow w_0u_1w_1 \ldots u_nw_n \), for \(u_1 \ldots u_n \in I \)

Theorem: (Haussler 1985)

\(\rightarrow^* \) is a wqo \(\iff \) \(I \) is subsequence unavoidable

regularity conditions for permutable and periodic languages based on wqos defined by rewriting
(de Luca & Varricchio)
Closure Properties of Well Quasiorders

Closure properties corresponding to operations on finite monoids:

substructures: \leq monotone wqo on A^* and $f : B^* \to A^*$ homomorphism

\sqsubseteq quasiorder induced on B^*: $u \sqsubseteq v \iff f(u) \leq f(v)$

Then \sqsubseteq is a monotone wqo on B^*.

quotients: \leq wqo on A^* and $\sqsubseteq \supseteq \leq$ quasiorder on A^* $\implies \sqsubseteq$ wqo on A^*

products: \leq and \sqsubseteq monotone wqos on A^* $\implies \leq \cap \sqsubseteq$ monotone wqo on A^*

\leq wqo on X and \sqsubseteq quasiorder on Y

$f : X \to Y$ onto mapping satisfying $x \leq y \implies f(x) \sqsubseteq f(y)$

Then \sqsubseteq is a wqo on Y.

\leq wqo on X and \sqsubseteq wqo on Y \implies componentwise quasiordering on $X \times Y$ is a wqo
\leq wqo on X

quasiordering of X^*:

$a_1 \ldots a_m \sqsubseteq b_1 \ldots b_n \iff \exists 1 \leq i_1 < \cdots < i_m \leq n$ such that $a_j \leq b_{i_j}$

(infinite rewriting system: $\varepsilon \rightarrow a$, $a \rightarrow b$, for $a \leq b$, $a, b \in X$)

Higman 1952: \sqsubseteq is a wqo on X^*

$\mathcal{F} \ldots$ the set of subsets of X upward closed w.r.t. \leq

\sqsupseteq is not in general wqo on \mathcal{F} \rightsquigarrow better quasiorders

\sqsubseteq is a wqo on the set of finitely generated downward closed subsets of X

(isomorphic to a subset of $(\mathcal{F}, \sqsupseteq)$)
Language Equations
Language equation = equation over some algebra of languages

• constants: languages over A
• operations: concatenation, Boolean operations, ...
• finite set of variables $V = \{X_1, \ldots, X_n\}$
• solution: mapping $\alpha: V \rightarrow \wp(A^*)$

• long ago: explicit systems of polynomial equations — context-free languages
• today: renewed interest, surprising recent results

What are we interested in?

• expressive power, properties of solutions
• decidability of existence and uniqueness of solutions
• algorithms for finding (minimal and maximal) solutions
Explicit Systems of Equations
Corresponding to Basic Models of Computation
Description of Regular Languages

Example:

\[X_1 = \{ \varepsilon \} \cup X_2 \cdot a \quad X_2 = X_1 \cdot b \cup X_2 \cdot a \]

Regular languages = components of smallest (largest, unique) solutions of explicit systems

\[X_i = K_i \cup \bigcup_{j=1}^{n} X_j \cdot L_{j,i} \quad i = 1, \ldots, n \]

of left-linear equations with finite constants \(K_i \) and \(L_{j,i} \)

Matrix notation: union instead of summation
row vectors \(X = (X_i) \) and \(S = (K_i) \), matrix \(R = (L_{j,i}) \)

\[X = S + X R \]
Solving Explicit Systems of Left-Linear Equations

Theorem: (one direction of Kleene theorem)
Components of the smallest solution of the system $X = S + XR$ can be constructed from entries of R and S using \cup, \cdot and \ast.

The system as an automaton:
- language $R_{j,i}$ labels the transition from state j to state i
- a word from S_i is read when entering the automaton at state i

Proof:
The smallest solution of $X = S + XR$ is SR^*, where $R^* = E + R + R^2 + \cdots$.
Inductive formula for computing R^* as a block matrix:

\[
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix}^* =
\begin{pmatrix}
(A + BD^*C)^* & A^*B(D + CA^*B)^* \\
D^*C(A + BD^*C)^* & (D + CA^*B)^*
\end{pmatrix}
\]
Description of Context-Free Languages

Example: Dyck language of correct bracketings over $A = \{(,)\}$:

context-free grammar: \[X_1 \rightarrow \varepsilon | X_2X_1 \quad X_2 \rightarrow (X_1) \]

system of language equations: \[X_1 = \{\varepsilon\} \cup X_2 \cdot X_1 \quad X_2 = \{() \cdot X_1 \cdot ()\} \]

Ginsburg & Rice 1962:
context-free languages = components of smallest (largest, unique) solutions of explicit systems
\[X_i = P_i \quad i = 1, \ldots, n \]

of polynomial equations with finite $P_i \subseteq (A \cup \mathcal{V})^*$

elegant matrix notation for some normal forms
Quadratic Greibach Normal Form

Every context-free grammar generating only non-empty words can be algorithmically modified so that right-hand sides of rules belong to $A\mathcal{V}^2 \cup A\mathcal{V} \cup A$.

Construction: (Rosenkrantz 1967)

Start with Chomsky normal form, i.e. right hand sides in $\mathcal{V}^2 \cup A$.

Matrix notation: $X = S + XR$,

where S is a vector over $\wp(A)$ and R is a matrix over $\wp(\mathcal{V})$.

Equivalently: $X = SR^*$

Replace R^* with matrix of new variables: $X = SY \quad Y = E + RY$

In R replace every occurrence of variable X_k with the set $(SY)_k \subseteq A\mathcal{V}$.

Remove ε-rules.
Generalizations of Context-Free Languages

Conjunctive languages (Okhotin 2001):

- analogy of alternating finite automata and Turing machines for context-free grammars
- additionally intersection allowed in equations
- we can specify that a word satisfies certain syntactic conditions simultaneously
- for unary alphabet, smallest solutions are in EXPTIME and can be EXPTIME-complete (Jeż & Okhotin 2008)

(context-free unary languages are regular = ultimately periodic)

encoding in positional notation, e.g. binary notation of \(\{a^{2^n} \mid n \in \mathbb{N}\} \) is regular 10*
Linear conjunctive languages:
exactly languages accepted by one-way real-time cellular automata (Okhotin 2004)

Examples:
\{ wcw \mid w \in \{a, b\}^* \}, \{ a^n b^n c^n \mid n \in \mathbb{N} \}, all computations of a Turing machine
All Boolean Operations

Okhotin 2003:

components of unique (smallest, largest) solutions =
 = recursive (recursively enumerable, co-recursively enumerable) languages

Boolean grammars (Okhotin 2004):

• semantics defined only for some systems
• generalization of conjunctive languages
• parsing using standard techniques
• $\subseteq \text{DTIME}(n^3) \cap \text{DSPACE}(n)$
• used to give a formal specification of a simple programming language

Okhotin 2007:

equations with concatenation and any clone of Boolean operations
(concatenation and symmetric difference: universal)

Arithmetical hierarchy:

• components of largest and smallest solutions w.r.t. lexicographical ordering
• levels characterized by the number of variables in equations (Okhotin 2005)
Implicit Equations
Equations over Words

- Constants are letters, for variables only words are substituted.
- For instance, solutions of equation $xba = abx$ are exactly $x = a(ba)^n$, where $n \in \mathbb{N}_0$.
- Term unification modulo associativity.
- PSPACE algorithm deciding satisfiability, EXPTIME algorithm finding all solutions (Makanin 1977, Plandowski 2006).
- Conjecture: Satisfiability problem is NP-complete.
- Satisfiability-equivalent to language equations with only letters as constants and concatenation: shortlex-minimal words of an arbitrary language solution form a word solution.

Satisfiability of language equations by arbitrary languages is undecidable for
- Equations with finite constants, union and concatenation.
- Systems of equations with regular constants and concatenation (MK 2007).
Conjugacy of Languages

\[KM = ML \ldots \text{languages } K \text{ and } L \text{ are conjugated via a language } M \]

Words \(u \) and \(v \) are conjugated \(\iff v \) can be obtained from \(u \) by cyclic shift.

MK 2007:

Conjugacy of regular languages via any language containing \(\varepsilon \) is not decidable.
Satisfiability of systems \(KX = XL, A^*X = A^* \) is not decidable for regular languages \(K, L \).

Cassaigne & Karhumäki & Salmela 2007:

Conjugacy of finite bifix codes via any non-empty language is decidable.

Open questions:

- removal of the requirement on \(\varepsilon \)
- conjugacy of finite languages (satisfiability of equations with finite constants)
- conjugacy via regular or finite languages (satisfiability by regular or finite languages)
Identity checking problem for regular expressions:

\(f, g \) regular expressions with variables \(X_1, \ldots, X_n \) (union, concatenation, Kleene star, letters)

Does \(f(L_1, \ldots, L_n) = g(L_1, \ldots, L_n) \) hold for arbitrary (regular) languages \(L_1, \ldots, L_n \)?

- trivally \textbf{decidable} (treat variables as letters and compare regular languages)
- decidable also with the shuffle operation (Meyer & Rabinovich 2002)
- open problems for expressions with intersection

Rational systems: (defined by a finite transducer)

Every \textbf{rational system} of word equations is algorithmically equivalent to some of its finite subsystems \(\implies \) satisfiability of rational systems of word equations is \textbf{decidable}.

(Culik II & Karhumäki 1983, Albert & Lawrence 1985, Guba 1986)

Do given finite languages form a solution of the system \(\{ X^nZ = Y^nZ \mid n \in \mathbb{N} \} \)?

\textbf{undecidable} (Lisovik 1997, Karhumäki & Lisovik 2003, MK 2007)
Language Inequalities Defining Basic Automata

Minimal automaton of a language \(L \):

state reached by \(w \in A^* \) = largest solution of the inequality \(w \cdot X_w \subseteq L \)

\[X_w \xrightarrow{a} X_{wa} \]

initial state \(X_\varepsilon \)

final states \(X_w \), where \(w \in L \)

Universal automaton of a language \(L \)

= smallest non-deterministic automaton admitting morphism from every automaton accepting \(L \)

state = maximal solution of the inequality \(X \cdot Y \subseteq L \)

\[(X, Y) \xrightarrow{a} (X', Y') \iff aY' \subseteq Y \iff Xa \subseteq X' \]

\((X, Y) \) initial state \(\iff \varepsilon \in X \)

\((X, Y) \) final state \(\iff \varepsilon \in Y \)
General Results About Language Inequalities

Jeż & Okhotin 2008: Even for unary alphabet, finite constants, concatenation and union:
components of unique (smallest, largest) solutions =

= recursive (recursively enumerable, co-recursively enumerable) languages

Example: Minimal solutions of $X \cup Y = L$ are precisely disjoint decompositions of L.

In the presence of union and concatenation, interesting properties are demonstrated
by maximal solutions.
Systems of Inequalities with Constant Right-Hand Sides

\[P_i \subseteq L_i \quad L_i \subseteq A^* \text{ regular, } P_i \subseteq (A \cup \mathcal{V})^* \text{ arbitrary} \]

maximal solutions:

- finitely many, all of them regular
- for context-free expressions \(P_i \): algorithmically regular
- every solution is contained in a maximal one
- all components are recognized by the syntactic homomorphism of the languages \(L_i \)

(Conway 1971)

Analogy: preservation of regularity by arbitrary inverse substitutions:

Largest solution of the inequality \(\varphi(X) \subseteq A^* \setminus L \) is \(X = A^* \setminus (\varphi^{-1}(L)) \).

Systems of equations with constant right-hand sides:

\[P_i = L_i \quad L_i \subseteq A^* \text{ regular, } P_i \subseteq (A \cup \mathcal{V})^* \text{ regular expression} \]

- satisfiability by arbitrary (finite) languages is EXPSPACE-complete (Bala 2006)
- Is satisfiability decidable if \(P_i \) can contain intersection?
General Left-Linear Inequalities

\[K_0 \cup X_1 K_1 \cup \cdots \cup X_n K_n \subseteq L_0 \cup X_1 L_1 \cup \cdots \cup X_n L_n \]

\(K_j, L_j \) regular \implies \text{basic properties of the inequality can be expressed using formulae of monadic second-order theory of infinite } |A|\text{-ary tree}

Example: \(b \cup X a \subseteq X \cup X ba \)

\(X \) is a solution \iff \(X(b) \land (\forall x : X(x) \implies (X(xa) \lor \exists y : X(y) \land x = yb)) \)

\(X \) minimal \iff \(\forall Y : (Y \text{ is a solution} \land \forall x : Y(x) \implies X(x)) \implies \)

\[\implies (\forall x : X(x) \implies Y(x)) \]

minimal solutions:

\(\bullet = "X \text{ holds}" \quad \circ = "X \text{ does not hold}" \)

\(a^* \cup b : \)

\[\begin{array}{c}
 a^* \\
 a \quad b
 \end{array} \]

\(ba^* : \)

\[\begin{array}{c}
 ba^* \\
 a \quad b
 \end{array} \]

Rabin 1969 \implies \text{algorithmically solvable using tree automata}

very special case of \textit{set constraints} (letters as unary functions)

EXPTIME-complete (even when complementation is allowed) (1994–2006)
Yet More General Left-Linear Inequalities

\[K_0 \cup X_1K_1 \cup \cdots \cup X_nK_n \subseteq L_0 \cup X_1L_1 \cup \cdots \cup X_nL_n \]

\(K_j \) arbitrary, \(L_j \) regular

largest solution: (MK 2005)

- regular
- for context-free \(K_j \): algorithmically regular
- direct construction of the automaton accepting the solution
Concatenations on the Right

Previous cases:

\[\ldots \subseteq L\] constants on the right fix the context

\[XK \cup \ldots \subseteq XL \cup \ldots\] local modifications on one side

Next task:

\[\ldots \subseteq XLY\] general concatenations on the right

We need to classify words according to their decompositions with respect to constant languages.
A Quasiorder for Dealing with Concatenations on the Right

Applying well-quasiorders to inequalities:
Construct a wqo on A^* such that every solution is contained in an upward closed solution.

Systems of inequalities $P_i \subseteq Q_i$
$P_i \subseteq (A \cup V)^*$ arbitrary
$Q_i \ldots$ regular expressions over variables and languages recognizable by
a homomorphism $\varphi : A^* \rightarrow (M, \leq)$

Recalling definition:
$u \Rightarrow^* \varphi v \iff u = a_1 \ldots a_n, a_i \in A$
& $v = v_1 \ldots v_n, v_i \in A^+$
& $\varphi(a_i) \leq \varphi(v_i)$
Theorem: All maximal solutions are recognizable by the quasiorder \Rightarrow^φ. (MK 2005)

Proof: α arbitrary solution

define $\beta(X) = \{ u \in A^* | \exists v \in \alpha(X) : v \Rightarrow^\varphi u \}$, for every $X \in \mathcal{V}$

$\beta(X) \supseteq \alpha(X)$

β is a solution:

$u \in \beta(P_i) \implies \exists v \in \alpha(P_i) : v \Rightarrow^\varphi u$ (because \Rightarrow^φ is monotone)

we prove by induction on structure of Q_i:

$v \in \alpha(Q_i) \& v \Rightarrow^\varphi u \implies u \in \beta(Q_i)$

e subexpression of Q_i, $v \in \alpha(e)$, $v \Rightarrow^\varphi u$

- e variable: $u \in \beta(e)$ by definition of β
- e constant: $u \in \alpha(e) \subseteq \beta(e)$ because $\varphi(u) \geq \varphi(v)$
- e union or intersection: $u \in \beta(e)$ by induction hypothesis
- $e = e_1 \cdot e_2$: $v = v_1 \cdot v_2$, $v_1 \in \alpha(e_1)$, $v_2 \in \alpha(e_2)$
 definition of \Rightarrow^φ $\implies u = u_1 \cdot u_2$, $v_1 \Rightarrow^\varphi u_1$, $v_2 \Rightarrow^\varphi u_2$
 induction hypothesis $\implies u_1 \in \beta(e_1)$, $u_2 \in \beta(e_2) \implies u \in \beta(e)$

Every component of β is a finite union of languages of the form

$\langle a_1 \ldots a_n \rangle \Rightarrow^\varphi = \varphi^{-1}(\langle \varphi(a_1) \rangle_\leq) \cdots \varphi^{-1}(\langle \varphi(a_n) \rangle_\leq)$, where $a_1, \ldots, a_n \in A$.
Inequalities with Restrictions on Constants

Systems of inequalities $P_i \subseteq Q_i$

$P_i \subseteq (A \cup V)^*$ arbitrary

Q_i ... regular expressions over variables and languages recognizable by finite simple semigroups

(or all together by a finite chain of finite simple semigroups)

(can contain infinite unions and intersections, provided only finitely many constants are used)

MK 2005:

• All maximal solutions are regular.
• The class of polynomials of group languages is closed under taking maximal solutions of such systems.
• If L is recognizable by a finite chain of finite simple semigroups, then every union of powers of L is regular. $(X \subseteq \bigcup_{n \in N} L^n$, for arbitrary $N \subseteq N)$
Semi-commutation Inequalities

\[XK \subseteq LX \] \(K \) arbitrary, \(L \) regular

largest solution:

- always regular (MK 2005)
- for context-free \(K \): algorithmically recursive
- if \(K \) and \(L \) finite and all words in \(K \) longer than all in \(L \): algorithmically regular (Ly 2007)

Game:

- **position:** \(w \in A^* \)
 - attacker: chooses \(u \in K \)
 - plays \(w \rightarrow wu \)
 - defender: chooses \(v \in L \)
 - \(wu = vw\hat{w} \)
 - plays \(wu \rightarrow \hat{w} \)

largest solution = all winning positions of the defender
Encoding Defender’s Strategies for Initial Word w

Labelled tree:

defender moves along the edges = removes prefixes of w

label = \sim_L-class of the current remainder of w

Example: $w = abcd$, $L = \{a, ab, abcd, bc, c, cd, da\}$
Well-quasiordering Trees

\(w \leq v \) \ldots winning strategies of the defender for \(w \) can be used also for \(v \)

Example:

\[\begin{array}{ccc}
 & s & \\
 t & & t \\
 & p & q & t \\
 & s & & \\
\end{array} \]

Largest solution is upward closed with respect to \(\leq \).

Kruskal 1960: \(\leq \) is wqo.
Simple Equations Possessing Universal Power

MK 2005:
Every co-recursively enumerable language can be described as the largest solution of any of the following systems with regular constants K, L, M and N.

\[
\begin{align*}
X K & \subseteq LX \\
X & \subseteq M \\
X K & \subseteq LX \\
X M & \subseteq NX \\
X K & \subseteq LX \\
M X & \subseteq XN
\end{align*}
\]

Special case: $XL = LX$
- formulated by Conway 1971
- positive results:
 - at most three-element languages, regular codes (Karhumäki & Latteux & Petre 2005)

MK 2007:
There exists a finite language L such that the largest solution $C(L)$ of $XL = LX$ is not recursively enumerable.
Example: \(L \) regular, but \(C(L) \) non-regular

\[
A = \{a, b, c, e, \hat{e}, f, \hat{f}, g, \hat{g}\}
\]

\[
L = \{c, ef, ga, e, fg, f\hat{e}, a\hat{g}, \hat{e}, \hat{g}f, fgba\hat{g}\} \cup cM \cup Mc \cup
\cup \ A^*bA^*bA^* \cup (A \setminus \{c\})^*b(A \setminus \{c\})^* \setminus N
\]

\[
M = efga^+ba^* \cup ga^*ba^*\hat{g}f \cup a^*ba^*\hat{g}\hat{f}\hat{e} \cup fga^*ba^*\hat{g}
\]

\[
N = \{efg, fg, g, \varepsilon\} \cdot a^*ba^* \cdot \{\varepsilon, \hat{g}, \hat{g}\hat{f}, \hat{g}\hat{f}\hat{e}\}
\]

encodes simultaneous decrementation of two counters and zero-test

Configuration: \([[[e]f]g]a^m ba^n [\hat{g} [\hat{f} [\hat{e}]]]\)
Simultaneous Decrementation of Both Counters

Attacker forces defender to remove one a on each side:

$$efga^m ba^n \downarrow$$

$$efga^m ba^n \cdot \hat{gf} \quad \longrightarrow \quad fga^m ba^n \hat{gf} \quad \downarrow$$

$$ga^m ba^n \hat{gf} \quad \quad fga^m ba^n \hat{gf} \cdot c \cdot c \notin L^2 \cdot A^*$$

$$ga a^{m-1} ba^n \hat{gf} \cdot \hat{e} \downarrow$$

$$a^{m-1} ba^n \hat{gf} \hat{e} \downarrow$$

$$\vdots \downarrow$$

$$efga^{m-1} ba^{n-1}$$
Games That Can Be Encoded
(Jeandel & Ollinger)

Example:

position of the game: a vertex of the graph and a word
labels of attacker’s vertices: allowed words
labels of edges: words to be added by attacker or removed by defender
• when attacker modifies on one side, defender has to modify on the other
• bipartite graph for each type of edges
• at most one common vertex for any two connected components of different types
• only one type of edges leading from each of attacker’s vertices
• non-empty labels of edges only around one attacker’s vertex for each type of edges
Some Open Problems

• satisfiability of equations with concatenation (and union) over finite or regular languages

• satisfiability of equations with concatenation and finite constants

• Conjecture: (Rato and Romanana 1989)
 Among codes, equation $XY = YX$ has only solutions of the form $X = L^m$, $Y = L^n$.
 Equivalently: Every code has a primitive root.

• regularity of solutions of other simple systems of inequalities, for example:

 $KXL \subseteq MX$
 $KX \subseteq LX$, $XM \subseteq XN$

• existence of algorithms for finding regular solutions

• methods for proving properties of conjunctive and Boolean grammars

• existence of non-trivial shuffle decomposition $X \uplus Y = L$ of a regular language L

• existence of non-trivial unambiguous decompositions of regular languages