The Pin-Reutenauer algorithm for classes of
aperiodic semigroups

Marc Zeitoun, LaBRI, U. Bordeaux, CNRS.
Joint work with Jorge Almeida & José Carlos Costa.

Equational Theory of Regular Languages, Brno

March 6-7, 2009

http://www.labri.fr/~zeitoun

Outline

A. Profinite semigroups and closures: some notation.

B. The Pin-Reutenauer algorithm.

C. Proof ideas and main ingredients.

Pseudovarieties

> Pseudovariety: class of finite semigroups closed under

» finite direct products,
» subsemigroup,
» quotient.

all finite semigroups.
. all finite groups.
: all finite aperiodic (group-free) semigroups.

. all finite R-trivial semigroups.

YV V VY
< V> OV

: a generic pseudovariety.

Relatively V-free profinite semigroups

> X: fixed finite alphabet.

» A semigroup S separates u,v € X" if there is a homomorphism
@ : XT — S such that ¢(u) # ¢(v).

» Define a pseudo-metric dy:

{ rv(u,v) =min{|S]:S €V and S separates u and v}.

dy(u,v) =2),

» u~y v ifand only if dy(u, v) = 0 defines a congruence.

> Relatively V-free profinite semigroup QxV: completion of
(X*/~v, dv). Elements of QxS are called pseudowords.

Implicit signatures

Implicit signature o: set of elements of pseudowords containing the
multiplication.

» Example: kx = {_._, “71}.

» Each element of ¢ can be interpreted on a profinite semigroup.

Given g, a profinite semigroup S has a structure of “o-semigroup”
obtained by evaluating each operation of o in S.

Q%V is the o-subsemigroup of QxV generated by X.

Notation: Closures for profinite topologies

» L C S topological semigroup: cls(L) denotes the closure of L in S.
def def
cl(L) = clg,s(L) clo(L) = clags(L)
def def
clv(L) = clg,(L) clo,v(L) = clagv(L)
» The topology on Q%V is the induced topology in QxV:

clov(L) = cly(L) N QLV.

Notation: Closures for profinite topologies

» L C S topological semigroup: cls(L) denotes the closure of L in S.

def def
cl(L) = clg,s(L) clo(L) = clags(L)

def def
clv(L) = clg,(L) clo,v(L) = clagv(L)
» The topology on Q%V is the induced topology in QxV:

clov(L) = cly(L) N QLV.

» We abusively use the above notation for L C X*: eg, we write
cly,v(L) instead of clg v (pv((L))), where py : QxS — QxV is the
canonical projection and ¢ : X* — QxS the canonical embedding.

Notation: algebraic closures

> Let o be an implicit signature, S be a o-semigroup, and L C S.

(L) = g-subsemigroup of S generated by L.
(in practice in L C Q%S)
<L>0,V = <p\/(L)>0

The Pin-Reutenauer algorithm

» The Pin-Reutenauer algorithm holds for V and o if, for all rational
languages K, L C X™, the following equations hold:

clov(KL) = clgv(K) - clgv(L),
clov (L) = (clov (L))o

> Makes it possible to “compute” the closure of any rational
language in the relatively V-free g-semigroup Q% V.

The Pin-Reutenauer algorithm

» The Pin-Reutenauer algorithm holds for V and o if, for all rational
languages K, L C X™, the following equations hold:

clov(KL) = clgv(K) - clgv(L),
clov (L) = (clov (L))o

> Makes it possible to “compute” the closure of any rational
language in the relatively V-free g-semigroup Q% V.

> Note: clyv(KL) 2 clgv(K) - clg (L) always hold true
(multiplication is continuous).

The Pin-Reutenauer algorithm holds for G and «

> In the free group Q%5 G endowed with the profinite topology, for
K,L C X* regular:

cle c(KL) = cly,c(K) - cle,g(L),
clec(L?) = (L), (1)

It is actually not necessary to propagate the closure in (1).

> Conjectured by Pin and Reutenauer, reduced to another conjecture
proved by Ribes and Zalesskil.

» Equivalent to Rhodes’ type Il conjecture, proved by Ash.

The Pin-Reutenauer algorithm holds for A and «

Theorem [Almeida, JC. Costa, Z.]

The Pin-Reutenauer procedure holds for A and «:

cle A(KL) = cl a(K) - clie,a(L), (2)
cla(LT) = {clia(L) e 3)

Proof ideas and ingredients:
o-fullness (Almeida, Steinberg '00)

» The following always hold:
clo(L) = pulcl(L)) N Q%V.

» A pseudovariety V is o-full if for every reqular L C X*:

clov(L) = p\/(cl(L) n Q;’(s)

» One can show this is equivalent to: for every regular L C X™,

clg v (L) = pv(cly(L)).

» To compute the closure in Q$V, one can compute it in Q%S and
project onto the free pro-V semigroup.

o-fullness and inheritance of the PR-algorithm

Proposition [ACZ]

Let V. and W be pseudovarieties such that

1. VCW,

2. Both V and W are o-full,

3. The Pin-Reutenauer algorithm holds for W.
Then the Pin-Reutenauer algorithm also holds for V.

o-fullness and inheritance of the PR-algorithm
Proposition [ACZ]
Let V. and W be pseudovarieties such that
1. VCW,
2. Both V and W are o-full,
3. The Pin-Reutenauer algorithm holds for W.
Then the Pin-Reutenauer algorithm also holds for V.

Easy proof. Eg, if product and closure commute for \W:

clg v(KL) = pv(clg(KL)) since V is g-full
= pw,v[pw(clg(KL))]
= pw v[clg,w(KL)] since W is g-full
= pw v[cle,w(K) - clgw(L)] by hypothesis

o pW,V[ClU,W(K)] . p\N,V[ClU.W(L)]

and back to clg v (K)clg v (L).

The Pin-Reutenauer for A: Case of the product

> clea(KL) 2 cla(K) - clea(L) by continuity of multiplication.

> For the reverse implication, use the fact that A is k-factorial.
Every factor in (QxA of an element of Q%A is again in Q5 A.

The Pin-Reutenauer for A: Case of the product

> clea(KL) 2 cla(K) - clea(L) by continuity of multiplication.
» For the reverseimplicatlon, use the fact that A is k-factorial.

Every factor in (QxA of an element of Q%A is again in Q5 A.
» Proof sketch: take w & cl, a(KL).

» There exists w, € KL converging to w in QxA.

The Pin-Reutenauer for A: Case of the product

> clea(KL) 2 cla(K) - clea(L) by continuity of multiplication.
» For the reverseimplicatlon, use the fact that A is k-factorial.

Every factor in (QxA of an element of Q%A is again in Q5 A.
> Proof sketch: take w & cl, aA(KL).

» There exists w, € KL converging to w in QxA.
» Write w, = x,y, with x, € K and y, € L.

The Pin-Reutenauer for A: Case of the product

> clea(KL) 2 cla(K) - clea(L) by continuity of multiplication.

> For the reverse implication, use the fact that A is k-factorial.
Every factor in (QxA of an element of Q%A is again in Q5 A.

> Proof sketch: take w & cl, aA(KL).

» There exists w, € KL converging to w in QxA.

» Write w, = x,y, with x, € K and y, € L.

» By compactness, one can assume (x,) and (y,) convergent to
x € cla(K) and y € cla(L).

The Pin-Reutenauer for A: Case of the product

> clea(KL) 2 cla(K) - clea(L) by continuity of multiplication.

> For the reverse implication, use the fact that A is k-factorial.
Every factor in (QxA of an element of Q%A is again in Q5 A.

> Proof sketch: take w & cl, aA(KL).

» There exists w, € KL converging to w in QxA.

» Write w, = x,y, with x, € K and y, € L.

» By compactness, one can assume (x,) and (y,) convergent to
x € cla(K) and y € cla(L).

» Since A is k-factorial and w = xy, we get x,y € Q%A.

The Pin-Reutenauer for A: Case of the product

> clea(KL) 2 cla(K) - clea(L) by continuity of multiplication.

> For the reverse implication, use the fact that A is k-factorial.
Every factor in (QxA of an element of Q%A is again in Q5 A.

> Proof sketch: take w & cl, aA(KL).

» There exists w, € KL converging to w in QxA.

Write w, = x,y, with x, € K and y,, € L.

By compactness, one can assume (x,) and (y,) convergent to

x € cla(K) and y € cla(L).

Since A is k-factorial and w = xy, we get x, y € Q§%A.

So x € cla(K), and y € clea(L), whence w € cla(K).clea(L)-

v

v

v

v

Another ingredient: star-free lanqguages separating
elements of Q) A.

Theorem (McCammond2001)

Using the rewriting following system, there is a procedure to transform
any w-word into a normal form: two w-words are equal over QxA if
and only if they have the same normal form.

(X(U)w ¢ 5 le.

(xK)¥ — x¥ for k > 2;
XWxW s Xw/.

XYx «—— xY «—— xx¥;

LA LN =

(xy)“x = x(yx)*.

Another ingredient: star-free lanqguages separating
elements of Q) A.

Theorem (McCammond2001)

Using the rewriting following system, there is a procedure to transform
any w-word into a normal form: two w-words are equal over QxA if
and only if they have the same normal form.

(X(U)(J) ¢ 5 le.

(xK)¥ — x¥ for k > 2;
XYxY «—— xY¥;

XYx «—— xY «—— xx¥;

LA LN =

(xy)“x = x(yx)*.

The rank of w € Q%A is the maximum nesting of w-powers in the term
in normal form representing w.

Neighborhood bases of star-free languages

> For LC X™*, let L”" = L"[7.

> Given an w-term w (term built from X using concatenation and

w-power), let L,(w) be the (reqular) language obtained from w by
replacing all "w” by "> n".

Example:
Ly(a¥abb®) = a®atabb’b™,
Ly((a“b)?) = (a®a™ b)?(a%at b)™.

Informally, L,(w) is obtained from w by replacing w-powers by
large iterations (more than n times).

Key properties of the lanquages L,(w)

Theorem [ACZ]

If w is in normal form, then

1. Ly(w) is star-free for n large enough, depending only on w.

2. pat(w) =, YLn(w))
Families L,(w) separate w-terms, in the sense that for two w-terms u, v:
(Vn Lp(u) N L(v) #) = pa(u) = pa(v).
and

pa(() cl(Ln(u)) = {pa(u)} = ﬂpA (cl(Ln(u)))-

n

PR algorithm for A: handling iteration:
ClKA(L+) <ClKA()>K,A

» The inclusion (clga(L))ea C clea(LT) is easy: since clea(L™)
contains cl, (L), it suffices to show that cl, (L") is a k-semigroup.

PR algorithm for A: handling iteration:
ClK A(L+) <ClK A(L)>K,A

» The inclusion (clga(L))ea C clea(LT) is easy: since clea(L™)
contains cl, (L), it suffices to show that cl, (L") is a k-semigroup.

» We want to represent w € cl,a(L") by a k-term on cl, a(L).
» Use induction on the rank and "length" of w.

» Proof sketch for a normal form w = v¥ of rank n > 1.

vV v. v v v

PR algorithm for A: handling iteration:
inclusion cl,a(LY) C (clea(L))wa

w = v¥ € clea(Ll™).

Since L,(w) is star-free for n large enough, cla(L,(w)) is clopen.
Since w € cla(LY), there exists w, € L,(w) N LY.

Since w, € L,(w), the sequence (w,), converges to w.

Easy case: there is a subsequence (w;), of w, and a fixed N such
that w;, € LNV. Then use the product case:

w € cla(LY) € (cln(D))” € (cla(l))n-

PR algorithm for A: handling iteration:
inclusion cl,a(LY) C (clea(L))wa

Otherwise: write
Wnp = W1 nW2 - Wk, n, Wj.n e L.
(with k, unbounded.)

Main problem: reduce to a bounded number of factors, while still
converging to w.

PR algorithm for A: handling iteration:
inclusion cl,a(LY) C (clea(L))wa

» Otherwise: write
Wnp = W1 nW2 - Wk, n, Wj.n e L.

(with k, unbounded.)
Main problem: reduce to a bounded number of factors, while still
converging to w.

» Group factors of L.

> If necessary, use periodic repetitions: replace w, by

. L . W - .
Wp = Wl,nW2,n"'(Wi,n"’Wj,n) c WK on, Wjn € L.

PR algorithm for A: handling iteration:
inclusion cl,a(LY) C (clea(L))wa

» Otherwise: write
Wnp = W1 nW2 - Wk, n, Wj.n e L.
(with k, unbounded.)

Main problem: reduce to a bounded number of factors, while still
converging to w.

» Group factors of L.
» If necessary, use periodic repetitions: replace w, by

L . W - .
Wp = Wl,nW2,n"'(Wi,n"’Wj,n) c WK on, Wjn € L.

> w, € Lp(w) = Lp(v¥) =[La(v)]7", so we get another factorization

Wn = Vi Vo Vo o pn > nand v, € Ly(v)

PR algorithm for A: handling iteration:
inclusion cl,a(LY) C (clea(L))wa

Wp = W1,nWo,pn - - - Wk, n, wj, € L.

Wn =V VoV oo Vin € Ln(v), etc.

» Consider a morphism ¢ : X* — M recognizing L and {1}.

> Build a finite graph ', as follows:
» Vertices: {*,$}U{(s,t) € M x M : L,(v) N o~ (s)L* ¢~ L(t) + @}
» Edge " — (s, t) if (La(v)) @ Ys)N L # 2.
» Edge (s, t) = $ dually.

» Edges (s1, t1) = (52, t2) if @71 (t1)(Ln(v)) @ Hs2) N L # 2.
» The 2 factorizations define a path y, from " to $ in the graph.

PR algorithm for A: handling iteration:
inclusion cl,a(LF) C {clea(L))ea

Since the number of vertices is fixed, one can assume that the set
of vertices and edges (“support”) used by the paths y, is constant.

First case: this support if paths y, has no cycle. In this case, all
paths y, are the same simple path from " to $.

We deduce for each n sequences of the length of that path (x; ,);
and (y;j n)i corresponding to edges and vertices of the path.

> Xxin € Lsolim,xi,=x € cla(L),

> yin € L* N X*L,(v)X™, so it converges to y; € cla(L*) and has rank
less than that of w. Induction: y; € (clia(L))xA

Therefore w = x1,ny1 nX2,ny2,n - -+ is also in {cle (L)) A-

PR algorithm for A: handling iteration:
inclusion cl,a(LY) C (clea(L))wa

» Since the number of vertices is fixed, one can assume that the set
of vertices and edges (“support”) used by the paths y, is constant.

> Second case: this support has a loop. Extracting if necessary, one
can assume that all y, have the same prefix up to the same simple
loop.

PR algorithm for A: handling iteration:
inclusion cl,a(LY) C (clea(L))wa

» Since the number of vertices is fixed, one can assume that the set
of vertices and edges (“support”) used by the paths y, is constant.
> Second case: this support has a loop. Extracting if necessary, one
can assume that all y, have the same prefix up to the same simple
loop.
> The definition of vertices/edges makes it possible to
» cut other loops while staying in L™ = bounded number of factors.

PR algorithm for A: handling iteration:
inclusion cl,a(LF) C {clea(L))ea

» Since the number of vertices is fixed, one can assume that the set
of vertices and edges (“support”) used by the paths y, is constant.

> Second case: this support has a loop. Extracting if necessary, one
can assume that all y, have the same prefix up to the same simple
loop.
> The definition of vertices/edges makes it possible to
» cut other loops while staying in L™ = bounded number of factors.
» pump this loop with all factors staying in L*: replace the loop by its

w-power. = as many copies of words of L,(v) as wanted, ensuring
convergence to w.

PR algorithm for A: handling iteration:
inclusion cl,a(LF) C {clea(L))ea

» Since the number of vertices is fixed, one can assume that the set
of vertices and edges (“support”) used by the paths y, is constant.

> Second case: this support has a loop. Extracting if necessary, one
can assume that all y, have the same prefix up to the same simple
loop.
> The definition of vertices/edges makes it possible to
» cut other loops while staying in L™ = bounded number of factors.
» pump this loop with all factors staying in L*: replace the loop by its

w-power. = as many copies of words of L,(v) as wanted, ensuring
convergence to w.

Back to the o-fullness

Proposition
The pseudovariety A is k-full.

Proof using again properties of star-free lanquages L,(w).

Back to the o-fullness

Proposition

The pseudovariety A is k-full.

Proof using again properties of star-free lanquages L,(w).

Proposition

The pseudovariety R is k-full.

Proof by induction on X, using the algebraic structure of QxR.

The Pin-Reutenauer algorithm holds for the pseudovariety R and the
canonical signature k.

Proof using the inheritance theorem for k-full pseudovarieties.

Two natural questions

1. Automata for term languages.

» (Henckell's algorithm) Given reqular K, L C X*, one can decide
whether
cla(K)Nela(l) = @.

» By a weak form of x-reducibility for A, this is equivalent
clea(K)Nclea(l) = @.

Is it possible to test it using automata accepting languages in Q5 A?

2. The pseudovariety S of all finite semigroups is o-full, for every o.
Does the Pin-Reutenauer algorithm hold for S and «?

	Profinite semigroups and closures: some notation
	The Pin-Reutenauer algorithm
	Proof ideas

