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A. Profinite semigroups and closures: some notation.
B. The Pin-Reutenauer algorithm.
C. Proof ideas and main ingredients.
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Pseudovarieties

I Pseudovariety: class of finite semigroups closed under
I finite direct products,
I subsemigroup,
I quotient.

I S: all finite semigroups.
I G: all finite groups.
I A: all finite aperiodic (group-free) semigroups.
I R: all finite R-trivial semigroups.
I V: a generic pseudovariety.
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Relatively V-free profinite semigroups

I X : fixed finite alphabet.
I A semigroup S separates u, v ∈ X+ if there is a homomorphism
φ : X+ → S such that φ(u) 6= φ(v ).

I Define a pseudo-metric dV:{
rV(u, v ) = min

{
|S | : S ∈ V and S separates u and v}.

dV(u, v ) = 2−rV(u,v ).
I u ∼V v if and only if dV(u, v ) = 0 defines a congruence.
I Relatively V-free profinite semigroup ΩXV: completion of(X+/∼V, dV). Elements of ΩXS are called pseudowords.
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Implicit signatures

I Implicit signature σ : set of elements of pseudowords containing themultiplication.
I Example: κ = {_._ , _ω−1}.
I Each element of σ can be interpreted on a profinite semigroup.
I Given σ , a profinite semigroup S has a structure of “σ-semigroup”obtained by evaluating each operation of σ in S .
I Ωσ

XV is the σ-subsemigroup of ΩXV generated by X .
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Notation: Closures for profinite topologies

I L ⊆ S topological semigroup: clS (L) denotes the closure of L in S .
cl(L) def= clΩXS(L) clσ (L) def= clΩσ

XS(L)
clV(L) def= clΩXV(L) clσ,V(L) def= clΩσ

XV(L)
I The topology on Ωσ

XV is the induced topology in ΩXV:
clσ,V(L) = clV(L) ∩Ωσ

XV.

I We abusively use the above notation for L ⊆ X+: eg, we writeclσ,V(L) instead of clσ,V(pV(ι(L))), where pV : ΩXS→ ΩXV is thecanonical projection and ι : X+ → ΩXS the canonical embedding.
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Notation: algebraic closures

I Let σ be an implicit signature, S be a σ-semigroup, and L ⊆ S .
〈L〉σ = σ-subsemigroup of S generated by L.(in practice in L ⊆ Ωσ

XS)
〈L〉σ,V = 〈pV(L)〉σ
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The Pin-Reutenauer algorithm

I The Pin-Reutenauer algorithm holds for V and σ if, for all rationallanguages K , L ⊆ X+, the following equations hold:
clσ,V(KL) = clσ,V(K ) · clσ,V(L),clσ,V(L+) = 〈clσ,V(L)〉σ .

I Makes it possible to “compute” the closure of any rationallanguage in the relatively V-free σ-semigroup Ωσ
XV.

I Note: clσ,V(KL) ⊇ clσ,V(K ) · clσ,V(L) always hold true(multiplication is continuous).
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The Pin-Reutenauer algorithm holds for G and κ

I In the free group Ωκ
XG endowed with the profinite topology, for

K , L ⊆ X+ regular:
clκ,G(KL) = clκ,G(K ) · clκ,G(L),clκ,G(L+) = 〈L〉κ . (1)

It is actually not necessary to propagate the closure in (1).
I Conjectured by Pin and Reutenauer, reduced to another conjectureproved by Ribes and Zalesskĭı.
I Equivalent to Rhodes’ type II conjecture, proved by Ash.
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The Pin-Reutenauer algorithm holds for A and κ

Theorem [Almeida, JC. Costa, Z.]The Pin-Reutenauer procedure holds for A and κ:
clκ,A(KL) = clκ,A(K ) · clκ,A(L), (2)clκ,A(L+) = 〈clκ,A(L)〉κ . (3)
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Proof ideas and ingredients:
σ-fullness (Almeida, Steinberg ’00)

I The following always hold:
clσ,V(L) = pV(cl(L)) ∩Ωσ

XV.

I A pseudovariety V is σ-full if for every regular L ⊆ X+:
clσ,V(L) = pV

(cl(L) ∩Ωσ
XS
)

I One can show this is equivalent to: for every regular L ⊆ X+,
clσ,V(L) = pV(clσ (L)).

I To compute the closure in Ωσ
XV, one can compute it in Ωσ

XS andproject onto the free pro-V semigroup.
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σ-fullness and inheritance of the PR-algorithmProposition [ACZ]Let V and W be pseudovarieties such that1. V ⊆W,2. Both V and W are σ-full,3. The Pin-Reutenauer algorithm holds for W.Then the Pin-Reutenauer algorithm also holds for V.

Easy proof. Eg, if product and closure commute for W:
clσ,V(KL) = pV(clσ (KL)) since V is σ-full= pW,V[pW(clσ (KL))]= pW,V[clσ,W(KL)] since W is σ-full= pW,V[clσ,W(K ) · clσ,W(L)] by hypothesis= pW,V[clσ,W(K )] · pW,V[clσ,W(L)]

and back to clσ,V(K )clσ,V(L).
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The Pin-Reutenauer for A: Case of the product

I clκ,A(KL) ⊇ clκ,A(K ) · clκ,A(L) by continuity of multiplication.
I For the reverse implication, use the fact that A is κ-factorial.Every factor in ΩXA of an element of Ωκ

XA is again in Ωκ
XA.

I Proof sketch: take w ∈ clκ,A(KL).

I There exists wn ∈ KL converging to w in ΩXA.
I Write wn = xnyn with xn ∈ K and yn ∈ L.
I By compactness, one can assume (xn) and (yn) convergent to

x ∈ clA(K ) and y ∈ clA(L).
I Since A is κ-factorial and w = xy , we get x , y ∈ Ωκ

XA.
I So x ∈ clκ,A(K ), and y ∈ clκ,A(L), whence w ∈ clκ,A(K ).clκ,A(L).
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Another ingredient: star-free languages separating
elements of Ωκ

XA.

Theorem (McCammond’2001)
Using the rewriting following system, there is a procedure to transform
any ω-word into a normal form: two ω-words are equal over ΩXA if
and only if they have the same normal form.1. (xω)ω ←→ xω;2. (xk )ω ←→ xω for k > 2;3. xωxω ←→ xω;4. xωx ←→ xω ←→ xxω;5. (xy )ωx ←→ x(yx)ω.

The rank of w ∈ Ωκ
XA is the maximum nesting of ω-powers in the termin normal form representing w .
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Neighborhood bases of star-free languages

I For L ⊆ X+, let L>n = LnL+.
I Given an ω-term w (term built from X using concatenation and
ω-power), let Ln(w ) be the (regular) language obtained from w byreplacing all ”ω” by ”> n”.

I Example:
L2(aωabbω) = a2a+abb2b+,
L2((aωb)ω) = (a2a+b)2(a2a+b)+.

I Informally, Ln(w ) is obtained from w by replacing ω-powers bylarge iterations (more than n times).



16/24

Key properties of the languages Ln(w )
Theorem [ACZ]If w is in normal form, then1. Ln(w ) is star-free for n large enough, depending only on w .2. p−1

A (w ) = ⋂n cl(Ln(w ))
Families Ln(w ) separate ω-terms, in the sense that for two ω-terms u, v :

(∀n Ln(u) ∩ Ln(v ) 6= ∅) =⇒ pA(u) = pA(v ).
and

pA
(⋂

n

cl(Ln(u))) = {pA(u)} =⋂
n

pA(cl(Ln(u))).
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PR algorithm for A: handling iteration:clκ,A(L+++) = 〈clκ,A(L)〉κ,A
I The inclusion 〈clκ,A(L)〉κ,A ⊆ clκ,A(L+++) is easy: since clκ,A(L+++)contains clκ,A(L), it suffices to show that clκ,A(L+++) is a κ-semigroup.

I We want to represent w ∈ clκ,A(L+++) by a κ-term on clκ,A(L).
I Use induction on the rank and "length" of w .
I Proof sketch for a normal form w = vω of rank n > 1.
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PR algorithm for A: handling iteration:
inclusion clκ,A(L+++) ⊆ 〈clκ,A(L)〉κ,A

I w = vω ∈ clκ,A(L+++).
I Since Ln(w ) is star-free for n large enough, clA(Ln(w )) is clopen.
I Since w ∈ clκ,A(L+++), there exists wn ∈ Ln(w ) ∩ L+.
I Since wn ∈ Ln(w ), the sequence (wn)n converges to w .
I Easy case: there is a subsequence (win )n of wn and a fixed N suchthat win ∈ LN . Then use the product case:

w ∈ clκ,A(LN ) ⊆ (clκ,A(L))N ⊆ 〈clκ,A(L)〉κ,A.
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PR algorithm for A: handling iteration:
inclusion clκ,A(L+++) ⊆ 〈clκ,A(L)〉κ,A

I Otherwise: write
wn = w1,nw2,n · · ·wkn,n, wj ,n ∈ L.

(with kn unbounded.)Main problem: reduce to a bounded number of factors, while stillconverging to w .

I Group factors of L.
I If necessary, use periodic repetitions: replace wn by

w̃n = w̃1,nw̃2,n · · · (w̃i ,n · · · w̃j ,n)ω · · · w̃K ,n, w̃j ,n ∈ L.

I wn ∈ Ln(w ) = Ln(vω) = [Ln(v )]>n, so we get another factorization
wn = v1,nv2,n · · · vpn,n, pn > n and vj ,n ∈ Ln(v )
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PR algorithm for A: handling iteration:
inclusion clκ,A(L+++) ⊆ 〈clκ,A(L)〉κ,A

wn = w1,nw2,n · · ·wkn,n, wj ,n ∈ L.
wn = v1,nv2,n · · · vpn,n, vj ,n ∈ Ln(v ), etc.

I Consider a morphism φ : X ∗ → M recognizing L and {1}.
I Build a finite graph Γn as follows:

I Vertices: {ˆ,$} ∪ {(s, t) ∈ M ×M : Ln(v ) ∩ φ−1(s)L∗φ−1(t) 6= ∅}
I Edge ˆ→ (s, t) if (Ln(v ))∗φ−1(s) ∩ L 6= ∅.
I Edge (s, t)→ $ dually.
I Edges (s1, t1)→ (s2, t2) if φ−1(t1)(Ln(v ))∗φ−1(s2) ∩ L 6= ∅.

I The 2 factorizations define a path γn from ˆ to $ in the graph.
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PR algorithm for A: handling iteration:
inclusion clκ,A(L+++) ⊆ 〈clκ,A(L)〉κ,A

I Since the number of vertices is fixed, one can assume that the setof vertices and edges (“support”) used by the paths γn is constant.
I First case: this support if paths γn has no cycle. In this case, allpaths γn are the same simple path from ˆ to $.
I We deduce for each n sequences of the length of that path (xi ,n)iand (yi ,n)i corresponding to edges and vertices of the path.
I xi ,n ∈ L so limn xi ,n = xi ∈ clA(L),
I yi ,n ∈ L∗ ∩ X ∗Ln(v )X ∗, so it converges to yi ∈ clA(L∗) and has rankless than that of w . Induction: yi ∈ 〈clκ,A(L)〉κ,A
I Therefore w = x1,ny1,nx2,ny2,n · · · is also in 〈clκ,A(L)〉κ,A.
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PR algorithm for A: handling iteration:
inclusion clκ,A(L+++) ⊆ 〈clκ,A(L)〉κ,A

I Since the number of vertices is fixed, one can assume that the setof vertices and edges (“support”) used by the paths γn is constant.
I Second case: this support has a loop. Extracting if necessary, onecan assume that all γn have the same prefix up to the same simpleloop.

I The definition of vertices/edges makes it possible to
I cut other loops while staying in L+ ⇒ bounded number of factors.
I pump this loop with all factors staying in L+: replace the loop by its
ω-power. ⇒ as many copies of words of Ln(v ) as wanted, ensuringconvergence to w .
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Back to the σ-fullness

PropositionThe pseudovariety A is κ-full.
Proof using again properties of star-free languages Ln(w ).

PropositionThe pseudovariety R is κ-full.
Proof by induction on X , using the algebraic structure of ΩXR.
CorollaryThe Pin-Reutenauer algorithm holds for the pseudovariety R and thecanonical signature κ.
Proof using the inheritance theorem for κ-full pseudovarieties.
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Two natural questions

1. Automata for term languages.
I (Henckell’s algorithm) Given regular K , L ⊆ X+, one can decidewhether clA(K ) ∩ clA(L) = ∅.
I By a weak form of κ-reducibility for A, this is equivalent

clκ,A(K ) ∩ clκ,A(L) = ∅.

Is it possible to test it using automata accepting languages in Ωκ
XA?2. The pseudovariety S of all finite semigroups is σ-full, for every σ .Does the Pin-Reutenauer algorithm hold for S and κ?
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