The Pin-Reutenauer algorithm for classes of aperiodic semigroups

Marc Zeitoun, LaBRI, U. Bordeaux, CNRS. Joint work with Jorge Almeida & José Carlos Costa.

Equational Theory of Regular Languages, Brno

March 6-7, 2009

Outline

A. Profinite semigroups and closures: some notation.

B. The Pin-Reutenauer algorithm.

C. Proof ideas and main ingredients.

Pseudovarieties

Pseudovariety: class of finite semigroups closed under

- finite direct products,
- subsemigroup,
- quotient.
- **S**: all finite semigroups.
- **G**: all finite groups.
- A: all finite aperiodic (group-free) semigroups.
- ▶ R: all finite *R*-trivial semigroups.
- ▶ V: a generic pseudovariety.

Relatively V-free profinite semigroups

- > X: fixed finite alphabet.
- A semigroup S separates $u, v \in X^+$ if there is a homomorphism $\varphi: X^+ \to S$ such that $\varphi(u) \neq \varphi(v)$.
- Define a pseudo-metric d_V :

$$\begin{cases} r_{\mathsf{V}}(u,v) &= \min\{|S| : S \in \mathsf{V} \text{ and } S \text{ separates } u \text{ and } v\}.\\ d_{\mathsf{V}}(u,v) &= 2^{-r_{\mathsf{V}}(u,v)}. \end{cases}$$

- $u \sim_V v$ if and only if $d_V(u, v) = 0$ defines a congruence.
- ► Relatively V-free profinite semigroup $\overline{\Omega}_X V$: completion of $(X^+/\sim_V, d_V)$. Elements of $\overline{\Omega}_X S$ are called pseudowords.

Implicit signatures

- Implicit signature σ: set of elements of pseudowords containing the multiplication.
- Example: $\kappa = \{_,_,_^{\omega-1}\}$.
- Each element of σ can be interpreted on a profinite semigroup.
- Given σ , a profinite semigroup S has a structure of " σ -semigroup" obtained by evaluating each operation of σ in S.

▲ ■ ▶ ■ 𝒴 𝔍 𝔅 5/24

• $\Omega_X^{\sigma} V$ is the σ -subsemigroup of $\overline{\Omega}_X V$ generated by X.

Notation: Closures for profinite topologies

▶ $L \subseteq S$ topological semigroup: $cl_S(L)$ denotes the closure of L in S.

$$cl(L) \stackrel{\text{def}}{=} cl_{\overline{\Omega}_{X}S}(L) \qquad cl_{\sigma}(L) \stackrel{\text{def}}{=} cl_{\Omega_{X}^{\sigma}S}(L)$$
$$cl_{V}(L) \stackrel{\text{def}}{=} cl_{\overline{\Omega}_{X}V}(L) \qquad cl_{\sigma,V}(L) \stackrel{\text{def}}{=} cl_{\Omega_{X}^{\sigma}V}(L)$$

• The topology on $\Omega_X^{\sigma} V$ is the induced topology in $\overline{\Omega}_X V$:

 $\mathrm{cl}_{\sigma,\mathbf{V}}(L) = \mathrm{cl}_{\mathbf{V}}(L) \cap \Omega_X^{\sigma} \mathbf{V}.$

▲ ■ ▶ ■ ♥ Q ♀ 6/24

Notation: Closures for profinite topologies

▶ $L \subseteq S$ topological semigroup: $cl_S(L)$ denotes the closure of L in S.

$$cl(L) \stackrel{\text{def}}{=} cl_{\overline{\Omega}_{X}S}(L) \qquad cl_{\sigma}(L) \stackrel{\text{def}}{=} cl_{\Omega_{X}^{\sigma}S}(L)$$
$$cl_{\mathbf{V}}(L) \stackrel{\text{def}}{=} cl_{\overline{\Omega}_{X}V}(L) \qquad cl_{\sigma,\mathbf{V}}(L) \stackrel{\text{def}}{=} cl_{\Omega_{X}^{\sigma}V}(L)$$

• The topology on $\Omega_X^{\sigma} V$ is the induced topology in $\overline{\Omega}_X V$:

$$\operatorname{cl}_{\sigma,\mathsf{V}}(L) = \operatorname{cl}_{\mathsf{V}}(L) \cap \Omega_X^{\sigma} \mathsf{V}.$$

▶ We abusively use the above notation for $L \subseteq X^+$: eg, we write $cl_{\sigma, V}(L)$ instead of $cl_{\sigma, V}(p_V(\iota(L)))$, where $p_V : \overline{\Omega}_X S \to \overline{\Omega}_X V$ is the canonical projection and $\iota : X^+ \to \overline{\Omega}_X S$ the canonical embedding.

Notation: algebraic closures

▶ Let σ be an implicit signature, S be a σ -semigroup, and $L \subseteq S$.

$$\begin{split} \langle L \rangle_{\sigma} &= \sigma \text{-subsemigroup of } S \text{ generated by } L. \\ & (\text{in practice in } L \subseteq \Omega_X^{\sigma} \mathsf{S}) \\ \langle L \rangle_{\sigma, \mathsf{V}} &= \langle p_{\mathsf{V}}(L) \rangle_{\sigma} \end{split}$$

▲ 重 → 重 → へ ペ 7/24

The Pin-Reutenauer algorithm

► The Pin-Reutenauer algorithm holds for V and σ if, for all rational languages $K, L \subseteq X^+$, the following equations hold:

$$cl_{\sigma, \mathbf{V}}(KL) = cl_{\sigma, \mathbf{V}}(K) \cdot cl_{\sigma, \mathbf{V}}(L),$$

$$cl_{\sigma, \mathbf{V}}(L^{+}) = \langle cl_{\sigma, \mathbf{V}}(L) \rangle_{\sigma}.$$

▲ ■ ▶ ■ 𝒴 𝔍 𝔍 𝔅 8/24

• Makes it possible to "compute" the closure of any rational language in the relatively V-free σ -semigroup $\Omega_X^{\sigma} V$.

The Pin-Reutenauer algorithm

► The Pin-Reutenauer algorithm holds for V and σ if, for all rational languages $K, L \subseteq X^+$, the following equations hold:

$$cl_{\sigma, \mathbf{V}}(\mathcal{K}L) = cl_{\sigma, \mathbf{V}}(\mathcal{K}) \cdot cl_{\sigma, \mathbf{V}}(L),$$

$$cl_{\sigma, \mathbf{V}}(L^{+}) = \langle cl_{\sigma, \mathbf{V}}(L) \rangle_{\sigma}.$$

▲ ■ ▶ ■ 𝒴 𝔍 𝔍 𝔅 8/24

- Makes it possible to "compute" the closure of any rational language in the relatively V-free σ -semigroup $\Omega_X^{\sigma} V$.
- Note: cl_{σ,V}(KL) ⊇ cl_{σ,V}(K) · cl_{σ,V}(L) always hold true (multiplication is continuous).

The Pin-Reutenauer algorithm holds for G and κ

► In the free group Ω_X^{κ} G endowed with the profinite topology, for $K, L \subseteq X^+$ regular:

$$cl_{\kappa,G}(KL) = cl_{\kappa,G}(K) \cdot cl_{\kappa,G}(L),$$

$$cl_{\kappa,G}(L^{+}) = \langle L \rangle_{\kappa}.$$
 (1)

It is actually not necessary to propagate the closure in (1).

- Conjectured by Pin and Reutenauer, reduced to another conjecture proved by Ribes and Zalesskii.
- Equivalent to Rhodes' type II conjecture, proved by Ash.

The Pin-Reutenauer algorithm holds for A and κ

Theorem [Almeida, JC. Costa, Z.]

The Pin-Reutenauer procedure holds for A and κ :

$$cl_{\kappa,A}(KL) = cl_{\kappa,A}(K) \cdot cl_{\kappa,A}(L),$$
(2)
$$cl_{\kappa,A}(L^{+}) = \langle cl_{\kappa,A}(L) \rangle_{\kappa}.$$
(3)

Proof ideas and ingredients: σ -fullness (Almeida, Steinberg '00)

The following always hold:

$$\operatorname{cl}_{\sigma,\mathbf{V}}(L) = p_{\mathbf{V}}(\operatorname{cl}(L)) \cap \Omega_X^{\sigma} \mathbf{V}.$$

► A pseudovariety V is σ -full if for every regular $L \subseteq X^+$:

$$\operatorname{cl}_{\sigma,\mathsf{V}}(L) = p_{\mathsf{V}}\left(\operatorname{cl}(L) \cap \Omega_X^{\sigma}\mathsf{S}\right)$$

• One can show this is equivalent to: for every regular $L \subseteq X^+$,

$$\operatorname{cl}_{\sigma,\mathbf{V}}(L) = p_{\mathbf{V}}(\operatorname{cl}_{\sigma}(L)).$$

► To compute the closure in $\Omega_X^{\sigma} V$, one can compute it in $\Omega_X^{\sigma} S$ and project onto the free pro-V semigroup.

σ -fullness and inheritance of the PR-algorithm

▲ ■ ▶ ■ ∽ Q (12/24)

Proposition [ACZ]

Let ${\sf V}$ and ${\sf W}$ be pseudovarieties such that

- 1. V ⊆ W,
- 2. Both V and W are σ -full,
- 3. The Pin-Reutenauer algorithm holds for W.

Then the Pin-Reutenauer algorithm also holds for V.

σ -fullness and inheritance of the PR-algorithm

Proposition [ACZ]

Let ${\sf V}$ and ${\sf W}$ be pseudovarieties such that

- 1. V ⊆ W,
- 2. Both V and W are σ -full,
- 3. The Pin-Reutenauer algorithm holds for W.

Then the Pin-Reutenauer algorithm also holds for V.

Easy proof. Eg, if product and closure commute for W:

$$cl_{\sigma,V}(KL) = p_V(cl_{\sigma}(KL)) \qquad \text{since V is } \sigma\text{-full}$$
$$= p_{W,V}[p_W(cl_{\sigma}(KL))]$$
$$= p_{W,V}[cl_{\sigma,W}(KL)] \qquad \text{since W is } \sigma\text{-full}$$
$$= p_{W,V}[cl_{\sigma,W}(K) \cdot cl_{\sigma,W}(L)] \qquad \text{by hypothesis}$$
$$= p_{W,V}[cl_{\sigma,W}(K)] \cdot p_{W,V}[cl_{\sigma,W}(L)]$$

and back to $cl_{\sigma, V}(K)cl_{\sigma, V}(L)$.

▲ ■ ▶ ■ の Q (や 12/24)

- ► $cl_{\kappa,A}(KL) \supseteq cl_{\kappa,A}(K) \cdot cl_{\kappa,A}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is κ -factorial. Every factor in $\overline{\Omega}_X A$ of an element of $\Omega_X^{\kappa} A$ is again in $\Omega_X^{\kappa} A$.

- ► $cl_{\kappa,A}(KL) \supseteq cl_{\kappa,A}(K) \cdot cl_{\kappa,A}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is κ -factorial. Every factor in $\overline{\Omega}_X A$ of an element of $\Omega_X^{\kappa} A$ is again in $\Omega_X^{\kappa} A$.

▲ ■ ▶ ■ ∽ Q (13/24)

- ▶ Proof sketch: take $w \in cl_{\kappa,A}(KL)$.
 - There exists $w_n \in KL$ converging to w in $\overline{\Omega}_X A$.

- ► $cl_{\kappa,A}(KL) \supseteq cl_{\kappa,A}(K) \cdot cl_{\kappa,A}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is κ -factorial. Every factor in $\overline{\Omega}_X A$ of an element of $\Omega_X^{\kappa} A$ is again in $\Omega_X^{\kappa} A$.
- ▶ Proof sketch: take $w \in cl_{\kappa,A}(KL)$.
 - There exists $w_n \in KL$ converging to w in $\overline{\Omega}_X A$.
 - Write $w_n = x_n y_n$ with $x_n \in K$ and $y_n \in L$.

- ► $cl_{\kappa,A}(KL) \supseteq cl_{\kappa,A}(K) \cdot cl_{\kappa,A}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is κ -factorial. Every factor in $\overline{\Omega}_X A$ of an element of $\Omega_X^{\kappa} A$ is again in $\Omega_X^{\kappa} A$.
- ▶ Proof sketch: take $w \in cl_{\kappa,A}(KL)$.
 - There exists $w_n \in KL$ converging to w in $\overline{\Omega}_X A$.
 - Write $w_n = x_n y_n$ with $x_n \in K$ and $y_n \in L$.
 - ▶ By compactness, one can assume (x_n) and (y_n) convergent to $x \in cl_A(K)$ and $y \in cl_A(L)$.

▲ ■ ▶ ■ 𝒴 𝔍 𝔅 13/24

- ► $cl_{\kappa,A}(KL) \supseteq cl_{\kappa,A}(K) \cdot cl_{\kappa,A}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is κ -factorial. Every factor in $\overline{\Omega}_X A$ of an element of $\Omega_X^{\kappa} A$ is again in $\Omega_X^{\kappa} A$.
- ▶ Proof sketch: take $w \in cl_{\kappa,A}(KL)$.
 - There exists $w_n \in KL$ converging to w in $\overline{\Omega}_X A$.
 - Write $w_n = x_n y_n$ with $x_n \in K$ and $y_n \in L$.
 - ▶ By compactness, one can assume (x_n) and (y_n) convergent to $x \in cl_A(K)$ and $y \in cl_A(L)$.

▲ ■ ▶ ■ 𝒴 𝔍 𝔅 13/24

Since A is κ -factorial and w = xy, we get $x, y \in \Omega_X^{\kappa} A$.

- ► $cl_{\kappa,A}(KL) \supseteq cl_{\kappa,A}(K) \cdot cl_{\kappa,A}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is κ -factorial. Every factor in $\overline{\Omega}_X A$ of an element of $\Omega_X^{\kappa} A$ is again in $\Omega_X^{\kappa} A$.
- ▶ Proof sketch: take $w \in cl_{\kappa,A}(KL)$.
 - There exists $w_n \in KL$ converging to w in $\overline{\Omega}_X A$.
 - Write $w_n = x_n y_n$ with $x_n \in K$ and $y_n \in L$.
 - ▶ By compactness, one can assume (x_n) and (y_n) convergent to $x \in cl_A(K)$ and $y \in cl_A(L)$.
 - Since A is κ -factorial and w = xy, we get $x, y \in \Omega_X^{\kappa} A$.
 - So $x \in cl_{\kappa,A}(K)$, and $y \in cl_{\kappa,A}(L)$, whence $w \in cl_{\kappa,A}(K).cl_{\kappa,A}(L)$.

▲ ≣ ▶ ■ ∽ � � 13/24

Another ingredient: star-free languages separating elements of $\Omega_X^{\kappa} A$.

Theorem (McCammond'2001)

Using the rewriting following system, there is a procedure to transform any ω -word into a normal form: two ω -words are equal over $\overline{\Omega}_X A$ if and only if they have the same normal form.

▲ ■ ▶ ■ 𝒴 𝔍 𝔅 14/24

1. $(x^{\omega})^{\omega} \longleftrightarrow x^{\omega};$ 2. $(x^{k})^{\omega} \longleftrightarrow x^{\omega}$ for $k \ge 2;$ 3. $x^{\omega}x^{\omega} \longleftrightarrow x^{\omega};$ 4. $x^{\omega}x \longleftrightarrow x^{\omega} \longleftrightarrow xx^{\omega};$ 5. $(xy)^{\omega}x \longleftrightarrow x(yx)^{\omega}.$

Another ingredient: star-free languages separating elements of $\Omega_X^{\kappa} A$.

Theorem (McCammond'2001)

Using the rewriting following system, there is a procedure to transform any ω -word into a normal form: two ω -words are equal over $\overline{\Omega}_X A$ if and only if they have the same normal form.

1. $(x^{\omega})^{\omega} \longleftrightarrow x^{\omega};$ 2. $(x^{k})^{\omega} \longleftrightarrow x^{\omega}$ for $k \ge 2;$ 3. $x^{\omega}x^{\omega} \longleftrightarrow x^{\omega};$ 4. $x^{\omega}x \longleftrightarrow x^{\omega} \longleftrightarrow xx^{\omega};$ 5. $(xy)^{\omega}x \longleftrightarrow x(yx)^{\omega}.$

The rank of $w \in \Omega_X^{\kappa} A$ is the maximum nesting of ω -powers in the term in normal form representing w.

Neighborhood bases of star-free languages

- For $L \subseteq X^+$, let $L^{>n} = L^n L^+$.
- Given an ω -term w (term built from X using concatenation and ω -power), let $L_n(w)$ be the (regular) language obtained from w by replacing all " ω " by "> n".

Example:

$$L_2(a^{\omega}abb^{\omega}) = a^2a^+abb^2b^+,$$

$$L_2((a^{\omega}b)^{\omega}) = (a^2a^+b)^2(a^2a^+b)^+.$$

▲ I → I → ○ Q ← 15/24

► Informally, $L_n(w)$ is obtained from w by replacing ω -powers by large iterations (more than n times).

Key properties of the languages $L_n(w)$

Theorem [ACZ]

If w is in normal form, then

1. $L_n(w)$ is star-free for *n* large enough, depending only on *w*.

2. $p_{\mathsf{A}}^{-1}(w) = \bigcap_{n} \operatorname{cl}(L_{n}(w))$

Families $L_n(w)$ separate ω -terms, in the sense that for two ω -terms u, v:

$$(\forall n \ L_n(u) \cap L_n(v) \neq \varnothing) \Longrightarrow p_A(u) = p_A(v).$$

and

$$p_{\mathsf{A}}\left(\bigcap_{n} \operatorname{cl}(L_{n}(u))\right) = \{p_{\mathsf{A}}(u)\} = \bigcap_{n} p_{\mathsf{A}}(\operatorname{cl}(L_{n}(u))).$$

► The inclusion $\langle cl_{\kappa,A}(L) \rangle_{\kappa,A} \subseteq cl_{\kappa,A}(L^+)$ is easy: since $cl_{\kappa,A}(L^+)$ contains $cl_{\kappa,A}(L)$, it suffices to show that $cl_{\kappa,A}(L^+)$ is a κ -semigroup.

► The inclusion $\langle cl_{\kappa,A}(L) \rangle_{\kappa,A} \subseteq cl_{\kappa,A}(L^+)$ is easy: since $cl_{\kappa,A}(L^+)$ contains $cl_{\kappa,A}(L)$, it suffices to show that $cl_{\kappa,A}(L^+)$ is a κ -semigroup.

▲ ■ ▶ ■ 𝒴 𝔍 𝔅 17/24

- ▶ We want to represent $w \in cl_{\kappa,A}(L^+)$ by a κ -term on $cl_{\kappa,A}(L)$.
- ▶ Use induction on the rank and "length" of *w*.
- ▶ Proof sketch for a normal form $w = v^{\omega}$ of rank $n \ge 1$.

- $\blacktriangleright w = v^{\omega} \in \mathrm{cl}_{\kappa,\mathsf{A}}(L^+).$
- Since $L_n(w)$ is star-free for *n* large enough, $cl_A(L_n(w))$ is clopen.
- Since $w \in cl_{\kappa,A}(L^+)$, there exists $w_n \in L_n(w) \cap L^+$.
- Since $w_n \in L_n(w)$, the sequence $(w_n)_n$ converges to w.
- ► Easy case: there is a subsequence $(w_{i_n})_n$ of w_n and a fixed N such that $w_{i_n} \in L^N$. Then use the product case:

$$w \in \mathrm{cl}_{\kappa,\mathsf{A}}(L^{\mathsf{N}}) \subseteq (\mathrm{cl}_{\kappa,\mathsf{A}}(L))^{\mathsf{N}} \subseteq \langle \mathrm{cl}_{\kappa,\mathsf{A}}(L) \rangle_{\kappa,\mathsf{A}}.$$

▲ Image: Ima

Otherwise: write

$$w_n = w_{1,n} w_{2,n} \cdots w_{k_n,n}, \qquad w_{j,n} \in L.$$

(with k_n unbounded.) Main problem: reduce to a bounded number of factors, while still converging to w.

Otherwise: write

$$w_n = w_{1,n} w_{2,n} \cdots w_{k_n,n}, \qquad w_{j,n} \in L.$$

(with k_n unbounded.)

Main problem: reduce to a bounded number of factors, while still converging to *w*.

- ► Group factors of *L*.
- ▶ If necessary, use periodic repetitions: replace *w_n* by

$$\tilde{w}_n = \tilde{w}_{1,n} \tilde{w}_{2,n} \cdots (\tilde{w}_{i,n} \cdots \tilde{w}_{j,n})^{\omega} \cdots \tilde{w}_{K,n}, \qquad \tilde{w}_{j,n} \in L.$$

▲ E → E → ○ < ○ → 19/24

Otherwise: write

$$w_n = w_{1,n} w_{2,n} \cdots w_{k_n,n}, \qquad w_{j,n} \in L.$$

(with k_n unbounded.)

Main problem: reduce to a bounded number of factors, while still converging to *w*.

- ► Group factors of *L*.
- ▶ If necessary, use periodic repetitions: replace *w_n* by

$$\tilde{w}_n = \tilde{w}_{1,n} \tilde{w}_{2,n} \cdots (\tilde{w}_{i,n} \cdots \tilde{w}_{j,n})^{\omega} \cdots \tilde{w}_{K,n}, \qquad \tilde{w}_{j,n} \in L.$$

▶ $w_n \in L_n(w) = L_n(v^{\omega}) = [L_n(v)]^{>n}$, so we get another factorization

$$w_n = v_{1,n}v_{2,n}\cdots v_{p_n,n}, \qquad p_n > n \text{ and } v_{j,n} \in L_n(v)$$

▲ ≣ ▶ ■ ∽ � � 19/24

$$w_n = w_{1,n} w_{2,n} \cdots w_{k_n,n},$$
 $w_{j,n} \in L.$
 $w_n = v_{1,n} v_{2,n} \cdots v_{p_n,n},$ $v_{j,n} \in L_n(v)$, etc.

- Consider a morphism $\varphi: X^* \to M$ recognizing L and $\{1\}$.
- Build a finite graph Γ_n as follows:
 - ► Vertices: {^, \$} \cup {(s, t) $\in M \times M : L_n(v) \cap \varphi^{-1}(s)L^*\varphi^{-1}(t) \neq \emptyset$ }
 - Edge $\hat{} \to (s, t)$ if $(L_n(v))^* \varphi^{-1}(s) \cap L \neq \emptyset$.
 - Edge $(s, t) \rightarrow$ \$ dually.
 - Edges $(s_1, t_1) \rightarrow (s_2, t_2)$ if $\varphi^{-1}(t_1)(L_n(v))^* \varphi^{-1}(s_2) \cap L \neq \emptyset$.
- The 2 factorizations define a path γ_n from $\hat{}$ to \$ in the graph.

- Since the number of vertices is fixed, one can assume that the set of vertices and edges ("support") used by the paths γ_n is constant.
- First case: this support if paths γ_n has no cycle. In this case, all paths γ_n are the same simple path from $\hat{}$ to \$.
- We deduce for each n sequences of the length of that path (x_{i,n})_i and (y_{i,n})_i corresponding to edges and vertices of the path.

•
$$x_{i,n} \in L$$
 so $\lim_n x_{i,n} = x_i \in cl_A(L)$,

- ► $y_{i,n} \in L^* \cap X^*L_n(v)X^*$, so it converges to $y_i \in cl_A(L^*)$ and has rank less than that of *w*. Induction: $y_i \in (cl_{\kappa,A}(L))_{\kappa,A}$
- Therefore $w = x_{1,n}y_{1,n}x_{2,n}y_{2,n}\cdots$ is also in $(cl_{\kappa,A}(L))_{\kappa,A}$.

- Since the number of vertices is fixed, one can assume that the set of vertices and edges ("support") used by the paths γ_n is constant.
- Second case: this support has a loop. Extracting if necessary, one can assume that all γ_n have the same prefix up to the same simple loop.

- Since the number of vertices is fixed, one can assume that the set of vertices and edges ("support") used by the paths γ_n is constant.
- Second case: this support has a loop. Extracting if necessary, one can assume that all γ_n have the same prefix up to the same simple loop.
- The definition of vertices/edges makes it possible to
 - cut other loops while staying in $L^+ \Rightarrow$ bounded number of factors.

▲ ■ ▶ ■ 𝒴 𝔍 𝔅 22/24

- Since the number of vertices is fixed, one can assume that the set of vertices and edges ("support") used by the paths γ_n is constant.
- Second case: this support has a loop. Extracting if necessary, one can assume that all γ_n have the same prefix up to the same simple loop.
- The definition of vertices/edges makes it possible to
 - cut other loops while staying in $L^+ \Rightarrow$ bounded number of factors.
 - ▶ pump this loop with all factors staying in L^+ : replace the loop by its ω -power. \Rightarrow as many copies of words of $L_n(v)$ as wanted, ensuring convergence to w.

- Since the number of vertices is fixed, one can assume that the set of vertices and edges ("support") used by the paths γ_n is constant.
- Second case: this support has a loop. Extracting if necessary, one can assume that all γ_n have the same prefix up to the same simple loop.
- The definition of vertices/edges makes it possible to
 - cut other loops while staying in $L^+ \Rightarrow$ bounded number of factors.
 - ▶ pump this loop with all factors staying in L^+ : replace the loop by its ω -power. \Rightarrow as many copies of words of $L_n(v)$ as wanted, ensuring convergence to w.

Back to the σ -fullness

Proposition

The pseudovariety A is κ -full.

Proof using again properties of star-free languages $L_n(w)$.

Back to the σ -fullness

Proposition

The pseudovariety A is κ -full.

Proof using again properties of star-free languages $L_n(w)$.

Proposition

The pseudovariety R is κ -full.

Proof by induction on X, using the algebraic structure of $\overline{\Omega}_X R$.

Corollary

The Pin-Reutenauer algorithm holds for the pseudovariety R and the canonical signature κ .

Proof using the inheritance theorem for κ -full pseudovarieties.

Two natural questions

- 1. Automata for term languages.
 - ▶ (Henckell's algorithm) Given regular $K, L \subseteq X^+$, one can decide whether

 $\operatorname{cl}_{\mathsf{A}}(K) \cap \operatorname{cl}_{\mathsf{A}}(L) = \emptyset.$

• By a weak form of κ -reducibility for A, this is equivalent

$$\operatorname{cl}_{\kappa,\mathbf{A}}(K) \cap \operatorname{cl}_{\kappa,\mathbf{A}}(L) = \emptyset.$$

Is it possible to test it using automata accepting languages in $\Omega_X^{\kappa} A$?

2. The pseudovariety S of all finite semigroups is σ -full, for every σ . Does the Pin-Reutenauer algorithm hold for S and κ ?