The Pin-Reutenauer algorithm for classes of aperiodic semigroups

Marc Zeitoun, LaBRI, U. Bordeaux, CNRS. Joint work with Jorge Almeida \& José Carlos Costa.

```
Equational Theory of Regular Languages, Brno
```

March 6-7, 2009

Outline

A. Profinite semigroups and closures: some notation.
B. The Pin-Reutenauer algorithm.
C. Proof ideas and main ingredients.

Pseudovarieties

- Pseudovariety: class of finite semigroups closed under
- finite direct products,
- subsemigroup,
- quotient.
- S: all finite semigroups.
- G: all finite groups.
- A: all finite aperiodic (group-free) semigroups.
- R: all finite \mathcal{R}-trivial semigroups.
- V : a generic pseudovariety.

Relatively V-free profinite semigroups

- X : fixed finite alphabet.
- A semigroup S separates $u, v \in X^{+}$if there is a homomorphism $\varphi: X^{+} \rightarrow S$ such that $\varphi(u) \neq \varphi(v)$.
- Define a pseudo-metric d_{V} :

$$
\left\{\begin{array}{l}
r v(u, v)=\min \{|S|: S \in \vee \text { and } S \text { separates } u \text { and } v\} . \\
d_{v}(u, v)=2^{-r v(u, v)} .
\end{array}\right.
$$

- $u \sim_{V} v$ if and only if $d_{V}(u, v)=0$ defines a congruence.
- Relatively \vee-free profinite semigroup $\bar{\Omega}_{X} \mathrm{~V}$: completion of $\left(X^{+} / \sim \vee, d_{V}\right)$. Elements of $\bar{\Omega}_{X} S$ are called pseudowords.

Implicit signatures

- Implicit signature σ : set of elements of pseudowords containing the multiplication.
- Example: $k=\left\{{ }_{-\quad},{ }^{\prime}{ }^{\omega-1}\right\}$.
- Each element of σ can be interpreted on a profinite semigroup.
- Given σ, a profinite semigroup S has a structure of " σ-semigroup" obtained by evaluating each operation of σ in S.
- $\Omega_{X}^{\sigma} \mathrm{V}$ is the σ-subsemigroup of $\bar{\Omega}_{X} \mathrm{~V}$ generated by X.

Notation: Closures for profinite topologies

- $L \subseteq S$ topological semigroup: $l_{S}(L)$ denotes the closure of L in S.

$$
\begin{array}{rr}
\mathrm{cl}(L) \stackrel{\text { def }}{=} \mathrm{cl}_{\bar{\Omega}_{X} \mathrm{~S}}(L) & \mathrm{cl}_{\sigma}(L) \stackrel{\text { def }}{=} \mathrm{cl}_{\Omega_{X}^{\sigma} \mathrm{S}}(L) \\
\mathrm{cl}(L) \stackrel{\text { def }}{=} \mathrm{cl}_{\bar{\Omega}_{X} \mathrm{~V}}(L) & \mathrm{cl}_{\sigma, \mathrm{V}}(L) \stackrel{\text { def }}{=} \mathrm{cl}_{\Omega_{X}^{\sigma}} \mathrm{V}(L)
\end{array}
$$

- The topology on $\Omega_{X}^{\sigma} \mathrm{V}$ is the induced topology in $\bar{\Omega}_{X} \mathrm{~V}$:

$$
\mathrm{cl}_{\sigma, \vee}(L)=\mathrm{cl}_{\vee}(L) \cap \Omega_{X}^{\sigma} \mathrm{V}
$$

Notation: Closures for profinite topologies

- $L \subseteq S$ topological semigroup: $\mathrm{cl}_{S}(L)$ denotes the closure of L in S.

$$
\begin{array}{rr}
\mathrm{cl}(L) \stackrel{\text { def }}{=} \mathrm{cl}_{\bar{\Omega}_{X} \mathrm{~S}}(L) & \mathrm{cl}_{\sigma}(L) \stackrel{\text { def }}{=} \mathrm{cl}_{\Omega_{X}^{\sigma}} \mathrm{S}(L) \\
\mathrm{cl}(L) \stackrel{\text { def }}{=} \mathrm{cl}_{\bar{\Omega}_{X} \mathrm{~V}}(L) & \mathrm{cl}_{\sigma, \mathrm{V}}(L) \stackrel{\text { def }}{=} \mathrm{cl}_{\Omega_{X}^{\sigma}} \mathrm{V}(L)
\end{array}
$$

- The topology on $\Omega_{X}^{\sigma} \mathrm{V}$ is the induced topology in $\bar{\Omega}_{X} \mathrm{~V}$:

$$
\mathrm{cl}_{\sigma, \mathrm{V}}(L)=\mathrm{cl}_{\vee}(L) \cap \Omega_{X}^{\sigma} \mathrm{V}
$$

- We abusively use the above notation for $L \subseteq X^{+}$: eg, we write $\mathrm{cl}_{\sigma, \mathrm{V}}(L)$ instead of $\mathrm{cl}_{\sigma, \mathrm{V}}\left(p_{\mathrm{V}}(\iota(L))\right)$, where $p_{\mathrm{V}}: \bar{\Omega}_{X} \mathrm{~S} \rightarrow \bar{\Omega}_{X} \mathrm{~V}$ is the canonical projection and $\iota: X^{+} \rightarrow \bar{\Omega}_{X} S$ the canonical embedding.

Notation: algebraic closures

- Let σ be an implicit signature, S be a σ-semigroup, and $L \subseteq S$.

$$
\begin{aligned}
\langle L\rangle_{\sigma}= & \sigma \text {-subsemigroup of } S \text { generated by } L . \\
& \text { (in practice in } L \subseteq \Omega_{X}^{\sigma} \mathrm{S} \text {) } \\
\langle L\rangle_{\sigma, \mathrm{V}}= & \left\langle p_{\mathrm{V}}(L)\right\rangle_{\sigma}
\end{aligned}
$$

The Pin-Reutenauer algorithm

- The Pin-Reutenauer algorithm holds for V and σ if, for all rational languages $K, L \subseteq X^{+}$, the following equations hold:

$$
\begin{aligned}
\mathrm{cl}_{\sigma, \mathrm{V}}(K L) & =\mathrm{cl}_{\sigma, \mathrm{V}}(K) \cdot \mathrm{cl}_{\sigma, \mathrm{V}}(L), \\
\mathrm{cl}_{\sigma, \mathrm{V}}\left(L^{+}\right) & =\left\langle\mathrm{cl}_{\sigma, \mathrm{V}}(L)\right\rangle_{\sigma} .
\end{aligned}
$$

- Makes it possible to "compute" the closure of any rational language in the relatively \vee-free σ-semigroup $\Omega_{X}^{\sigma} \mathrm{V}$.

The Pin-Reutenauer algorithm

- The Pin-Reutenauer algorithm holds for V and σ if, for all rational languages $K, L \subseteq X^{+}$, the following equations hold:

$$
\begin{aligned}
\mathrm{cl}_{\sigma, \mathrm{V}}(K L) & =\mathrm{cl}_{\sigma, \mathrm{V}}(K) \cdot \mathrm{cl}_{\sigma, \mathrm{V}}(L), \\
\mathrm{cl}_{\sigma, \mathrm{V}}\left(L^{+}\right) & =\left\langle\mathrm{cl}_{\sigma, \mathrm{V}}(L)\right\rangle_{\sigma} .
\end{aligned}
$$

- Makes it possible to "compute" the closure of any rational language in the relatively V -free σ-semigroup $\Omega_{X}^{\sigma} \mathrm{V}$.
- Note: $\mathrm{cl}_{\sigma, \mathrm{V}}(K L) \supseteq \mathrm{cl}_{\sigma, \mathrm{V}}(K) \cdot \mathrm{cl}_{\sigma, \mathrm{V}}(L)$ always hold true (multiplication is continuous).

The Pin-Reutenauer algorithm holds for G and k

- In the free group $\Omega_{X}^{K} \mathrm{G}$ endowed with the profinite topology, for $K, L \subseteq X^{+}$regular:

$$
\begin{align*}
\mathrm{cl}_{\kappa, G}(K L) & =\mathrm{cl}_{\kappa, \mathrm{G}}(K) \cdot \mathrm{cl}_{\kappa, G}(L), \\
\mathrm{cl}_{\kappa, G}\left(L^{+}\right) & =\langle L\rangle_{\kappa} . \tag{1}
\end{align*}
$$

It is actually not necessary to propagate the closure in (1).

- Conjectured by Pin and Reutenauer, reduced to another conjecture proved by Ribes and Zalesskiŭ.
- Equivalent to Rhodes' type II conjecture, proved by Ash.

The Pin-Reutenauer algorithm holds for A and k

Theorem [Almeida, JC. Costa, Z.]
The Pin-Reutenauer procedure holds for A and κ :

$$
\begin{align*}
\mathrm{cl}_{\kappa, A}(K L) & =\mathrm{cl}_{\kappa, \mathrm{A}}(K) \cdot \mathrm{cl}_{\kappa, \mathrm{A}}(L), \tag{2}\\
\mathrm{cl}_{\kappa, \mathrm{A}}\left(L^{+}\right) & =\left\langle\mathrm{l}_{\kappa, \mathrm{A}}(L)\right\rangle_{\kappa} . \tag{3}
\end{align*}
$$

Proof ideas and ingredients: σ-fullness (Almeida, Steinberg '00)

- The following always hold:

$$
\mathrm{cl}_{\sigma, \mathrm{V}}(L)=p_{\mathrm{V}}(\mathrm{cl}(L)) \cap \Omega_{X}^{\sigma} \mathrm{V}
$$

- A pseudovariety V is σ-full if for every regular $L \subseteq X^{+}$:

$$
\mathrm{cl}_{\sigma, \mathrm{V}}(L)=p \vee\left(\mathrm{cl}(L) \cap \Omega_{X}^{\sigma} \mathrm{S}\right)
$$

- One can show this is equivalent to: for every regular $L \subseteq X^{+}$,

$$
\mathrm{cl}_{\sigma, \mathrm{V}}(L)=p_{\mathrm{V}}\left(\mathrm{cl}_{\sigma}(L)\right) .
$$

- To compute the closure in $\Omega_{X}^{\sigma} V$, one can compute it in $\Omega_{X}^{\sigma} S$ and project onto the free pro- V semigroup.

σ-fullness and inheritance of the PR-algorithm

Proposition [ACZ]
Let V and W be pseudovarieties such that

1. $V \subseteq W$,
2. Both V and W are σ-full,
3. The Pin-Reutenauer algorithm holds for W.

Then the Pin-Reutenauer algorithm also holds for V .

σ-fullness and inheritance of the PR-algorithm

Proposition [ACZ]

Let V and W be pseudovarieties such that

1. $V \subseteq W$,
2. Both V and W are σ-full,
3. The Pin-Reutenauer algorithm holds for W .

Then the Pin-Reutenauer algorithm also holds for V .
Easy proof. Eg, if product and closure commute for W :

$$
\begin{aligned}
\mathrm{cl}_{\sigma, \mathrm{V}}(K L) & =p_{\mathrm{V}}\left(\mathrm{cl}_{\sigma}(K L)\right) & & \text { since } \mathrm{V} \text { is } \sigma \text {-full } \\
& =p_{\mathrm{W}, \mathrm{~V}}\left[p_{\mathrm{W}}\left(\mathrm{cl}_{\sigma}(K L)\right)\right] & & \text { since } \mathrm{W} \text { is } \sigma \text {-full } \\
& =p_{\mathrm{W}, \mathrm{~V}}\left[\mathrm{cl}_{\sigma, \mathrm{W}}(K L)\right] & & \text { by hypothesis } \\
& =p_{\mathrm{W}, \mathrm{~V}}\left[\mathrm{cl}_{\sigma, \mathrm{W}}(K) \cdot \mathrm{cl}_{\sigma, \mathrm{W}}(L)\right] & & \\
& =p_{\mathrm{W}, \mathrm{~V}}\left[\mathrm{cl}_{\sigma, \mathrm{W}}(K)\right] \cdot p_{\mathrm{W}, \mathrm{~V}}\left[\mathrm{cl}_{\sigma, \mathrm{W}}(L)\right] & &
\end{aligned}
$$

and back to $\mathrm{cl}_{\sigma, \mathrm{V}}(K) \mathrm{cl}_{\sigma, \mathrm{V}}(L)$.

The Pin-Reutenauer for A : Case of the product

- $\mathrm{cl}_{\kappa, \mathrm{A}}(K L) \supseteq \mathrm{cl}_{\kappa, \mathrm{A}}(K) \cdot \mathrm{cl}_{\kappa, A}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is k-factorial. Every factor in $\bar{\Omega}_{X} \mathrm{~A}$ of an element of $\Omega_{X}^{K} \mathrm{~A}$ is again in $\Omega_{X}^{K} \mathrm{~A}$.

The Pin-Reutenauer for A: Case of the product

- $\mathrm{cl}_{\kappa, \mathrm{A}}(K L) \supseteq \mathrm{cl}_{\kappa, \mathrm{A}}(K) \cdot \mathrm{cl}_{\kappa, \mathrm{A}}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is k-factorial. Every factor in $\bar{\Omega}_{X} \mathrm{~A}$ of an element of $\Omega_{X}^{K} \mathrm{~A}$ is again in $\Omega_{X}^{K} \mathrm{~A}$.
- Proof sketch: take $w \in \operatorname{cl}_{k, A}(K L)$.
- There exists $w_{n} \in K L$ converging to w in $\bar{\Omega}_{X} A$.

The Pin-Reutenauer for A: Case of the product

- $\mathrm{cl}_{\kappa, \mathrm{A}}(K L) \supseteq \mathrm{cl}_{\kappa, \mathrm{A}}(K) \cdot \mathrm{cl}_{\kappa, A}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is k-factorial. Every factor in $\bar{\Omega}_{X} \mathrm{~A}$ of an element of $\Omega_{X}^{K} \mathrm{~A}$ is again in $\Omega_{X}^{K} \mathrm{~A}$.
- Proof sketch: take $w \in \operatorname{cl}_{k, A}(K L)$.
- There exists $w_{n} \in K L$ converging to w in $\bar{\Omega}_{X} A$.
- Write $w_{n}=x_{n} y_{n}$ with $x_{n} \in K$ and $y_{n} \in L$.

The Pin-Reutenauer for A: Case of the product

- $\mathrm{cl}_{\kappa, \mathrm{A}}(K L) \supseteq \mathrm{cl}_{\kappa, \mathrm{A}}(K) \cdot \mathrm{cl}_{\kappa, \mathrm{A}}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is k-factorial. Every factor in $\bar{\Omega}_{X} A$ of an element of $\Omega_{X}^{K} A$ is again in $\Omega_{X}^{K} A$.
- Proof sketch: take $w \in \operatorname{cl}_{k, A}(K L)$.
- There exists $w_{n} \in K L$ converging to w in $\bar{\Omega}_{X} A$.
- Write $w_{n}=x_{n} y_{n}$ with $x_{n} \in K$ and $y_{n} \in L$.
- By compactness, one can assume (x_{n}) and (y_{n}) convergent to $x \in \mathrm{cl}_{\mathrm{A}}(K)$ and $y \in \mathrm{cl}_{\mathrm{A}}(L)$.

The Pin-Reutenauer for A: Case of the product

- $\mathrm{cl}_{\kappa, \mathrm{A}}(K L) \supseteq \mathrm{cl}_{\kappa, \mathrm{A}}(K) \cdot \mathrm{cl}_{\kappa, \mathrm{A}}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is k-factorial. Every factor in $\bar{\Omega}_{X} A$ of an element of $\Omega_{X}^{K} A$ is again in $\Omega_{X}^{K} A$.
- Proof sketch: take $w \in \mathrm{cl}_{k, A}(K L)$.
- There exists $w_{n} \in K L$ converging to w in $\bar{\Omega}_{X} A$.
- Write $w_{n}=x_{n} y_{n}$ with $x_{n} \in K$ and $y_{n} \in L$.
- By compactness, one can assume (x_{n}) and (y_{n}) convergent to $x \in \operatorname{cl}_{A}(K)$ and $y \in c_{A}(L)$.
- Since A is k-factorial and $w=x y$, we get $x, y \in \Omega_{x}^{k} A$.

The Pin-Reutenauer for A: Case of the product

- $\mathrm{cl}_{\kappa, \mathrm{A}}(K L) \supseteq \mathrm{cl}_{\kappa, \mathrm{A}}(K) \cdot \mathrm{cl}_{\kappa, \mathrm{A}}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is k-factorial. Every factor in $\bar{\Omega}_{X} A$ of an element of $\Omega_{X}^{K} A$ is again in $\Omega_{X}^{K} A$.
- Proof sketch: take $w \in \mathrm{cl}_{k, A}(K L)$.
- There exists $w_{n} \in K L$ converging to w in $\bar{\Omega}_{X} A$.
- Write $w_{n}=x_{n} y_{n}$ with $x_{n} \in K$ and $y_{n} \in L$.
- By compactness, one can assume (x_{n}) and (y_{n}) convergent to $x \in \mathrm{cl}_{A}(K)$ and $y \in \mathrm{cl}_{\mathrm{A}}(L)$.
- Since A is k-factorial and $w=x y$, we get $x, y \in \Omega_{X}^{\kappa} A$.
- So $x \in \mathrm{cl}_{\kappa, A}(K)$, and $y \in \mathrm{cl}_{\kappa, A}(L)$, whence $w \in \mathrm{cl}_{\kappa, A}(K) . \mathrm{cl}_{\kappa, A}(L)$.

Another ingredient: star-free languages separating elements of $\Omega_{X}^{K} \mathrm{~A}$.

Theorem (McCammond'2001)

Using the rewriting following system, there is a procedure to transform any ω-word into a normal form: two ω-words are equal over $\bar{\Omega}_{X} \mathrm{~A}$ if and only if they have the same normal form.

1. $\left(x^{\omega}\right)^{\omega} \longleftrightarrow x^{\omega}$;
2. $\left(x^{k}\right)^{\omega} \longleftrightarrow x^{\omega}$ for $k \geqslant 2$;
3. $x^{\omega} x^{\omega} \longleftrightarrow x^{\omega}$;
4. $x^{\omega} x \longleftrightarrow x^{\omega} \longleftrightarrow x x^{\omega}$;
5. $(x y)^{\omega} x \longleftrightarrow x(y x)^{\omega}$.

Another ingredient: star-free languages separating elements of $\Omega_{X}^{k} \mathrm{~A}$.

Theorem (McCammond'2001)

Using the rewriting following system, there is a procedure to transform any ω-word into a normal form: two ω-words are equal over $\bar{\Omega}_{X} \mathrm{~A}$ if and only if they have the same normal form.

1. $\left(x^{\omega}\right)^{\omega} \longleftrightarrow x^{\omega}$;
2. $\left(x^{k}\right)^{\omega} \longleftrightarrow x^{\omega}$ for $k \geqslant 2$;
3. $x^{\omega} x^{\omega} \longleftrightarrow x^{\omega}$;
4. $x^{\omega} x \longleftrightarrow x^{\omega} \longleftrightarrow x x^{\omega}$;
5. $(x y)^{\omega} x \longleftrightarrow x(y x)^{\omega}$.

The rank of $w \in \Omega_{X}^{K} \mathrm{~A}$ is the maximum nesting of ω-powers in the term in normal form representing w.

Neighborhood bases of star-free languages

- For $L \subseteq X^{+}$, let $L^{>n}=L^{n} L^{+}$.
- Given an ω-term w (term built from X using concatenation and ω-power), let $L_{n}(w)$ be the (regular) language obtained from w by replacing all " ω " by " $>n$ ".
- Example:

$$
\begin{aligned}
& L_{2}\left(a^{\omega} a b b^{\omega}\right)=a^{2} a^{+} a b b^{2} b^{+}, \\
& L_{2}\left(\left(a^{\omega} b\right)^{\omega}\right)=\left(a^{2} a^{+} b\right)^{2}\left(a^{2} a^{+} b\right)^{+} .
\end{aligned}
$$

- Informally, $L_{n}(w)$ is obtained from w by replacing ω-powers by large iterations (more than n times).

Key properties of the languages $L_{n}(w)$

Theorem [ACZ]

If w is in normal form, then

1. $L_{n}(w)$ is star-free for n large enough, depending only on w.
2. $p_{\mathrm{A}}^{-1}(w)=\bigcap_{n} \mathrm{cl}\left(L_{n}(w)\right)$

Families $L_{n}(w)$ separate ω-terms, in the sense that for two ω-terms u, v :

$$
\left(\forall n L_{n}(u) \cap L_{n}(v) \neq \varnothing\right) \Longrightarrow p_{\mathrm{A}}(u)=p_{\mathrm{A}}(v) .
$$

and

$$
p_{\mathrm{A}}\left(\bigcap_{n} \mathrm{cl}\left(L_{n}(u)\right)\right)=\left\{p_{\mathrm{A}}(u)\right\}=\bigcap_{n} p_{\mathrm{A}}\left(\mathrm{cl}\left(L_{n}(u)\right)\right) .
$$

PR algorithm for A : handling iteration:

$$
\mathrm{cl}_{\kappa, \mathrm{A}}\left(L^{+}\right)=\left\langle\mathrm{c}_{\kappa, \mathrm{A}}(L)\right\rangle_{\kappa, \mathrm{A}}
$$

- The inclusion $\left\langle\mathrm{cl}_{\kappa, \mathrm{A}}(L)\right\rangle_{\kappa, \mathrm{A}} \subseteq \mathrm{cl}_{\kappa, \mathrm{A}}\left(L^{+}\right)$is easy: since $c l_{\kappa, A}\left(L^{+}\right)$ contains $\mathrm{cl}_{\kappa, \mathrm{A}}(L)$, it suffices to show that $\mathrm{cl}_{\kappa, \mathrm{A}}\left(L^{+}\right)$is a κ-semigroup.

PR algorithm for A : handling iteration:

$$
\mathrm{cl}_{\kappa, \mathrm{A}}\left(L^{+}\right)=\left\langle\mathrm{cl}_{\kappa, \mathrm{A}}(L)\right\rangle_{\kappa, \mathrm{A}}
$$

- The inclusion $\left\langle\mathrm{cl}_{\kappa, \mathrm{A}}(L)\right\rangle_{\kappa, \mathrm{A}} \subseteq \mathrm{cl}_{\kappa, \mathrm{A}}\left(L^{+}\right)$is easy: since $c l_{\kappa, \mathrm{A}}\left(L^{+}\right)$ contains $\mathrm{cl}_{\kappa, \mathrm{A}}(L)$, it suffices to show that $\mathrm{cl}_{\kappa, \mathrm{A}}\left(L^{+}\right)$is a k-semigroup.
- We want to represent $w \in \mathrm{cl}_{\kappa, \mathrm{A}}\left(L^{+}\right)$by a k-term on $\mathrm{cl}_{\kappa, \mathrm{A}}(L)$.
- Use induction on the rank and "length" of w.
- Proof sketch for a normal form $w=v^{\omega}$ of rank $n \geqslant 1$.

PR algorithm for A : handling iteration:

 inclusion $c_{\kappa, A}\left(L^{+}\right) \subseteq\left\langle c_{\kappa, A}(L)\right\rangle_{K, A}$- $w=v^{\omega} \in \mathrm{cl}_{\kappa, \mathrm{A}}\left(L^{+}\right)$.
- Since $L_{n}(w)$ is star-free for n large enough, $\mathrm{cl}_{\mathrm{A}}\left(L_{n}(w)\right)$ is clopen.
- Since $w \in \operatorname{cl}_{\kappa, A}\left(L^{+}\right)$, there exists $w_{n} \in L_{n}(w) \cap L^{+}$.
- Since $w_{n} \in L_{n}(w)$, the sequence $\left(w_{n}\right)_{n}$ converges to w.
- Easy case: there is a subsequence $\left(w_{i_{n}}\right)_{n}$ of w_{n} and a fixed N such that $w_{i_{n}} \in L^{N}$. Then use the product case:

$$
w \in \mathrm{cl}_{\kappa, \mathrm{A}}\left(L^{N}\right) \subseteq\left(\mathrm{cl}_{\kappa, \mathrm{A}}(L)\right)^{N} \subseteq\left\langle\mathrm{cl}_{\kappa, \mathrm{A}}(L)\right\rangle_{\kappa, \mathrm{A}} .
$$

PR algorithm for A : handling iteration: inclusion $\mathrm{cl}_{\kappa, A}\left(L^{+}\right) \subseteq\left\langle\mathrm{cl}_{\kappa, A}(L)\right\rangle_{\kappa, A}$

- Otherwise: write

$$
w_{n}=w_{1, n} w_{2, n} \cdots w_{k_{n}, n}, \quad w_{j, n} \in L
$$

(with k_{n} unbounded.)
Main problem: reduce to a bounded number of factors, while still converging to w.

PR algorithm for A : handling iteration: inclusion $\mathrm{cl}_{\kappa, A}\left(L^{+}\right) \subseteq\left\langle\mathrm{cl}_{\kappa, A}(L)\right\rangle_{\kappa, A}$

- Otherwise: write

$$
w_{n}=w_{1, n} w_{2, n} \cdots w_{k_{n}, n}, \quad w_{j, n} \in L
$$

(with k_{n} unbounded.)
Main problem: reduce to a bounded number of factors, while still converging to w.

- Group factors of L.
- If necessary, use periodic repetitions: replace w_{n} by

$$
\tilde{w}_{n}=\tilde{w}_{1, n} \tilde{w}_{2, n} \cdots\left(\tilde{w}_{i, n} \cdots \tilde{w}_{j, n}\right)^{\omega} \cdots \tilde{w}_{K, n}, \quad \tilde{w}_{j, n} \in L .
$$

PR algorithm for A : handling iteration: inclusion $\mathrm{cl}_{\kappa, A}\left(L^{+}\right) \subseteq\left\langle\mathrm{cl}_{\kappa, A}(L)\right\rangle_{\kappa, A}$

- Otherwise: write

$$
w_{n}=w_{1, n} w_{2, n} \cdots w_{k_{n}, n}, \quad w_{j, n} \in L
$$

(with k_{n} unbounded.)
Main problem: reduce to a bounded number of factors, while still converging to w.

- Group factors of L.
- If necessary, use periodic repetitions: replace w_{n} by

$$
\tilde{w}_{n}=\tilde{w}_{1, n} \tilde{w}_{2, n} \cdots\left(\tilde{w}_{i, n} \cdots \tilde{w}_{j, n}\right)^{\omega} \cdots \tilde{w}_{K, n}, \quad \tilde{w}_{j, n} \in L .
$$

- $w_{n} \in L_{n}(w)=L_{n}\left(v^{\omega}\right)=\left[L_{n}(v)\right]^{>n}$, so we get another factorization

$$
w_{n}=v_{1, n} v_{2, n} \cdots v_{p_{n}, n}, \quad p_{n}>n \text { and } v_{j, n} \in L_{n}(v)
$$

PR algorithm for A : handling iteration:

 inclusion $\mathrm{cl}_{\kappa, A}\left(L^{+}\right) \subseteq\left\langle\mathrm{cl}_{\kappa, A}(L)\right\rangle_{\kappa, A}$$$
\begin{array}{ll}
w_{n}=w_{1, n} w_{2, n} \cdots w_{k_{n}, n}, & w_{j, n} \in L . \\
w_{n}=v_{1, n} v_{2, n} \cdots v_{p_{n}, n} & v_{j, n} \in L_{n}(v), \text { etc. }
\end{array}
$$

- Consider a morphism $\varphi: X^{*} \rightarrow M$ recognizing L and $\{1\}$.
- Build a finite graph Γ_{n} as follows:
- Vertices: $\left\{{ }^{\wedge}, \$\right\} \cup\left\{(s, t) \in M \times M: L_{n}(v) \cap \varphi^{-1}(s) L^{*} \varphi^{-1}(t) \neq \varnothing\right\}$
- Edge ${ }^{\wedge} \rightarrow(s, t)$ if $\left(L_{n}(v)\right)^{*} \varphi^{-1}(s) \cap L \neq \varnothing$.
- Edge $(s, t) \rightarrow \$$ dually.
- Edges $\left(s_{1}, t_{1}\right) \rightarrow\left(s_{2}, t_{2}\right)$ if $\varphi^{-1}\left(t_{1}\right)\left(L_{n}(v)\right)^{*} \varphi^{-1}\left(s_{2}\right) \cap L \neq \varnothing$.
- The 2 factorizations define a path γ_{n} from ${ }^{\wedge}$ to $\$$ in the graph.

PR algorithm for A : handling iteration: inclusion $\mathrm{cl}_{\kappa, A}\left(L^{+}\right) \subseteq\left\langle\mathrm{cl}_{\kappa, A}(L)\right\rangle_{\kappa, A}$

- Since the number of vertices is fixed, one can assume that the set of vertices and edges ("support") used by the paths γ_{n} is constant.
- First case: this support if paths γ_{n} has no cycle. In this case, all paths γ_{n} are the same simple path from ${ }^{\wedge}$ to $\$$.
- We deduce for each n sequences of the length of that path $\left(x_{i, n}\right)_{i}$ and $\left(y_{i, n}\right)_{i}$ corresponding to edges and vertices of the path.
- $x_{i, n} \in L$ so $\lim _{n} x_{i, n}=x_{i} \in \operatorname{cl}_{A}(L)$,
- $y_{i, n} \in L^{*} \cap X^{*} L_{n}(v) X^{*}$, so it converges to $y_{i} \in \mathrm{cl}_{\mathrm{A}}\left(L^{*}\right)$ and has rank less than that of w. Induction: $y_{i} \in\left\langle\mathrm{cl}_{\kappa, A}(L)\right\rangle_{\kappa, A}$
- Therefore $w=x_{1, n} y_{1, n} x_{2, n} n y_{2, n} \cdots$ is also in $\left\langle c_{\kappa, A}(L)\right\rangle_{\kappa, A}$.

PR algorithm for A : handling iteration: inclusion $\mathrm{cl}_{\kappa, A}\left(L^{+}\right) \subseteq\left\langle\mathrm{cl}_{\kappa, A}(L)\right\rangle_{\kappa, A}$

- Since the number of vertices is fixed, one can assume that the set of vertices and edges ("support") used by the paths γ_{n} is constant.
- Second case: this support has a loop. Extracting if necessary, one can assume that all γ_{n} have the same prefix up to the same simple loop.

PR algorithm for A : handling iteration: inclusion $\mathrm{cl}_{\kappa, A}\left(L^{+}\right) \subseteq\left\langle\mathrm{cl}_{\kappa, A}(L)\right\rangle_{\kappa, A}$

- Since the number of vertices is fixed, one can assume that the set of vertices and edges ("support") used by the paths γ_{n} is constant.
- Second case: this support has a loop. Extracting if necessary, one can assume that all γ_{n} have the same prefix up to the same simple loop.
- The definition of vertices/edges makes it possible to
- cut other loops while staying in $L^{+} \Rightarrow$ bounded number of factors.

PR algorithm for A : handling iteration: inclusion $\mathrm{cl}_{\kappa, A}\left(L^{+}\right) \subseteq\left\langle\mathrm{cl}_{\kappa, A}(L)\right\rangle_{\kappa, A}$

- Since the number of vertices is fixed, one can assume that the set of vertices and edges ("support") used by the paths γ_{n} is constant.
- Second case: this support has a loop. Extracting if necessary, one can assume that all γ_{n} have the same prefix up to the same simple loop.
- The definition of vertices/edges makes it possible to
- cut other loops while staying in $L^{+} \Rightarrow$ bounded number of factors.
- pump this loop with all factors staying in L^{+}: replace the loop by its ω-power. \Rightarrow as many copies of words of $L_{n}(v)$ as wanted, ensuring convergence to w.

PR algorithm for A : handling iteration: inclusion $\mathrm{cl}_{\kappa, A}\left(L^{+}\right) \subseteq\left\langle\mathrm{cl}_{\kappa, A}(L)\right\rangle_{\kappa, A}$

- Since the number of vertices is fixed, one can assume that the set of vertices and edges ("support") used by the paths γ_{n} is constant.
- Second case: this support has a loop. Extracting if necessary, one can assume that all γ_{n} have the same prefix up to the same simple loop.
- The definition of vertices/edges makes it possible to
- cut other loops while staying in $L^{+} \Rightarrow$ bounded number of factors.
- pump this loop with all factors staying in L^{+}: replace the loop by its ω-power. \Rightarrow as many copies of words of $L_{n}(v)$ as wanted, ensuring convergence to w.

Back to the σ-fullness

Proposition

The pseudovariety A is k-full.
Proof using again properties of star-free languages $L_{n}(w)$.

Back to the σ-fullness

Proposition

The pseudovariety A is k-full.
Proof using again properties of star-free languages $L_{n}(w)$.

Proposition

The pseudovariety R is \boldsymbol{k}-full.
Proof by induction on X, using the algebraic structure of $\bar{\Omega}_{X} \mathrm{R}$.

Corollary

The Pin-Reutenauer algorithm holds for the pseudovariety R and the canonical signature k.

Proof using the inheritance theorem for \boldsymbol{k}-full pseudovarieties.

Two natural questions

1. Automata for term languages.

- (Henckell's algorithm) Given regular $K, L \subseteq X^{+}$, one can decide whether

$$
\mathrm{cl}_{A}(K) \cap \mathrm{cl}_{A}(L)=\varnothing
$$

- By a weak form of k-reducibility for A, this is equivalent

$$
\mathrm{cl}_{\kappa, \mathrm{A}}(K) \cap \mathrm{c}_{\kappa, \mathrm{A}}(L)=\varnothing .
$$

Is it possible to test it using automata accepting languages in $\Omega_{X}^{\kappa} A$?
2. The pseudovariety S of all finite semigroups is σ-full, for every σ. Does the Pin-Reutenauer algorithm hold for S and κ ?

