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The pro-V quasimetric

Let M be a (f.g.) monoid and V a pseudovariety of
finite monoids.

Given u, v ∈ M , let

rV(u, v) = min
{
|N | N ∈ V

and separates u and v}
dV(u, v) = 2−rV(u,v)

with the usual conventions. Then min ∅ = −∞ and
p−∞ = 0. Then dV is a quasi(ultra)metric on M .



V-uniform continuity

Let f : M → N be a function between (f.g.)
monoids.

We say that f is

• V-uniformly continuous if it is uniformly
continuous with respect to the V-quasimetric;

• V-hereditarily continuous if it is W-uniformly
continuous for every subvariety W of V.



Connection to languages

Theorem

Let f : M → N be a function between (f.g.)
monoids. TFCAE:

(1) f is V-uniformly continuous;

(2) if X ⊆ N is V-recognizable, then f−1(X) is
also V-recognizable.



Who’s who

Our results involve:

• free monoids and free commutative monoids;

• the pseudovarieties

Gp – finite p-groups
G – finite groups
A – finite aperiodic monoids
M – finite monoids



Characterizations obtained:

Gp-uniform continuity: Nk → Z, A∗ → Z
Gp-hereditary continuity: Nk → Z, A∗ → Z

G-uniform continuity: Nk → Z
G-hereditary continuity: Nk → Z, A∗ → Z

A-uniform continuity: Nk → N
A-hereditary continuity: Nk → N
M-hereditary continuity: Nk → N



Types of characterizations:

Combinatorial/number-theoretic

e.g., f : N → N is A-uniformly continuous if
and only if, for every n ∈ N, f−1(n) is either
finite or cofinite.

Analytic (???)



Mahler’s expansions

For each function f : N → Z, there exists a unique
family ak of integers such that, for all n ∈ N,

f(n) =
∞∑

k=0

ak

(
n

k

)

This family is given by

ak = (∆kf)(0)

where ∆ is the difference operator, defined by

(∆f)(n) = f(n + 1)− f(n)
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Examples

Fibonacci sequence: f(0) = f(1) = 1 and
f(n) = f(n− 1) + f(n− 2) for (n > 2). Then

f(n) =
∞∑

k=0

(−1)k+1f(k)

(
n

k

)

Let f(n) = rn. Then

f(n) =
∞∑

k=0

(r − 1)k

(
n

k

)
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The p-adic valuation

Let p be a prime number. The p-adic valuation of a
non-zero integer n is

νp(n) = max
{
k ∈ N | pk divides n

}

By convention, νp(0) = +∞. The p-adic norm of n
is the real number

|n|p = p−νp(n)

Finally, the metric dp can be defined by

dp(u, v) = |u− v|p
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Mahler’s theorem

Theorem (Mahler)

Let f(n) =
∑∞

k=0 ak

(
n
k

)
be the Mahler’s expansion

of a function f : N → Z. TFCAE:

(1) f is uniformly continuous for the p-adic norm,

(2) the polynomial functions n →
∑m

k=0 ak

(
n
k

)
converge uniformly to f ,

(3) limk→∞ |ak|p = 0.

(2) means that limm→∞ supn∈N
∣∣∑∞

k=m ak

(
n
k

)∣∣
p

= 0.



Mahler’s theorem (2)

Theorem (Mahler)

f is uniformly continuous iff its Mahler’s expansion
converges uniformly to f .

The most remarkable part of the theorem is the fact
that any uniformly continuous function can be
approximated by polynomial functions, in contrast
to Stone-Weierstrass approximation theorem, which
requires much stronger conditions.
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Examples

• The Fibonacci function is not uniformly
continuous (for any p) since
f(n) =

∑∞
k=0(−1)k+1f(k)

(
n
k

)
.

• The function f(n) = rn is uniformly continuous iff
p | r − 1 since f(n) =

∑∞
k=0(r − 1)k

(
n
k

)
.



Extension to words

Is it possible to obtain similar results for functions
from A∗ to Z?

Questions to be solved:

(1) Extend binomial coefficients to words and
difference operators to word functions.

(2) Find a Mahler expansion for functions from
A∗ to Z.

(3) Find a metric on A∗ which generalizes dp.

(4) Extend Mahler’s theorem.
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Binomial coefficients (see Eilenberg or Lothaire)

Let u = a1 · · · an and v be two words of A∗. Then u
is a subword of v if there exist v0, . . . , vn ∈ A∗ such
that v = v0a1v1 . . . anvn. The binomial coefficient
of u and v is(

v

u

)
= |{(v0, . . . , vn) | v = v0a1v1 . . . anvn}|

If a is a letter, then
(
u
a

)
= |u|a. If u = an and

v = am, then (
v

u

)
=

(
m

n

)



Binomial coefficients (see Eilenberg or Lothaire)

Let u = a1 · · · an and v be two words of A∗. Then u
is a subword of v if there exist v0, . . . , vn ∈ A∗ such
that v = v0a1v1 . . . anvn. The binomial coefficient
of u and v is(

v

u

)
= |{(v0, . . . , vn) | v = v0a1v1 . . . anvn}|

If a is a letter, then
(
u
a

)
= |u|a. If u = an and

v = am, then (
v

u

)
=

(
m

n

)



Pascal triangle

Let u, v ∈ A∗ and a, b ∈ A. Then

(1)
(
u
1

)
= 1,

(2)
(
u
v

)
= 0 if |u| 6 |v| and u 6= v,

(3)
(
ua
vb

)
=

{(
u
vb

)
if a 6= b(

u
vb

)
+

(
u
v

)
if a = b

Example(
abab
ab

)
= 3
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Difference operator

Let f : A∗ → Z be a function. We define
inductively an operator ∆w for each word w ∈ A∗

by setting (∆1f)(u) = f(u), and for each a ∈ A:

(∆af)(u) = f(ua)− f(u),

(∆awf)(u) = (∆a(∆wf))(u).

(Equivalent) direct definition of ∆w:

∆wf(u) =
∑

06|x|6|w|

(−1)|w|+|x|
(

w

x

)
f(ux)
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Mahler’s expansion of word functions

Theorem (cf. Lothaire)

For each function f : A∗ → Z, there exists a unique
family 〈f, v〉v∈A∗ of integers such that, for all
u ∈ A∗,

f(u) =
∑
v∈A∗

〈f, v〉
(

u

v

)
This family is given by

〈f, v〉 = (∆vf)(1) =
∑

06|x|6|v|

(−1)|v|+|x|
(

v

x

)
f(x)



An example

Let f : {0, 1}∗ → N the function mapping a binary
word onto its value: f(010111) = f(10111) = 23.

(∆vf) =

{
f + 1 if v ∈ 1{0, 1}∗

f otherwise

(∆vf)(ε) =

{
1 if v ∈ 1{0, 1}∗

0 otherwise

Thus, if u = 01001, then
f(u) =

(
u
1

)
+

(
u
10

)
+

(
u
11

)
+

(
u

100

)
+

(
u

101

)
+

(
u

1001

)
=

2 + 2 + 1 + 1 + 2 + 1 = 9.
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Mahler’s expansion of the product of two functions

An interesting question is to compute the Mahler’s
expansion of the product of two functions.

Proposition

Let f and g be two word functions. The coefficients
of the Mahler’s expansion of fg are given by

〈fg, x〉 =
∑

v1,v2∈A∗

〈f, v1〉〈g, v2〉〈v1 ↑ v2, x〉

where v1 ↑ v2 denotes the infiltration product.
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Infiltration product (Chen, Fox, Lyndon)

Intuitively, the coefficient 〈u ↑ v, x〉 is the number
of pairs of subsequences of x which are respectively
equal to u and v and whose union gives the whole
sequence x.

For instance,

ab ↑ ab = ab + 2aab + 2abb + 4aabb + 2abab

(4aabb since aabb = aabb = aabb = aabb = aabb)

ab ↑ ba = aba + bab + abab + 2abba + 2baab + baba
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Mahler polynomials

A function f : A∗ → Z is a Mahler polynomial if its
Mahler’s expansion has finite support, that is, if the
number of nonzero coefficients 〈f, v〉 is finite.

Proposition

Mahler polynomials form a subring of the ring of all
functions from A∗ to Z for addition and
multiplication.
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p-groups
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Any pair of distinct words can be separated by a
p-group.
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If |A| = 1, dGp
is uniformly equivalent to the p-adic

metric.
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Mahler’s theorem for word functions

Theorem

Let f(n) =
∑

v∈A∗〈f, v〉
(
u
v

)
be the Mahler’s

expansion of a function f : A∗ → Z. TFCAE:

(1) f is uniformly continuous for dp,

(2) the partial sums
∑

06|v|6n〈f, v〉
(
u
v

)
converge

uniformly to f ,

(3) lim|v|→∞ |〈f, v〉|p = 0.



Further results

Other Mahler type characterizations can be
obtained for:

Gp-uniform continuity: Nk → Z (*)
Gp-hereditary continuity: Nk → Z, A∗ → Z
G-hereditary continuity: Nk → Z, A∗ → Z

A-uniform continuity: N → N

(*) alternative proof to Amice’s Theorem



An example

Theorem

Let f(n) =
∑∞

k=0 ak

(
n
k

)
be the Mahler’s expansion

of a function f : N → Z. TFCAE:

(1) f is G-hereditarily continuous,

(2) if 1 6 j 6 k, then j|ak.



Further motivations

The Wadge hierarchy classifies topological spaces
through continuous reductions: given two sets X
and Y , Y reduces to X if there exists a continuous
function f such that X = f−1(Y ). Let us call
p-reduction a uniformly continuous function
between the metric spaces (A∗, dp) and (B∗, dp).
These p-reductions define a hierarchy of regular
languages that we would like to explore.


