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Foreword

The idea of profinite topologies goes back at least
to Birkhoff’s paper Moore-Smith convergence in
general topology (1937).

In this paper, Birkhoff introduces topologies defined
by congruences on abstract algebras and states
that, if each congruence has finite index, then the
completion of the topological algebra is compact.

Further, he explicitly mentions three examples:
p-adic numbers, Stone’s duality of Boolean algebras
and topologization of free groups.
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Part I

The profinite world
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Separating words

A deterministic finite automaton (DFA) separates
two words if it accepts one of the words but not the
other one.

A monoid M separates two words u and v of A∗ if
there exists a monoid morphism ϕ : A∗ →M such
that ϕ(u) 6= ϕ(v).

Proposition

One can always separate two distinct words by a
finite automaton (respectively by a finite monoid).
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The profinite metric

Let u and v be two words. Put

r(u, v) = min
{
|M | M is a finite monoid

that separates u and v
}

d(u, v) = 2−r(u,v)

Then d is an ultrametric, that is, for all x, y, z ∈ A∗,

(1) d(x, y) = 0 iff x = y,

(2) d(x, y) = d(y, x),

(3) d(x, z) 6 max{d(x, y), d(y, z)}
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Another profinite metric

Let

r′(u, v) = min
{
# states(A) A is a finite DFA

separating u and v}

d′(u, v) = 2−r′(u,v)

The metric d′ is uniformly equivalent to d:

2
− 1

d′(u,v) 6 d(u, v) 6 d′(u, v)

Therefore, a function is uniformly continuous for d
iff it is uniformly continuous for d′.
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Main properties of d

Intuitively, two words are close for d if one needs a
large monoid to separate them.

A sequence of words un is a Cauchy sequence iff, for
every morphism ϕ from A∗ to a finite monoid, the
sequence ϕ(un) is ultimately constant.

A sequence of words un converges to a word u iff,
for every morphism ϕ from A∗ to a finite monoid,
the sequence ϕ(un) is ultimately equal to ϕ(u).
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The free profinite monoid

The completion of the metric space (A∗, d) is the

free profinite monoid on A and is denoted by Â∗. It
is a compact space, whose elements are called
profinite words.

The concatenation product is uniformly continuous

on A∗ and can be extended by continuity to Â∗.

Any morphism ϕ : A∗ →M , where M is a
(discrete) finite monoid extends in a unique way to

a uniformly continuous morphism ϕ̂ : Â∗ →M .
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Regular languages and clopen sets

The maps L 7→ L and K 7→ K ∩A∗ are inverse
isomorphisms between the Boolean algebras

Reg(A∗) and Clopen(Â∗). For all regular langauges
L, L1, L2 of A∗:

(1) Lc = (L)c,

(2) L1 ∪ L2 = L1 ∪ L2,

(3) L1 ∩ L2 = L1 ∩ L2,

(4) for all x, y ∈ A∗, then x−1Ly−1 = x−1Ly−1.

(5) If ϕ : A∗ → B∗ is a morphism and

L ∈ Reg(B∗), then ϕ̂−1(L) = ϕ−1(L).
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Part II

Uniform spaces

J.-E. Pin et P. Weil, Uniformities on free
semigroups, IJAC 9 (1999), 431–453.
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Metric, ultrametrics and qu-metrics

A metric on a set X is a mapping d : X ×X → R
+

satisfying, for all x, y, z ∈ X,

(1) d(x, y) = 0 iff x = y,

(2) d(x, y) = d(y, x),

(3) d(x, z) 6 d(x, y) + d(y, z).

A quasimetric satisfies (3) and (1’):

(1′) For all x ∈ X, d(x, x) = 0.

A qu-metric satisfies (1’) and (3’):

(3′) For each x, y, z ∈ X,
d(x, z) 6 max(d(x, y), d(y, z)).
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Notations

Let X be a set. The subsets of X ×X are viewed
as relations on X. Given U, V ⊆ X ×X, UV
denotes the composition of U and V

UV =
{
(x, y) ∈ X ×X | there exists z ∈ X,

(x, z) ∈ U and (z, y) ∈ V
}
.

The transposed relation of U is the relation

tU =
{
(x, y) ∈ X ×X | (y, x) ∈ U

}
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Quasi-uniformities

A quasi-uniformity on a set X is a nonempty set U
of subsets of X ×X, called entourages, satisfying:

(1) Any superset of an entourage is an entourage,

(2) The intersection of two entourages is an
entourage,

(3) Each entourage contains the diagonal of
X ×X,

(4) For each U ∈ U , there exists V ∈ U such that
V V ⊆ U .

A uniformity satisfies the additional condition:

(5) For each U ∈ U , tU ∈ U .
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Transitive quasi-uniformities

Abstract notion of ultrametric:

An entourage U is transitive if UU ⊆ U . A basis is
said to be transitive if all its elements are transitive.

A quasi-uniformity is transitive if it has a transitive
basis.
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Bases of quasi-uniform spaces

A basis of U is a subset B of U such that each
element of U contains an element of B. Then U
consists of all the relations on X containing an
element of B and is said to be generated by B.

A set B of subsets of X ×X is a basis of some
quasi-uniformity iff it satisfies (2), (3) and (4).

Let (X,U) and (Y,V) be quasi-uniform spaces. A
mapping ϕ : X → Y is said to be uniformly
continuous if, for each V ∈ V, (ϕ× ϕ)−1(V ) ∈ U .
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Topology associated to a quasi-uniformity

For each x ∈ X, let U(x) = {U(x) | U ∈ U}.
There exists a unique topology on X for which U(x)
is the filter of neighborhoods of x for each x ∈ X.

In general, the intersection of all the entourages of
U is a quasi-order 6 and the closure of x is the set
{y ∈ X | x 6 y}.

This topological space is Hausdorff iff the
intersection of all the entourages of U is equal to
the diagonal of X ×X.
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Filters

Let X be a set. A filter on X is a set F of
nonempty subsets of X closed under supersets and
finite intersections. A filter is convergent to x ∈ X
if it contains all the neighborhoods of x.

A filter is Cauchy if, for each entourage U ∈ U ,
there exists F ∈ F such that F × F ⊆ U . For
instance, the neighborhood filter of each point is a
minimal Cauchy filter.

If f : E → F is uniformly continuous and F is a
Cauchy filter, then the set {f(X) | X ∈ F} is also
a Cauchy filter.
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Cauchy filters and completions

A space is complete if every Cauchy filter is
convergent.

The completion X̂ of X and the uniformly
continuous mapping ı : X → X̂ are uniquely defined
by the following universal property:

Every uniformly continuous mapping ϕ from X into
a complete uniform space (Y,V) induces a unique

uniformly continuous mapping ϕ̂ : X̂ → Y such
that ϕ̂ ◦ ı = ϕ.



LIAFA, CNRS and University Paris Diderot

Totally bounded spaces and completions

A basis is totally bounded if, for each entourage U ,
there exist finitely many subsets B1, . . . , Bn of X
such that X =

⋃
i Bi and

⋃
i(Bi × Bi) ⊆ U .

Proposition (Bourbaki)

Let (X,U) be a quasi-uniform space. Then the
completion of X is compact iff U is totally bounded.



LIAFA, CNRS and University Paris Diderot

An example

Let E be a set. Given a finite partition
X = {X1, . . . , Xn} of E, let

UX =
⋃

16i6n

Xi ×Xi

The sets of the form UX , where X runs over the
class of finite partitions of E, form the basis of the
profinite quasi-uniformity on E. The profinite
completion of E is compact.
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Part III

Lattices of languages

J. Almeida, Finite semigroups and universal
algebra, World Scientific Publishing Co. Inc.,
River Edge, NJ, 1994.

M. Gehrke, S. Grigorieff et J.-E. Pin,
Duality and equational theory of regular
languages, in ICALP 2008, Part II, L. A. et al.
(éd.), Berlin, 2008, pp. 246–257, Lect. Notes
Comp. Sci. vol. 5126, Springer.
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Lattices of languages

Let A be a finite alphabet. A lattice of languages is
a set of regular languages of A∗ containing ∅ and A∗

and closed under finite intersection and finite union.

A lattice of languages is a quotienting algebra of
languages if it is closed under the quotienting
operations L→ u−1L and L→ Lu−1, for each
word u ∈ A∗.
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The pro-L qu-structure

Let L be a lattice of languages. One defines a
quasi-uniform structure on A∗ generated by the
finite intersections of sets of the form

UL = (L× A∗) ∪ (A∗ × Lc) (L ∈ L)

and called the pro-L qu-structure.

The space A∗ is quasi-metrizable iff L is countable.
This is the case in particular if A is finite.
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The pro-L completion

The completion of A∗ for the pro-L (quasi)-uniform
structure is called the pro-L completion of A∗ and

denoted Â∗
L
.

The space Â∗
L

is an ordered topological space,
compact and totally order disconnected: the points
of the space are separated by the upwards saturated
clopen sets.
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Examples

If L finite or cofinite languages of A∗, then

Â∗
L

= A∗ ∪ {0} and, for each word x, x 6 0.

If L is the set of languages of the form FA∗, where

F is finite, then Â∗
L

= A∗ ∪ Aω and for all words
x, y, xy 6 x.

If L is the set of shuffle ideals, then Â∗
L

is
countable and is structure is well understood. For
each word u, x, v, uxv 6 uv.
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The product

If L is a quotienting algebra of languages, then the

product on A∗ is uniformly continuous and Â∗
L

becomes a topological compact monoid.

Theorem (Almeida-A. Costa, GGP)

The product on Â∗
L

is an open map iff L is closed
under product.
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Properties of Â∗
L

Theorem (Almeida)

Let L be a language of A∗. Then TFCAE:

(1) L ∈ L,

(2) L
L

is clopen and L
L
∩A∗ = L,

(3) L = K ∩A∗ for some clopen K of Â∗
L
.

In fact, the sets of the form L, with L ∈ L form a
basis for the pro-L topology. These sets are clopen.
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L-preserving functions

Definition. A function f : A∗ → A∗ is L-preserving
if, for each language L ∈ L, f−1(L) ∈ L.

Theorem

A function from A∗ to A∗ is uniformly continuous
for the pro-L uniform structure iff it is L-preserving.

In particular, regular-preserving functions are exactly
the uniformly continuous functions for the profinite
metric d.
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A well-known exercise. . .

If L is a language, its square root is
K = {u ∈ A∗ | u2 ∈ L}.

Exercise. Show that the square root of a regular
[star-free] language is regular [star-free].

Proof. Note that K = f−1(L), where f(u) = u2.
Let L be a quotienting algebra of languages. Since
the product is uniformly continuous for dL, f is
uniformly continuous. Thus f is L-preserving.
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Part IV

Equational theory

M. Gehrke, S. Grigorieff et J.-E. Pin,
Duality and equational theory of regular
languages, ICALP 2008
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Equations

Let u and v be words of A∗. A language L of A∗

satisfies the equation u→ v if

u ∈ L⇒ v ∈ L

Let E be a set of equations of the form u→ v.
Then the languages of A∗ satisfying the equations
of E form a lattice of languages.
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Equational description of finite lattices

Proposition

A finite set of languages of A∗ is a lattice of
languages iff it can be defined by a set of equations
of the form u→ v with u, v ∈ A∗.

Therefore, there is an equational theory for finite
lattices of languages. What about infinite lattices?

One needs the profinite world...
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Profinite equations

Let (u, v) be a pair of profinite words of Â∗. We say
that a regular language L of A∗ satisfies the
profinite equation u→ v if

u ∈ L⇒ v ∈ L

Let η : A∗ →M be the syntactic morphism of L.
Then L satisfies the profinite equation u→ v iff

η̂(u) ∈ η(L)⇒ η̂(v) ∈ η(L)
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Equational theory of lattices

Given a set E of equations of the form u→ v
(where u and v are profinite words), the set of all
regular languages of A∗ satisfying all the equations
of E is called the set of languages defined by E.

Theorem (Gehrke, Grigorieff, Pin 2008)

A set of regular languages of A∗ is a lattice of
languages iff it can be defined by a set of equations

of the form u→ v, where u, v ∈ Â∗.
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Equations of the form u 6 v

Let us say that a regular language satisfies the

equation u 6 v if, for all x, y ∈ Â∗, it satisfies the
equation xvy → xuy.

Proposition

Let L be a regular language of A∗, let (M, 6L) be
its syntactic ordered monoid and let η : A∗ →M be
its syntactic morphism. Then L satisfies the
equation u 6 v iff η̂(u) 6L η̂(v).
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Quotienting algebras of languages

A lattice of languages is a quotienting algebra of
languages if it is closed under the quotienting
operations L→ u−1L and L→ Lu−1, for each
word u ∈ A∗.

Theorem

A set of regular languages of A∗ is a quotienting
algebra of languages iff it can be defined by a set of

equations of the form u 6 v, where u, v ∈ Â∗.
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Boolean algebras

Let us write
u↔ v for u→ v and v → u,

u = v for u 6 v and v 6 u.

Theorem

(1) A set of regular languages of A∗ is a Boolean
algebra iff it can be defined by a set of
equations of the form u↔ v.

(2) A set of regular languages of A∗ is a Boolean
quotienting algebra iff it can be defined by a
set of equations of the form u = v.
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Interpreting equations

Let u and v be two profinite words.

Closed under Interpretation

∪,∩ u→ v u ∈ L⇒ v ∈ L

+ quotient u 6 v ∀x, y xvy → xuy

+ complement (Lc) u↔ v u→ v and v → u

+ quotient and Lc u = v xuy ↔ xvy



LIAFA, CNRS and University Paris Diderot

Identities

One can also recover Eilenberg’s variety theorem
and its variants by using identities. An identity is an
equation in which letters are considered as variables.

Closed under inverse of Interpretation

· · · morphisms of variables

all words

length increasing nonempty words

length preserving letters

length multiplying words of equal length
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Equational descriptions

• Every lattice of regular languages has an
equational description.

• In particular, any class of regular languages
defined by a fragment of logic closed under
conjunctions and disjunctions (first order,
monadic second order, temporal, etc.) admits
an equational description.

• This result can also be adapted to languages of
infinite words, words over ordinals or linear
orders, and hopefully to tree languages.
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The virtuous circle

Logical

fragments

Lattices of

languages

Profinite

identities

Decidability

Hopefully
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Part V

Some examples

• Languages with zero

• Nondense languages

• Slender languages

• Sparse languages

• Examples from logic

• Examples of identities
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A profinite word

Let us fix a total order on the alphabet A. Let
u0, u1, . . . be the ordered sequence of all words of
A∗ in the induced shortlex order.

1, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, . . .
Reilly and Zhang (see also Almeida-Volkov) proved
that the sequence (vn)n>0 defined by

v0 = u0, vn+1 = (vnun+1vn)
(n+1)!

is a Cauchy sequence, which converges to an

idempotent ρA of the minimal ideal of Â∗.
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Languages with zero

A language with zero is a language whose syntactic
monoid has a zero. The class of regular languages
with zero is closed under Boolean operations and
quotients, but not under inverse of morphisms.

Proposition

A regular language has a zero iff it satisfies the
equation xρA = ρA = ρAx for all x ∈ A∗.

In the sequel, we simply write 0 for ρA to mean that
L has a zero.
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Nondense languages

A language L of A∗ is dense if, for each word
u ∈ A∗, L ∩A∗uA∗ 6= ∅.

Regular non-dense or full languages form a lattice
closed under quotients.

Theorem

A regular language of A∗ is non-dense or full iff it
satisfies the equations x 6 0 for all x ∈ A∗.
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Slender or full languages

A regular language is slender iff it is a finite union of
languages of the form xu∗y, where x, u, y ∈ A∗.

Fact. A regular language is slender iff its minimal
deterministic automaton does not contain any pair
of connected cycles.

u

x y

Two connected cycles, where x, y ∈ A+ and u ∈ A∗.
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Equations for slender languages

Denote by i(x) the initial of a word x.

Theorem

Suppose that |A| > 2. A regular language of A∗ is
slender or full iff it satisfies the equations x 6 0 for
all x ∈ A∗ and the equation xωuyω = 0 for each
x, y ∈ A+, u ∈ A∗ such that i(uy) 6= i(x).

u

x y
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Sparse languages

A regular language is sparse iff it is a finite union of
languages of the form u0v

∗
1u1 · · · v∗nun, where u0, v1,

. . . , vn, un are words.

Theorem

Suppose that |A| > 2. A regular language of A∗ is
sparse or full iff it satisfies the equations x 6 0 for
all x ∈ A∗ and the equations (xωyω)ω = 0 for each
x, y ∈ A+ such that i(x) 6= i(y).
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Identities of well-known logical fragments

(1) Star-free languages: xω+1 = xω. Captured by
the logical fragment FO[<].

(2) Finite unions of languages of the form
A∗a1A

∗a2A
∗ · · · akA

∗, where a1, . . . , ak are
letters: x 6 1. Captured by Σ1[<].

(3) Piecewise testable languages = Boolean
closure of (3): xω+1 = xω and (xy)ω = (yx)ω.
Captured by BΣ1[<].

(4) Unambiguous star-free languages: xω+1 = xω

and (xy)ω(yx)ω(xy)ω = (xy)ω. Captured by
FO2[<] (first order with two variables) or by
Σ2[<] ∩Π2[<] or by unary temporal logic.
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Another fragment of Büchi’s sequential calculus

Denote by BΣ1(S) the Boolean combinations of
existential formulas in the signature {S, (a)a∈A}.
This logical fragment allows to specify properties
like the factor aa occurs at least twice. Here is an
equational description of the BΣ1(S)-definable
languages, where r, s, u, v, x, y ∈ A∗:

uxωv ↔ uxω+1v

uxωryωsxωtyωv ↔ uxωtyωsxωryωv

xωuyωvxω ↔ yωvxωuyω

y(xy)ω ↔ (xy)ω ↔ (xy)ωx
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Examples of length-multiplying identities

Length-multiplying identities: x and y represent
words of the same length.

(1) Regular languages of AC0:
(xω−1y)ω = (xω−1y)ω+1. Captured by
FO[< +MOD].

(2) Finite union of languages of the form
(Ad)∗a1(A

d)∗a2(A
d)∗ · · · ak(A

d)∗, with d > 0:
xω−1y 6 1 and yxω−1 6 1. Captured by
Σ1[< +MOD].



LIAFA, CNRS and University Paris Diderot

Part VI

Duality

J. Almeida, Finite semigroups and universal
algebra, World Scientific Publishing Co. Inc.,
River Edge, NJ, 1994.

M. Gehrke, S. Grigorieff et J.-E. Pin,
Duality and equational theory of regular
languages, ICALP 2008

N. Pippenger, Regular languages and Stone
duality, Theory Comput. Syst. 30,2 (1997),
121–134.



LIAFA, CNRS and University Paris Diderot

Duality in a nutshell

The dual space of a distributive lattice is the set of
its prime filters.

Elements ←→ Prime filters

Boolean algebras ←→ Topological spaces

Distributive lattices ←→ Ordered topologial spaces

Sublattices ←→ Quotient spaces

n-ary operations ←→ (n + 1)-ary relations



LIAFA, CNRS and University Paris Diderot

The dual space of Reg(A∗)

Almeida (1989, implicitely) and Pippenger (1997,
explicitely) proved:

Theorem

The dual space of the lattice of regular languages is
the space of profinite words. Furthermore, the
canonical embedding is given by the topologial
closure: e(L) = L.
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Prime filters of Reg(A∗)

• Given a prime filter p of Reg(A∗), there is a
unique profinite word u such that, for every
morphism from A∗ onto a finite monoid M , ϕ̂(u) is
the unique element m ∈M such that ϕ−1(m) ∈ p.

• If u is a profinite word, the set

pu = { L ∈ Reg(A∗) | ϕ−1(ϕ̂(u)) ⊆ L for some

morphism ϕ from A∗ onto a finite monoid }

is a prime filter of Reg(A∗).
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A duality result

The right and left residuals of L by K are:

K\L = {u ∈ A∗ | Ku ⊆ L}

L/K = {u ∈ A∗ | uK ⊆ L}

Theorem

The product on profinite words is the dual of the
residuation operations on regular languages.

The identity (H\L)/K = H\(L/K) in Reg(A∗) is
equivalent to stating that the product is associative.
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Back to the proof of the main result

Theorem

A set of regular languages of A∗ is a lattice of
languages iff it can be defined by a set of equations

of the form u→ v, where u, v ∈ Â∗.

The proof is an instantiation of the duality between
sublattices of Reg(A∗) and preorders on its dual

space Â∗.

Let L be a lattice of languages. The preorder
determining the quotient in the dual space is exactly
the equational theory of L.



LIAFA, CNRS and University Paris Diderot

Reductions

Given two sets X and Y , Y reduces to X if there
exists a function f such that X = f−1(Y ).

(1) In computability theory, f is Turing
computable,

(2) In complexity theory, f is computable in
polynomial time,

(3) In descriptive set theory, f is continuous.

Each of these reductions defines a partial preorder.

Proposal: Use L-preserving functions as reductions
and study the corresponding hierarchies.
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Conclusion

Profinite topologies lead to an elegant theory and
opens the door to more sophisticated topological
tools: Stone-Priestley dualities, uniform spaces,
spectral spaces, Wadge hierarchies.

Two difficult problems:
(1) Finding a set of equations defining a lattice can
be difficult. In good cases, equations involve only
words and simple profinite operators, like ω, but this
is not the rule.
(2) Given a set of equations, one still needs to
decide whether a given regular language satisfies
these equations.
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