| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

A NEW APPROACH TO MCCAMMOND'S SOLUTION OF THE  $\omega$ -word problem for finite aperiodic semigroups

José Carlos Costa

with Jorge Almeida (U. Porto) and Marc Zeitoun (U. Bordeaux)

> Departamento de Matemática Universidade do Minho Braga, Portugal

Workshop on Equational Theory of Regular Languages

Brno, 5 March 2009

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

- An ω-term is a formal expression obtained from letters of an alphabet X using the operations of concatenation (u, v) → uv, and ω-power u → u<sup>ω</sup>.
- An ω-term has a natural *interpretation* on each finite semigroup S:

When do two  $\omega$ -terms define the same operation over all finite aperiodic semigroups?

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ● ◆○ ○ ○

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| •0000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

- An ω-term is a formal expression obtained from letters of an alphabet X using the operations of concatenation (u, v) → uv, and ω-power u → u<sup>ω</sup>.
- An ω-term has a natural *interpretation* on each finite semigroup S:
  - the concatenation is viewed as the semigroup multiplication
     the ω-power is interpreted as the operation that sends each element s ∈ S to the unique idempotent power s<sup>ω</sup> of s.

< ロ ト < 得 ト < 三 ト < 三 ト つ Q (C)</p>

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| •0000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

- An ω-term is a formal expression obtained from letters of an alphabet X using the operations of concatenation (u, v) → uv, and ω-power u → u<sup>ω</sup>.
- An ω-term has a natural *interpretation* on each finite semigroup S:
  - the concatenation is viewed as the semigroup multiplication
  - the ω-power is interpreted as the operation that sends each element s ∈ S to the unique idempotent power s<sup>ω</sup> of s.

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| •0000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

- An ω-term is a formal expression obtained from letters of an alphabet X using the operations of concatenation
   (u, v) → uv, and ω-power u → u<sup>ω</sup>.
- An ω-term has a natural *interpretation* on each finite semigroup S:
  - the concatenation is viewed as the semigroup multiplication
  - the ω-power is interpreted as the operation that sends each element s ∈ S to the unique idempotent power s<sup>ω</sup> of s.

(日) (日) (日) (日) (日) (日) (日)

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| •0000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

- An ω-term is a formal expression obtained from letters of an alphabet X using the operations of concatenation
   (u, v) → uv, and ω-power u → u<sup>ω</sup>.
- An ω-term has a natural *interpretation* on each finite semigroup S:
  - the concatenation is viewed as the semigroup multiplication
  - the ω-power is interpreted as the operation that sends each element s ∈ S to the unique idempotent power s<sup>ω</sup> of s.

(日) (日) (日) (日) (日) (日) (日)

| McCammond's solution | New approach  | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|---------------|--------------------------------|----------------------------------|--------------------|
| 0000                 | 0000          | 0000                           | 0000                             |                    |
| REWRITING RULES      | S FOR W-TERMS |                                |                                  |                    |

J. McCammond, *Normal forms for free aperiodic semigroups*, Int. J. Algebra and Computation **11** (2001), 581–625.

#### THEOREM (MCCAMMOND'S ALGORITHM)

Using only rewriting rules resulting from reading the following identities in either direction, it is possible to transform any  $\omega$ -term into a certain normal form, preserving its action on finite aperiodic semigroups:

$$(\mathbf{x}^{\omega})^{\omega} = \mathbf{x}^{\omega};$$

$$(\mathbf{x}^k)^\omega = \mathbf{x}^\omega \text{ for } k \ge 2;$$

$$X^{\omega} X^{\omega} = X^{\omega};$$

$$x^{\omega} x = x^{\omega} = x x^{\omega};$$

 $(xy)^{\omega}x = x(yx)^{\omega}.$ 

| McCammond's solution   | New approach  | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|------------------------|---------------|--------------------------------|----------------------------------|--------------------|
| 0000                   | 0000          | 0000                           | 0000                             |                    |
| <b>REWRITING RULES</b> | S FOR W-TERMS |                                |                                  |                    |

J. McCammond, *Normal forms for free aperiodic semigroups*, Int. J. Algebra and Computation **11** (2001), 581–625.

#### THEOREM (MCCAMMOND'S ALGORITHM)

Using only rewriting rules resulting from reading the following identities in either direction, it is possible to transform any  $\omega$ -term into a certain normal form, preserving its action on finite aperiodic semigroups:

$$(\mathbf{x}^{\omega})^{\omega} = \mathbf{x}^{\omega};$$

2 
$$(x^k)^\omega = x^\omega$$
 for  $k \ge 2$ ;

$$\mathbf{i} \mathbf{x}^{\omega} \mathbf{x}^{\omega} = \mathbf{x}^{\omega};$$

$$(xy)^{\omega}x = x(yx)^{\omega}.$$

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
| MCCAMMOND'S N        | JORMAL FORM  |                                |                                  |                    |

 $\mathsf{Y}=\mathsf{X} \uplus \{(,)\},$ 

- Fix a total ordering of the alphabet X, and extend it to Y by letting ( < x < ) for all x ∈ X.</li>
- A *Lyndon word* is a primitive word that is minimal, with respect to the lexicographic ordering, in its conjugacy class.
- Alternatively, a word w ∈ X<sup>+</sup> is a Lyndon word if and only if w < v for any proper non-empty suffix v of w.</li>

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
| MCCAMMOND'S N        | JORMAL FORM  |                                |                                  |                    |

 $Y = X \uplus \{(,)\},$ 

- Fix a total ordering of the alphabet X, and extend it to Y by letting ( < x < ) for all x ∈ X.</li>
- A *Lyndon word* is a primitive word that is minimal, with respect to the lexicographic ordering, in its conjugacy class.
- Alternatively, a word w ∈ X<sup>+</sup> is a Lyndon word if and only if w < v for any proper non-empty suffix v of w.</li>

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
| MCCAMMOND'S N        | JORMAL FORM  |                                |                                  |                    |

 $Y = X \uplus \{(,)\},$ 

- Fix a total ordering of the alphabet X, and extend it to Y by letting ( < x < ) for all x ∈ X.</li>
- A *Lyndon word* is a primitive word that is minimal, with respect to the lexicographic ordering, in its conjugacy class.
- Alternatively, a word w ∈ X<sup>+</sup> is a Lyndon word if and only if w < v for any proper non-empty suffix v of w.</li>

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
| MCCAMMOND'S N        | ORMAL FORM   |                                |                                  |                    |

 $Y = X \uplus \{(,)\},$ 

- Fix a total ordering of the alphabet X, and extend it to Y by letting ( < x < ) for all x ∈ X.</li>
- A *Lyndon word* is a primitive word that is minimal, with respect to the lexicographic ordering, in its conjugacy class.
- Alternatively, a word w ∈ X<sup>+</sup> is a Lyndon word if and only if w < v for any proper non-empty suffix v of w. So, every Lyndon word is an unbordered word.</li>

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
| MCCAMMOND'S N        | IORMAL FORM  |                                |                                  |                    |

 $Y = X \uplus \{(,)\},$ 

- Fix a total ordering of the alphabet X, and extend it to Y by letting ( < x < ) for all x ∈ X.</li>
- A *Lyndon word* is a primitive word that is minimal, with respect to the lexicographic ordering, in its conjugacy class.
- Alternatively, a word w ∈ X<sup>+</sup> is a Lyndon word if and only if w < v for any proper non-empty suffix v of w. So, every Lyndon word is an unbordered word.</li>

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
| MCCAMMOND'S N        | IORMAL FORM  |                                |                                  |                    |

 $Y = X \uplus \{(,)\},$ 

- Fix a total ordering of the alphabet X, and extend it to Y by letting ( < x < ) for all x ∈ X.</li>
- A *Lyndon word* is a primitive word that is minimal, with respect to the lexicographic ordering, in its conjugacy class.
- Alternatively, a word w ∈ X<sup>+</sup> is a Lyndon word if and only if w < v for any proper non-empty suffix v of w. So, every Lyndon word is an unbordered word.</li>

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| MCCAMMOND'S N        | ORMAL FORM   |                                |                                  |                    |

- The rank 0 normal forms are the words from  $X^+$ .
- Assuming that the rank i normal forms have been defined, a rank i + 1 normal form is a word from Y<sup>+</sup> of the form

 $\alpha_0(\beta_1)\alpha_1(\beta_2)\cdots\alpha_{n-1}(\beta_n)\alpha_n,$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where the  $\alpha_i$  and  $\beta_k$  are  $\omega$ -terms such that:



- The rank 0 normal forms are the words from  $X^+$ .
- Assuming that the rank i normal forms have been defined, a rank i + 1 normal form is a word from Y<sup>+</sup> of the form

 $\alpha_0(\beta_1)\alpha_1(\beta_2)\cdots\alpha_{n-1}(\beta_n)\alpha_n,$ 

#### where the $\alpha_i$ and $\beta_k$ are $\omega$ -terms such that:

- each  $\beta_k$  is a Lyndon word of rank *i*;
- each intermediate α<sub>j</sub> is not a prefix of a power of β<sub>j</sub> nor a suffix of a power of β<sub>j+1</sub>;
- replacing each factor (β<sub>k</sub>) by β<sub>k</sub>β<sub>k</sub>, we obtain a normal form of rank *i*;
- at least one of the preceding properties fails if we remove from α<sub>i</sub> a prefix β<sub>i</sub> or a suffix β<sub>i+1</sub> for 0 < j < n;</li>
- $\beta_1$  is not a suffix of  $\alpha_0$  and  $\beta_n$  is not a prefix of  $\alpha_n$ .



- The rank 0 normal forms are the words from  $X^+$ .
- Assuming that the rank i normal forms have been defined, a rank i + 1 normal form is a word from Y<sup>+</sup> of the form

 $\alpha_0(\beta_1)\alpha_1(\beta_2)\cdots\alpha_{n-1}(\beta_n)\alpha_n,$ 

where the  $\alpha_i$  and  $\beta_k$  are  $\omega$ -terms such that:

- each  $\beta_k$  is a Lyndon word of rank *i*;
- each intermediate α<sub>j</sub> is not a prefix of a power of β<sub>j</sub> nor a suffix of a power of β<sub>j+1</sub>;
- replacing each factor (β<sub>k</sub>) by β<sub>k</sub>β<sub>k</sub>, we obtain a normal form of rank *i*;

(日) (日) (日) (日) (日) (日) (日)

- at least one of the preceding properties fails if we remove from α<sub>i</sub> a prefix β<sub>i</sub> or a suffix β<sub>i+1</sub> for 0 < j < n;</li>
- $\beta_1$  is not a suffix of  $\alpha_0$  and  $\beta_n$  is not a prefix of  $\alpha_n$ .



- The rank 0 normal forms are the words from  $X^+$ .
- Assuming that the rank i normal forms have been defined, a rank i + 1 normal form is a word from Y<sup>+</sup> of the form

 $\alpha_0(\beta_1)\alpha_1(\beta_2)\cdots\alpha_{n-1}(\beta_n)\alpha_n,$ 

where the  $\alpha_i$  and  $\beta_k$  are  $\omega$ -terms such that:

- each  $\beta_k$  is a Lyndon word of rank *i*;
- each intermediate α<sub>j</sub> is not a prefix of a power of β<sub>j</sub> nor a suffix of a power of β<sub>j+1</sub>;
- replacing each factor (β<sub>k</sub>) by β<sub>k</sub>β<sub>k</sub>, we obtain a normal form of rank *i*;
- at least one of the preceding properties fails if we remove from α<sub>i</sub> a prefix β<sub>i</sub> or a suffix β<sub>i+1</sub> for 0 < j < n;</li>
- $\beta_1$  is not a suffix of  $\alpha_0$  and  $\beta_n$  is not a prefix of  $\alpha_n$ .



- The rank 0 normal forms are the words from  $X^+$ .
- Assuming that the rank i normal forms have been defined, a rank i + 1 normal form is a word from Y<sup>+</sup> of the form

 $\alpha_0(\beta_1)\alpha_1(\beta_2)\cdots\alpha_{n-1}(\beta_n)\alpha_n,$ 

where the  $\alpha_i$  and  $\beta_k$  are  $\omega$ -terms such that:

- each  $\beta_k$  is a Lyndon word of rank *i*;
- each intermediate α<sub>j</sub> is not a prefix of a power of β<sub>j</sub> nor a suffix of a power of β<sub>j+1</sub>;
- replacing each factor (β<sub>k</sub>) by β<sub>k</sub>β<sub>k</sub>, we obtain a normal form of rank *i*;
- at least one of the preceding properties fails if we remove from α<sub>i</sub> a prefix β<sub>i</sub> or a suffix β<sub>i+1</sub> for 0 < j < n;</li>
- $\beta_1$  is not a suffix of  $\alpha_0$  and  $\beta_n$  is not a prefix of  $\alpha_n$ .



- The rank 0 normal forms are the words from  $X^+$ .
- Assuming that the rank i normal forms have been defined, a rank i + 1 normal form is a word from Y<sup>+</sup> of the form

 $\alpha_0(\beta_1)\alpha_1(\beta_2)\cdots\alpha_{n-1}(\beta_n)\alpha_n,$ 

where the  $\alpha_i$  and  $\beta_k$  are  $\omega$ -terms such that:

- each  $\beta_k$  is a Lyndon word of rank *i*;
- each intermediate α<sub>j</sub> is not a prefix of a power of β<sub>j</sub> nor a suffix of a power of β<sub>j+1</sub>;
- replacing each factor (β<sub>k</sub>) by β<sub>k</sub>β<sub>k</sub>, we obtain a normal form of rank *i*;
- at least one of the preceding properties fails if we remove from α<sub>j</sub> a prefix β<sub>j</sub> or a suffix β<sub>j+1</sub> for 0 < j < n;</li>

•  $\beta_1$  is not a suffix of  $\alpha_0$  and  $\beta_n$  is not a prefix of  $\alpha_n$ .



- The rank 0 normal forms are the words from  $X^+$ .
- Assuming that the rank i normal forms have been defined, a rank i + 1 normal form is a word from Y<sup>+</sup> of the form

 $\alpha_0(\beta_1)\alpha_1(\beta_2)\cdots\alpha_{n-1}(\beta_n)\alpha_n,$ 

where the  $\alpha_i$  and  $\beta_k$  are  $\omega$ -terms such that:

- each  $\beta_k$  is a Lyndon word of rank *i*;
- each intermediate α<sub>j</sub> is not a prefix of a power of β<sub>j</sub> nor a suffix of a power of β<sub>j+1</sub>;
- replacing each factor (β<sub>k</sub>) by β<sub>k</sub>β<sub>k</sub>, we obtain a normal form of rank *i*;
- at least one of the preceding properties fails if we remove from α<sub>j</sub> a prefix β<sub>j</sub> or a suffix β<sub>j+1</sub> for 0 < j < n;</li>
- $\beta_1$  is not a suffix of  $\alpha_0$  and  $\beta_n$  is not a prefix of  $\alpha_n$ .

 McCammond's solution
 New approach
 Star-freeness of  $L_n(\alpha)$  Star-freeness of  $L_n(\alpha)^*$  Other applications

 0000
 000
 000
 000
 0
 0

McCammond's solution of the  $\omega$ -word problem over  ${f A}$ 

The following  $\omega$ -terms are in McCammond's *normal form*, where *a* and *b* are letters with *a* < *b*,

- (a)ab(b) is the normal form, for instance, of (a)(b) and of  $a(a^5)a(a^2)b^8(b)$ .
- b(ab)abaa(a)b(aab) is the normal form of (ba)(a)ba(aba)ab.
- ((a)ab(b)ba)(a)ab(b) is the normal form of ((a)(b)).

THEOREM (MCCAMMOND'2001)

Two  $\omega$ -terms coincide in all finite aperiodic semigroups if and only if they have the same normal form.

 McCammond's solution
 New approach
 Star-freeness of  $L_n(\alpha)$  Star-freeness of  $L_n(\alpha)^*$  Other applications

 0000
 0000
 0000
 0
 0
 0

McCammond's solution of the  $\omega$ -word problem over  ${\sf A}$ 

The following  $\omega$ -terms are in McCammond's *normal form*, where *a* and *b* are letters with *a* < *b*,

- (a)ab(b) is the normal form, for instance, of (a)(b) and of  $a(a^5)a(a^2)b^8(b)$ .
- b(ab)abaa(a)b(aab) is the normal form of (ba)(a)ba(aba)ab.
- ((a)ab(b)ba)(a)ab(b) is the normal form of ((a)(b)).

THEOREM (MCCAMMOND'2001)

Two  $\omega$ -terms coincide in all finite aperiodic semigroups if and only if they have the same normal form.

 McCammond's solution
 New approach
 Star-freeness of  $L_n(\alpha)$  Star-freeness of  $L_n(\alpha)^*$  Other applications

 0000
 0000
 0000
 0000
 0
 0

McCammond's solution of the  $\omega$ -word problem over  ${\sf A}$ 

The following  $\omega$ -terms are in McCammond's *normal form*, where *a* and *b* are letters with *a* < *b*,

- (a)ab(b) is the normal form, for instance, of (a)(b) and of  $a(a^5)a(a^2)b^8(b)$ .
- b(ab)abaa(a)b(aab) is the normal form of (ba)(a)ba(aba)ab.
- ((a)ab(b)ba)(a)ab(b) is the normal form of ((a)(b)).

## THEOREM (MCCAMMOND'2001)

Two  $\omega$ -terms coincide in all finite aperiodic semigroups if and only if they have the same normal form.

 McCammond's solution
 New approach
 Star-freeness of  $L_n(\alpha)$  Star-freeness of  $L_n(\alpha)^*$  Other applications

 0000
 0000
 0000
 0000
 0
 0

McCammond's solution of the  $\omega$ -word problem over  ${\sf A}$ 

The following  $\omega$ -terms are in McCammond's *normal form*, where *a* and *b* are letters with *a* < *b*,

- (a)ab(b) is the normal form, for instance, of (a)(b) and of  $a(a^5)a(a^2)b^8(b)$ .
- b(ab)abaa(a)b(aab) is the normal form of (ba)(a)ba(aba)ab.
- ((a)ab(b)ba)(a)ab(b) is the normal form of ((a)(b)).

## THEOREM (MCCAMMOND'2001)

Two  $\omega$ -terms coincide in all finite aperiodic semigroups if and only if they have the same normal form.

 McCammond's solution
 New approach
 Star-freeness of  $L_n(\alpha)$  Star-freeness of  $L_n(\alpha)^*$  Other applications

 0000
 0000
 0000
 0
 0
 0

McCammond's solution of the  $\omega$ -word problem over  ${f A}$ 

The following  $\omega$ -terms are in McCammond's *normal form*, where *a* and *b* are letters with *a* < *b*,

- (a)ab(b) is the normal form, for instance, of (a)(b) and of  $a(a^5)a(a^2)b^8(b)$ .
- b(ab)abaa(a)b(aab) is the normal form of (ba)(a)ba(aba)ab.
- ((a)ab(b)ba)(a)ab(b) is the normal form of ((a)(b)).

## THEOREM (MCCAMMOND'2001)

Two  $\omega$ -terms coincide in all finite aperiodic semigroups if and only if they have the same normal form.

 McCammond's solution
 New approach
 Star-freeness of  $L_n(\alpha)$  Star-freeness of  $L_n(\alpha)^*$  Other applications

 0000
 000
 000
 0
 0
 0

McCammond's solution of the  $\omega$ -word problem over  ${\sf A}$ 

The following  $\omega$ -terms are in McCammond's *normal form*, where *a* and *b* are letters with *a* < *b*,

- (a)ab(b) is the normal form, for instance, of (a)(b) and of  $a(a^5)a(a^2)b^8(b)$ .
- b(ab)abaa(a)b(aab) is the normal form of (ba)(a)ba(aba)ab.
- ((a)ab(b)ba)(a)ab(b) is the normal form of ((a)(b)).

## THEOREM (MCCAMMOND'2001)

Two  $\omega$ -terms coincide in all finite aperiodic semigroups if and only if they have the same normal form.

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

LANGUAGES ASSOCIATED WITH  $\omega$ -TERMS

- Let *n* be a positive integer.
- For a word  $\alpha \in X^+$ , we let  $E_n(\alpha) = \{\alpha\}$ .
- For an ω-term α = α<sub>0</sub>(β<sub>1</sub>)α<sub>1</sub>…(β<sub>r</sub>)α<sub>r</sub> where all the β<sub>j</sub> have the same rank *i* and all the α<sub>j</sub> have rank at most *i*, we let

 $\boldsymbol{E}_{\boldsymbol{n}}(\alpha) = \{ \alpha_0 \beta_1^{n_1} \alpha_1 \cdots \beta_r^{n_r} \alpha_r : \boldsymbol{n}_1, \ldots, \boldsymbol{n}_r \geq \boldsymbol{n} \}.$ 

• For a set W of  $\omega$ -terms, we let

$$E_n(W) = \bigcup_{\alpha \in W} E_n(\alpha).$$

• For an  $\omega$ -term  $\alpha$  of rank k, we let

 $L_n(\alpha) = (E_n)^k(\alpha).$ 

For a set W of ω-terms, we let

$$L_n(W) = \bigcup_{\alpha \in W} L_n(\alpha).$$



- Let *n* be a positive integer.
- For a word  $\alpha \in X^+$ , we let  $E_n(\alpha) = \{\alpha\}$ .
- For an  $\omega$ -term  $\alpha = \alpha_0(\beta_1)\alpha_1\cdots(\beta_r)\alpha_r$  where all the  $\beta_j$  have the same rank *i* and all the  $\alpha_j$  have rank at most *i*, we let

 $E_n(\alpha) = \{\alpha_0 \beta_1^{n_1} \alpha_1 \cdots \beta_r^{n_r} \alpha_r : n_1, \ldots, n_r \ge n\}.$ 

• For a set W of  $\omega$ -terms, we let

$$E_n(W) = \bigcup_{\alpha \in W} E_n(\alpha).$$

• For an  $\omega$ -term  $\alpha$  of rank k, we let

 $L_n(\alpha) = (E_n)^k(\alpha).$ 

For a set W of ω-terms, we let

$$L_n(W) = \bigcup_{\alpha \in W} L_n(\alpha).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



- Let *n* be a positive integer.
- For a word  $\alpha \in X^+$ , we let  $E_n(\alpha) = \{\alpha\}$ .
- For an  $\omega$ -term  $\alpha = \alpha_0(\beta_1)\alpha_1\cdots(\beta_r)\alpha_r$  where all the  $\beta_j$  have the same rank *i* and all the  $\alpha_j$  have rank at most *i*, we let

$$\boldsymbol{E}_{\boldsymbol{n}}(\boldsymbol{\alpha}) = \{ \alpha_0 \beta_1^{\boldsymbol{n}_1} \alpha_1 \cdots \beta_r^{\boldsymbol{n}_r} \alpha_r : \boldsymbol{n}_1, \ldots, \boldsymbol{n}_r \geq \boldsymbol{n} \}.$$

For a set W of ω-terms, we let

$$E_n(W) = \bigcup_{\alpha \in W} E_n(\alpha).$$

• For an  $\omega$ -term  $\alpha$  of rank k, we let

 $L_n(\alpha) = (E_n)^k(\alpha).$ 

For a set W of ω-terms, we let

$$L_n(W) = \bigcup_{\alpha \in W} L_n(\alpha).$$



- Let *n* be a positive integer.
- For a word  $\alpha \in X^+$ , we let  $E_n(\alpha) = \{\alpha\}$ .
- For an  $\omega$ -term  $\alpha = \alpha_0(\beta_1)\alpha_1\cdots(\beta_r)\alpha_r$  where all the  $\beta_j$  have the same rank *i* and all the  $\alpha_j$  have rank at most *i*, we let

$$\boldsymbol{E}_{\boldsymbol{n}}(\boldsymbol{\alpha}) = \{ \alpha_0 \beta_1^{\boldsymbol{n}_1} \alpha_1 \cdots \beta_r^{\boldsymbol{n}_r} \alpha_r : \boldsymbol{n}_1, \ldots, \boldsymbol{n}_r \geq \boldsymbol{n} \}.$$

• For a set W of  $\omega$ -terms, we let

$$\boldsymbol{E}_n(\boldsymbol{W}) = \bigcup_{\alpha \in \boldsymbol{W}} \boldsymbol{E}_n(\alpha).$$

• For an  $\omega$ -term  $\alpha$  of rank k, we let

 $L_n(\alpha) = (E_n)^k(\alpha).$ 

For a set W of ω-terms, we let

$$L_n(W) = \bigcup_{\alpha \in W} L_n(\alpha).$$



- Let *n* be a positive integer.
- For a word  $\alpha \in X^+$ , we let  $E_n(\alpha) = \{\alpha\}$ .
- For an  $\omega$ -term  $\alpha = \alpha_0(\beta_1)\alpha_1\cdots(\beta_r)\alpha_r$  where all the  $\beta_j$  have the same rank *i* and all the  $\alpha_j$  have rank at most *i*, we let

$$\boldsymbol{E}_{\boldsymbol{n}}(\boldsymbol{\alpha}) = \{ \alpha_0 \beta_1^{n_1} \alpha_1 \cdots \beta_r^{n_r} \alpha_r : \boldsymbol{n}_1, \ldots, \boldsymbol{n}_r \geq \boldsymbol{n} \}.$$

• For a set W of  $\omega$ -terms, we let

$$\mathbf{E}_n(\mathbf{W}) = \bigcup_{\alpha \in \mathbf{W}} \mathbf{E}_n(\alpha).$$

• For an  $\omega$ -term  $\alpha$  of rank k, we let

 $L_n(\alpha) = (E_n)^k(\alpha).$ 

For a set W of ω-terms, we let

$$L_n(W) = \bigcup_{\alpha \in W} L_n(\alpha).$$



LANGUAGES ASSOCIATED WITH  $\omega$ -TERMS

- Let *n* be a positive integer.
- For a word  $\alpha \in X^+$ , we let  $E_n(\alpha) = \{\alpha\}$ .
- For an  $\omega$ -term  $\alpha = \alpha_0(\beta_1)\alpha_1\cdots(\beta_r)\alpha_r$  where all the  $\beta_j$  have the same rank *i* and all the  $\alpha_j$  have rank at most *i*, we let

$$\boldsymbol{E}_{\boldsymbol{n}}(\boldsymbol{\alpha}) = \{ \alpha_0 \beta_1^{n_1} \alpha_1 \cdots \beta_r^{n_r} \alpha_r : \boldsymbol{n}_1, \ldots, \boldsymbol{n}_r \geq \boldsymbol{n} \}.$$

• For a set W of  $\omega$ -terms, we let

$$\mathbf{E}_n(\mathbf{W}) = \bigcup_{\alpha \in \mathbf{W}} \mathbf{E}_n(\alpha).$$

• For an  $\omega$ -term  $\alpha$  of rank k, we let

$$L_n(\alpha) = (E_n)^k(\alpha).$$

• For a set W of  $\omega$ -terms, we let

$$L_n(W) = \bigcup_{\alpha \in W} L_n(\alpha).$$

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
| AN IMPORTANT PA      | RAMETER      |                                |                                  |                    |

Let

# $\alpha = \alpha_0(\beta_1)\alpha_1\cdots(\beta_r)\alpha_r$

be an  $\omega$ -term of rank  $i \ge 1$  where each  $\beta_j$  has rank i - 1 and each  $\alpha_i$  has rank at most i - 1.

Let  $\mu(\alpha)$  denote the integer

 $2(2 + \max\{|\beta_j \alpha_j \beta_{j+1}|, |\beta_r \alpha_r|, |\alpha_0 \beta_1| : j = 1, \dots, r-1\}).$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
| AN IMPORTANT PA      | RAMETER      |                                |                                  |                    |

Let

# $\alpha = \alpha_0(\beta_1)\alpha_1\cdots(\beta_r)\alpha_r$

be an  $\omega$ -term of rank  $i \ge 1$  where each  $\beta_j$  has rank i - 1 and each  $\alpha_i$  has rank at most i - 1.

Let  $\mu(\alpha)$  denote the integer

 $2(2 + \max\{|\beta_j \alpha_j \beta_{j+1}|, |\beta_r \alpha_r|, |\alpha_0 \beta_1| : j = 1, \dots, r-1\}).$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

| McCammond's solution | New approach<br>○●○○ | Star-freeness of $L_n(\alpha)$<br>0000 | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|----------------------|----------------------------------------|----------------------------------|--------------------|
| AN IMPORTANT PA      | RAMETER              |                                        |                                  |                    |

Let

# $\alpha = \alpha_0(\beta_1)\alpha_1\cdots(\beta_r)\alpha_r$

be an  $\omega$ -term of rank  $i \ge 1$  where each  $\beta_j$  has rank i - 1 and each  $\alpha_i$  has rank at most i - 1.

Let  $\mu(\alpha)$  denote the integer

 $2(2 + \max\{|\beta_j \alpha_j \beta_{j+1}|, |\beta_r \alpha_r|, |\alpha_0 \beta_1| : j = 1, \dots, r-1\}).$ 

• In case  $\alpha$  is a word, we let

 $\mu(\alpha) = |\alpha|.$ 

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>
| McCammond's solution | New approach<br>○○●○ | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|----------------------|--------------------------------|----------------------------------|--------------------|
| KEY RESULTS          |                      |                                |                                  |                    |

Whenever  $\alpha$  is an  $\omega$ -term in normal form and  $n \ge \mu(\alpha)$ , the language  $L_n(\alpha)$  is star free.

#### THEOREM (SEPARATION)

Let  $\alpha$  and  $\beta$  be two  $\omega$ -terms in normal form and let  $n > \max\{|\alpha|, |\beta|, \mu(\alpha), \mu(\beta)\}$ . Then

 $L_n(\alpha) \cap L_n(\beta) \neq \emptyset \implies \alpha = \beta.$ 

・ロト・西ト・西ト・日 シック

| McCammond's solution | New approach<br>○○●○ | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|----------------------|--------------------------------|----------------------------------|--------------------|
| KEY RESULTS          |                      |                                |                                  |                    |

Whenever  $\alpha$  is an  $\omega$ -term in normal form and  $n \ge \mu(\alpha)$ , the language  $L_n(\alpha)$  is star free.

## THEOREM (SEPARATION)

Let  $\alpha$  and  $\beta$  be two  $\omega$ -terms in normal form and let  $n > \max\{|\alpha|, |\beta|, \mu(\alpha), \mu(\beta)\}$ . Then

$$L_n(\alpha) \cap L_n(\beta) \neq \emptyset \implies \alpha = \beta.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

McCammond's solution New approach Star-freeness of  $L_n(\alpha)$  Star-freeness of  $L_n(\alpha)^*$  Other applications occo

COROLLARY (MCCAMMOND'S THEOREM REPROVED)

If  $\alpha$  and  $\beta$  are  $\omega$ -words in normal form such that  $p_A(\alpha) = p_A(\beta)$ , then  $\alpha = \beta$ .

#### Proof.

Let *n* be any integer greater than  $\max\{|\alpha|, |\beta|, \mu(\alpha), \mu(\beta)\}$ .

By the Separation Theorem, it suffices to show that  $L_n(\alpha) \cap L_n(\beta) \neq \emptyset$ .

Suppose to the contrary that  $L_n(\alpha) \cap L_n(\beta) = \emptyset$ .

Since  $L_n(\alpha)$  and  $L_n(\beta)$  are star-free languages by the Star-freeness Theorem, their closures in  $\overline{\Omega}_X \mathbf{A}$ , which are respectively  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\alpha)))$ and  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\beta)))$ , are clopen subsets whose intersection with  $X^+$ give, respectively,  $L_n(\alpha)$  and  $L_n(\beta)$ .

Hence  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\alpha))) \cap p_{\mathbf{A}}(\operatorname{cl}(L_n(\beta))) = \emptyset$ .

APPLICATION: MCCAMMOND'S THEOREM

COROLLARY (MCCAMMOND'S THEOREM REPROVED)

If  $\alpha$  and  $\beta$  are  $\omega$ -words in normal form such that  $p_A(\alpha) = p_A(\beta)$ , then  $\alpha = \beta$ .

## PROOF.

Let *n* be any integer greater than max{ $|\alpha|, |\beta|, \mu(\alpha), \mu(\beta)$ }. By the Separation Theorem, it suffices to show that  $L_n(\alpha) \cap L_n(\beta) \neq \emptyset$ . Suppose to the contrary that  $L_n(\alpha) \cap L_n(\beta) = \emptyset$ . Since  $L_n(\alpha)$  and  $L_n(\beta)$  are star-free languages by the Star-freeness Theorem, their closures in  $\Omega_X A$ , which are respectively  $p_A(cl(L_n(\alpha)))$ and  $p_A(cl(L_n(\beta)))$ , are clopen subsets whose intersection with X give, respectively,  $L_n(\alpha)$  and  $L_n(\beta)$ . Hence  $p_A(cl(L_n(\alpha))) \cap p_A(cl(L_n(\beta))) = \emptyset$ . Since  $\alpha \in cl(L_n(\alpha))$  and  $\beta \in cl(L_n(\beta))$ , it follows that  $p_A(\alpha) \neq p_A(\beta)$ , in

f(x) = p f(x) f(x

 McCammond's solution
 New approach
 Star-freeness of  $L_n(\alpha)$  Star-freeness of  $L_n(\alpha)^*$  Other applications

 00000
 0000
 0000
 0000
 0
 0

APPLICATION: MCCAMMOND'S THEOREM

COROLLARY (MCCAMMOND'S THEOREM REPROVED)

If  $\alpha$  and  $\beta$  are  $\omega$ -words in normal form such that  $p_A(\alpha) = p_A(\beta)$ , then  $\alpha = \beta$ .

## PROOF.

Let *n* be any integer greater than  $\max\{|\alpha|, |\beta|, \mu(\alpha), \mu(\beta)\}$ .

By the Separation Theorem, it suffices to show that  $L_n(\alpha) \cap L_n(\beta) \neq \emptyset$ .

Suppose to the contrary that  $L_n(\alpha) \cap L_n(\beta) = \emptyset$ .

Since  $L_n(\alpha)$  and  $L_n(\beta)$  are star-free languages by the Star-freeness Theorem, their closures in  $\overline{\Omega}_X \mathbf{A}$ , which are respectively  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\alpha)))$ and  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\beta)))$ , are clopen subsets whose intersection with  $X^+$ give, respectively,  $L_n(\alpha)$  and  $L_n(\beta)$ .

Hence  $p_{\mathbf{A}}(\operatorname{cl}(L_{\mathbf{n}}(\alpha))) \cap p_{\mathbf{A}}(\operatorname{cl}(L_{\mathbf{n}}(\beta))) = \emptyset$ .

APPLICATION: MCCAMMOND'S THEOREM

COROLLARY (MCCAMMOND'S THEOREM REPROVED)

If  $\alpha$  and  $\beta$  are  $\omega$ -words in normal form such that  $p_A(\alpha) = p_A(\beta)$ , then  $\alpha = \beta$ .

#### PROOF.

Let *n* be any integer greater than  $\max\{|\alpha|, |\beta|, \mu(\alpha), \mu(\beta)\}$ . By the Separation Theorem, it suffices to show that  $L_n(\alpha) \cap L_n(\beta) \neq \emptyset$ . Suppose to the contrary that  $L_n(\alpha) \cap L_n(\beta) = \emptyset$ .

Since  $L_n(\alpha)$  and  $L_n(\beta)$  are star-free languages by the Star-freeness Theorem, their closures in  $\overline{\Omega}_X \mathbf{A}$ , which are respectively  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\alpha)))$ and  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\beta)))$ , are clopen subsets whose intersection with  $X^+$ give, respectively,  $L_n(\alpha)$  and  $L_n(\beta)$ . Hence  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\alpha))) \cap p_{\mathbf{A}}(\operatorname{cl}(L_n(\beta))) = \emptyset$ .



APPLICATION: MCCAMMOND'S THEOREM

COROLLARY (MCCAMMOND'S THEOREM REPROVED)

If  $\alpha$  and  $\beta$  are  $\omega$ -words in normal form such that  $p_A(\alpha) = p_A(\beta)$ , then  $\alpha = \beta$ .

### PROOF.

Let *n* be any integer greater than  $\max\{|\alpha|, |\beta|, \mu(\alpha), \mu(\beta)\}$ .

By the Separation Theorem, it suffices to show that  $L_n(\alpha) \cap L_n(\beta) \neq \emptyset$ .

Suppose to the contrary that  $L_n(\alpha) \cap L_n(\beta) = \emptyset$ .

Since  $L_n(\alpha)$  and  $L_n(\beta)$  are star-free languages by the Star-freeness Theorem, their closures in  $\overline{\Omega}_X \mathbf{A}$ , which are respectively  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\alpha)))$ and  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\beta)))$ , are clopen subsets whose intersection with  $X^+$ give, respectively,  $L_n(\alpha)$  and  $L_n(\beta)$ .



APPLICATION: MCCAMMOND'S THEOREM

COROLLARY (MCCAMMOND'S THEOREM REPROVED)

If  $\alpha$  and  $\beta$  are  $\omega$ -words in normal form such that  $p_A(\alpha) = p_A(\beta)$ , then  $\alpha = \beta$ .

### PROOF.

Let *n* be any integer greater than  $\max\{|\alpha|, |\beta|, \mu(\alpha), \mu(\beta)\}$ .

By the Separation Theorem, it suffices to show that  $L_n(\alpha) \cap L_n(\beta) \neq \emptyset$ .

Suppose to the contrary that  $L_n(\alpha) \cap L_n(\beta) = \emptyset$ .

Since  $L_n(\alpha)$  and  $L_n(\beta)$  are star-free languages by the Star-freeness Theorem, their closures in  $\overline{\Omega}_X \mathbf{A}$ , which are respectively  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\alpha)))$ and  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\beta)))$ , are clopen subsets whose intersection with  $X^+$ give, respectively,  $L_n(\alpha)$  and  $L_n(\beta)$ .

Hence  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\alpha))) \cap p_{\mathbf{A}}(\operatorname{cl}(L_n(\beta))) = \emptyset$ .



APPLICATION: MCCAMMOND'S THEOREM

COROLLARY (MCCAMMOND'S THEOREM REPROVED)

If  $\alpha$  and  $\beta$  are  $\omega$ -words in normal form such that  $p_A(\alpha) = p_A(\beta)$ , then  $\alpha = \beta$ .

#### PROOF.

Let *n* be any integer greater than  $\max\{|\alpha|, |\beta|, \mu(\alpha), \mu(\beta)\}$ .

By the Separation Theorem, it suffices to show that  $L_n(\alpha) \cap L_n(\beta) \neq \emptyset$ .

Suppose to the contrary that  $L_n(\alpha) \cap L_n(\beta) = \emptyset$ .

Since  $L_n(\alpha)$  and  $L_n(\beta)$  are star-free languages by the Star-freeness Theorem, their closures in  $\overline{\Omega}_X \mathbf{A}$ , which are respectively  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\alpha)))$ and  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\beta)))$ , are clopen subsets whose intersection with  $X^+$ give, respectively,  $L_n(\alpha)$  and  $L_n(\beta)$ .

Hence  $p_{\mathbf{A}}(\operatorname{cl}(L_n(\alpha))) \cap p_{\mathbf{A}}(\operatorname{cl}(L_n(\beta))) = \emptyset$ .











EXAMPLE

Let

 $\alpha = (a^{\omega}abb^{\omega}a^2b^2)^{\omega}.$ 

Then  $\alpha$  is in normal form and

$$L_1(\alpha) \cap (a^2b^2)^* = ((a^2b^2)^2)^+$$

so that  $L_1(\alpha)$  is not star-free since



EXAMPLE

Let

 $\alpha = (a^{\omega}abb^{\omega}a^2b^2)^{\omega}.$ 

Then  $\alpha$  is in normal form and

$$L_{1}(\alpha) \cap (a^{2}b^{2})^{*} = ((a^{2}b^{2})^{2})^{+}$$

so that  $L_1(\alpha)$  is not star-free since

•  $(a^2b^2)^*$  is star-free and



EXAMPLE

Let

 $\alpha = (a^{\omega}abb^{\omega}a^2b^2)^{\omega}.$ 

Then  $\alpha$  is in normal form and

$$L_{1}(\alpha) \cap (a^{2}b^{2})^{*} = ((a^{2}b^{2})^{2})^{+}$$

so that  $L_1(\alpha)$  is not star-free since

- $(a^2b^2)^*$  is star-free and
- $((a^2b^2)^2)^+$  is not.

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| CIRCULAR NORMAL      | FORM         |                                |                                  |                    |

- $\alpha$  is a word;
- $\alpha$  is a term of rank  $i \ge 1$  of the form  $\alpha = (\delta_1)\gamma_1 \cdots (\delta_r)\gamma_r$  such that each term  $(\delta_k)\gamma_k(\delta_{k+1})$  with  $k \in \{1, \ldots, r\}$  is in normal form, where we consider  $\gamma_{r+1} = \gamma_1$ .

### LEMMA

Let  $\alpha$  be a primitive  $\omega$ -term of rank  $i \ge 0$  in circular normal form and let  $n \ge \mu(\alpha)$ . If  $L_n(\alpha)$  is a star-free language, then so is  $L_n(\alpha)^*$ .

(日) (圖) (E) (E) (E)

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$<br>0000 | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|----------------------------------------|----------------------------------|--------------------|
| CIRCULAR NORMAL      | FORM         |                                        |                                  |                    |

- $\alpha$  is a word;
- $\alpha$  is a term of rank  $i \ge 1$  of the form  $\alpha = (\delta_1)\gamma_1\cdots(\delta_r)\gamma_r$  such that each term  $(\delta_k)\gamma_k(\delta_{k+1})$  with  $k \in \{1, \ldots, r\}$  is in normal form, where we consider  $\gamma_{r+1} = \gamma_1$ .

## LEMMA

Let  $\alpha$  be a primitive  $\omega$ -term of rank  $i \ge 0$  in circular normal form and let  $n \ge \mu(\alpha)$ . If  $L_n(\alpha)$  is a star-free language, then so is  $L_n(\alpha)^*$ .

(日) (日) (日) (日) (日) (日) (日)

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$<br>0000 | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|----------------------------------------|----------------------------------|--------------------|
| CIRCULAR NORMAL      | FORM         |                                        |                                  |                    |

- $\alpha$  is a word;
- $\alpha$  is a term of rank  $i \ge 1$  of the form  $\alpha = (\delta_1)\gamma_1\cdots(\delta_r)\gamma_r$  such that each term  $(\delta_k)\gamma_k(\delta_{k+1})$  with  $k \in \{1, \ldots, r\}$  is in normal form, where we consider  $\gamma_{r+1} = \gamma_1$ .

## LEMMA

Let  $\alpha$  be a primitive  $\omega$ -term of rank  $i \ge 0$  in circular normal form and let  $n \ge \mu(\alpha)$ . If  $L_n(\alpha)$  is a star-free language, then so is  $L_n(\alpha)^*$ .

(日) (日) (日) (日) (日) (日) (日)

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$<br>0000 | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|----------------------------------------|----------------------------------|--------------------|
| CIRCULAR NORMAL      | FORM         |                                        |                                  |                    |

- $\alpha$  is a word;
- $\alpha$  is a term of rank  $i \ge 1$  of the form  $\alpha = (\delta_1)\gamma_1\cdots(\delta_r)\gamma_r$  such that each term  $(\delta_k)\gamma_k(\delta_{k+1})$  with  $k \in \{1, \ldots, r\}$  is in normal form, where we consider  $\gamma_{r+1} = \gamma_1$ .

## LEMMA

Let  $\alpha$  be a primitive  $\omega$ -term of rank  $i \ge 0$  in circular normal form and let  $n \ge \mu(\alpha)$ . If  $L_n(\alpha)$  is a star-free language, then so is  $L_n(\alpha)^*$ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

| McCammond's solution | New approach       | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000               | 0000                           | 0000                             |                    |
| PROOF OF STAR-FI     | REENESS OF $L_{n}$ | (α)                            |                                  |                    |

Whenever  $\alpha$  is an  $\omega$ -term in normal form and  $n \ge \mu(\alpha)$ , the language  $L_n(\alpha)$  is star free.

#### Proof.

Let *i* = rank  $\alpha$ . If *i* = 0, then  $L_n(\alpha) = \{\alpha\}$  is a star-free language. Assume that  $i \ge 1$ , and let  $\alpha = \gamma_0(\delta_1)\gamma_1\cdots(\delta_r)\gamma_r$ . **Claim:**  $L_n(\gamma_0)$ ,  $L_n(\delta_j)$  and  $L_n(\delta_j\gamma_j)$  are star-free languages. As a consequence, each language

$$L_n((\delta_j)\gamma_j) = L_n(\delta_j)^* L_n(\delta_j)^{n-1} L_n(\delta_j\gamma_j)$$

is also star-free. Hence

$$L_n(\alpha) = L_n(\gamma_0) L_n((\delta_1)\gamma_1) \cdots L_n((\delta_r)\gamma_r)$$

is star-free, as stated in the theorem.

▲ロト▲舂▶▲恵▶▲恵▶ = のへ⊙

| McCammond's solution | New approach     | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|------------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000             | 0000                           | 0000                             |                    |
| PROOF OF STAR-FI     | REENESS OF $L_n$ | (α)                            |                                  |                    |

Whenever  $\alpha$  is an  $\omega$ -term in normal form and  $n \ge \mu(\alpha)$ , the language  $L_n(\alpha)$  is star free.

## PROOF.

Let  $i = \operatorname{rank} \alpha$ . If i = 0, then  $L_n(\alpha) = \{\alpha\}$  is a star-free language. Assume that  $i \ge 1$ , and let  $\alpha = \alpha(\alpha)$ , are star-free languages. As a consequence, each language  $L_n((\delta_1)\gamma_1) = L_n(\delta_1)^n L_n(\delta_1)^{n-1} L_n(\delta_1\gamma_1)$ is also star-free. Hence  $L_n(\alpha) = L_n(\gamma_0) L_n((\delta_1)\gamma_1) \cdots L_n((\delta_r)\gamma_r)$ is star-free, as stated in the theorem.

| McCammond's solution | New approach     | Star-freeness of $L_n(\alpha)$<br>0000 | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|------------------|----------------------------------------|----------------------------------|--------------------|
| PROOF OF STAR-FF     | REENESS OF $L_n$ | (α)                                    |                                  |                    |

Whenever  $\alpha$  is an  $\omega$ -term in normal form and  $n \ge \mu(\alpha)$ , the language  $L_n(\alpha)$  is star free.

### PROOF.

Let  $i = \operatorname{rank} \alpha$ . If i = 0, then  $L_n(\alpha) = \{\alpha\}$  is a star-free language. Assume that  $i \ge 1$ , and let  $\alpha = \gamma_0(\delta_1)\gamma_1\cdots(\delta_r)\gamma_r$ . **Claim:**  $L_n(\gamma_0)$ ,  $L_n(\delta_j)$  and  $L_n(\delta_j\gamma_j)$  are star-free languages. As a consequence, each language  $L_n((\delta_j)\gamma_j) = L_n(\delta_j)^n L_n(\delta_j)^{n-1}L_n(\delta_j\gamma_j)$ is also star-free. Hence  $L_n(\alpha) = L_n(\gamma_0)L_n((\delta_1)\gamma_1)\cdots L_n((\delta_r)\gamma_r)$ is star-free, as stated in the theorem.

| McCammond's solution | New approach     | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|------------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000             | 0000                           | 0000                             |                    |
| PROOF OF STAR-FI     | REENESS OF $L_n$ | (α)                            |                                  |                    |

Whenever  $\alpha$  is an  $\omega$ -term in normal form and  $n \ge \mu(\alpha)$ , the language  $L_n(\alpha)$  is star free.

### PROOF.

Let  $i = \operatorname{rank} \alpha$ . If i = 0, then  $L_n(\alpha) = \{\alpha\}$  is a star-free language. Assume that  $i \ge 1$ , and let  $\alpha = \gamma_0(\delta_1)\gamma_1\cdots(\delta_r)\gamma_r$ . **Claim:**  $L_n(\gamma_0)$ ,  $L_n(\delta_j)$  and  $L_n(\delta_j\gamma_j)$  are star-free languages. As a consequence, each language

$$L_n((\delta_j)\gamma_j) = L_n(\delta_j)^* L_n(\delta_j)^{n-1} L_n(\delta_j\gamma_j)$$

is also star-free. Hence

 $L_n(\alpha) = L_n(\gamma_0) L_n((\delta_1)\gamma_1) \cdots L_n((\delta_r)\gamma_r)$ 

is star-free, as stated in the theorem.

| McCammond's solution | New approach    | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|-----------------|--------------------------------|----------------------------------|--------------------|
| PROOF OF STAR-FR     | EENESS OF $L_n$ | $(\alpha)$                     |                                  |                    |

Whenever  $\alpha$  is an  $\omega$ -term in normal form and  $n \ge \mu(\alpha)$ , the language  $L_n(\alpha)$  is star free.

### PROOF.

Let  $i = \operatorname{rank} \alpha$ . If i = 0, then  $L_n(\alpha) = \{\alpha\}$  is a star-free language. Assume that  $i \ge 1$ , and let  $\alpha = \gamma_0(\delta_1)\gamma_1\cdots(\delta_r)\gamma_r$ . **Claim:**  $L_n(\gamma_0)$ ,  $L_n(\delta_j)$  and  $L_n(\delta_j\gamma_j)$  are star-free languages. As a consequence, each language

$$L_n((\delta_j)\gamma_j) = L_n(\delta_j)^* L_n(\delta_j)^{n-1} L_n(\delta_j\gamma_j)$$

is also star-free. Hence

$$L_n(\alpha) = L_n(\gamma_0)L_n((\delta_1)\gamma_1)\cdots L_n((\delta_r)\gamma_r)$$

is star-free, as stated in the theorem.

## PROOF OF THE CLAIM.

By induction on  $i \ge 1$ , the case i = 1 being clear since  $\gamma_j, \delta_j \in X^*$ . Suppose that  $j \ge 2$  and assume inductively that the claim holds for terms of rank smaller than j. Consider the term

 $\alpha' = \gamma_0 \delta_1 \delta_1 \gamma_1 \cdots \delta_r \delta_r \gamma_r \in E_2(\alpha).$ 

Then  $\alpha'$  is a rank  $i - 1 \ge 1$  term in normal form and we may apply to it the induction hypothesis. Hence, if  $\alpha' = u_0(v_1)u_1\cdots(v_s)u_s$  is the normal form expression of  $\alpha'$ , then  $L_n(u_0), L_n(v_k)$ , and  $L_n(v_ku_k)$  are star-free, whence so are  $L_n(u_0), L_n((v_k))$ , and  $L_n((v_k)u_k)$ . Since each factor  $\gamma_0, \delta_j, \delta_j\gamma_j$ must be a product of some of the factors  $u_0, (v_k), (v_k)u_k$  it follows that the languages  $L_n(\gamma_0), L_n(\delta_j), L_n(\delta_j\gamma_j)$  are star-free, thus proving the induction step.

# PROOF OF THE CLAIM.

By induction on  $i \ge 1$ , the case i = 1 being clear since  $\gamma_j, \delta_j \in X^*$ . Suppose that  $i \ge 2$  and assume inductively that the claim holds for terms of rank smaller than *i*. Consider the term

 $\alpha' = \gamma_0 \delta_1 \delta_1 \gamma_1 \cdots \delta_r \delta_r \gamma_r \in E_2(\alpha).$ 

Then  $\alpha'$  is a rank  $i - 1 \ge 1$  term in normal form and we may apply to it the induction hypothesis. Hence, if  $\alpha' = u_0(v_1)u_1\cdots(v_s)u_s$  is the normal form expression of  $\alpha'$ , then  $L_n(u_0), L_n(v_k)$ , and  $L_n(v_ku_k)$  are star-free, whence so are  $L_n(u_0), L_n((v_k))$ , and  $L_n((v_k)u_k)$ . Since each factor  $\gamma_0, \delta_j, \delta_j\gamma_j$ must be a product of some of the factors  $u_0, (v_k), (v_k)u_k$  it follows that the languages  $L_n(\gamma_0), L_n(\delta_j), L_n(\delta_j\gamma_j)$  are star-free, thus proving the induction step.

# PROOF OF THE CLAIM.

By induction on  $i \ge 1$ , the case i = 1 being clear since  $\gamma_j, \delta_j \in X^*$ . Suppose that  $i \ge 2$  and assume inductively that the claim holds for terms of rank smaller than *i*. Consider the term

 $\alpha' = \gamma_0 \delta_1 \delta_1 \gamma_1 \cdots \delta_r \delta_r \gamma_r \in E_2(\alpha).$ 

Then  $\alpha'$  is a rank  $i - 1 \ge 1$  term in normal form and we may apply to it the induction hypothesis. Hence, if

 $\alpha' = u_0(v_1)u_1\cdots(v_s)u_s$  is the normal form expression of  $\alpha'$ , then  $L_n(u_0)$ ,  $L_n(v_k)$ , and  $L_n(v_ku_k)$  are star-free, whence so are  $L_n(u_0)$ ,  $L_n((v_k))$ , and  $L_n((v_k)u_k)$ . Since each factor  $\gamma_0, \delta_j, \delta_j\gamma_j$  must be a product of some of the factors  $u_0, (v_k), (v_k)u_k$  it follows that the languages  $L_n(\gamma_0), L_n(\delta_j), L_n(\delta_j\gamma_j)$  are star-free, thus proving the induction step.

# PROOF OF THE CLAIM.

By induction on  $i \ge 1$ , the case i = 1 being clear since  $\gamma_j, \delta_j \in X^*$ . Suppose that  $i \ge 2$  and assume inductively that the claim holds for terms of rank smaller than *i*. Consider the term

 $\alpha' = \gamma_0 \delta_1 \delta_1 \gamma_1 \cdots \delta_r \delta_r \gamma_r \in E_2(\alpha).$ 

Then  $\alpha'$  is a rank  $i - 1 \ge 1$  term in normal form and we may apply to it the induction hypothesis. Hence, if  $\alpha' = u_0(v_1)u_1\cdots(v_s)u_s$  is the normal form expression of  $\alpha'$ , then  $L_n(u_0)$ ,  $L_n(v_k)$ , and  $L_n(v_ku_k)$  are star-free, must be a product of some of the factors must be a product of some of the factors thus proving the induction step.

# PROOF OF THE CLAIM.

By induction on  $i \ge 1$ , the case i = 1 being clear since  $\gamma_j, \delta_j \in X^*$ . Suppose that  $i \ge 2$  and assume inductively that the claim holds for terms of rank smaller than *i*. Consider the term

 $\alpha' = \gamma_0 \delta_1 \delta_1 \gamma_1 \cdots \delta_r \delta_r \gamma_r \in E_2(\alpha).$ 

Then  $\alpha'$  is a rank  $i - 1 \ge 1$  term in normal form and we may apply to it the induction hypothesis. Hence, if  $\alpha' = u_0(v_1)u_1\cdots(v_s)u_s$  is the normal form expression of  $\alpha'$ , then  $L_n(u_0), L_n(v_k)$ , and  $L_n(v_k u_k)$  are star-free, whence so are  $L_n(u_0), L_n((v_k))$ , and  $L_n((v_k)u_k)$ . Since each factor to lows that the languages the factors of  $\alpha'$  is the languages thus proving the induction step.

# PROOF OF THE CLAIM.

By induction on  $i \ge 1$ , the case i = 1 being clear since  $\gamma_j, \delta_j \in X^*$ . Suppose that  $i \ge 2$  and assume inductively that the claim holds for terms of rank smaller than *i*. Consider the term

 $\alpha' = \gamma_0 \delta_1 \delta_1 \gamma_1 \cdots \delta_r \delta_r \gamma_r \in E_2(\alpha).$ 

Then  $\alpha'$  is a rank  $i - 1 \ge 1$  term in normal form and we may apply to it the induction hypothesis. Hence, if  $\alpha' = u_0(v_1)u_1\cdots(v_s)u_s$  is the normal form expression of  $\alpha'$ , then  $L_n(u_0), L_n(v_k)$ , and  $L_n(v_ku_k)$  are star-free, whence so are  $L_n(u_0), L_n((v_k))$ , and  $L_n((v_k)u_k)$ . Since each factor  $\gamma_0, \delta_j, \delta_j\gamma_j$ must be a product of some of the factors  $u_0, (v_k), (v_k)u_k$  it follows that the languages  $L_n(\gamma_0), L_n(\delta_j), L_n(\delta_j\gamma_j)$  are star-free, thus proving the induction step.



# $L_n(\alpha)^*$ is star-free $\Leftrightarrow$

- $\Leftrightarrow$  the syntactic semigroup  $S(L_n(\alpha)^*)$  is aperiodic
- $\Leftrightarrow S(L_n(\alpha)^*)$  verifies the pseudoidentity  $x^{\omega} = x^{\omega+1}$
- $\Leftrightarrow$   $S(L_n(\alpha)^*)$  ultimately verifies the identity  $x^N = x^{N+1}$

$$\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Leftrightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$$

 $\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Rightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$ 

We could further assume z to be a Lyndon word.

#### LEMMA



# $L_n(\alpha)^*$ is star-free $\Leftrightarrow$

- $\Leftrightarrow$  the syntactic semigroup  $S(L_n(\alpha)^*)$  is aperiodic
- $\Leftrightarrow$  S( $L_n(\alpha)^*$ ) verifies the pseudoidentity  $x^{\omega} = x^{\omega+1}$

 $\Leftrightarrow$   $S(L_n(\alpha)^*)$  ultimately verifies the identity  $x^N = x^{N+1}$ 

- $\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Leftrightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$
- $\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Rightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$

We could further assume z to be a Lyndon word.

#### LEMMA



# $L_n(\alpha)^*$ is star-free $\Leftrightarrow$

- $\Leftrightarrow$  the syntactic semigroup  $S(L_n(\alpha)^*)$  is aperiodic
- $\Leftrightarrow$  S( $L_n(\alpha)^*$ ) verifies the pseudoidentity  $x^{\omega} = x^{\omega+1}$

 $\Leftrightarrow$   $S(L_n(\alpha)^*)$  ultimately verifies the identity  $x^N = x^{N+1}$ 

- $\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Leftrightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$
- $\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Rightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$

We could further assume z to be a Lyndon word.

#### LEMMA



# $L_n(\alpha)^*$ is star-free $\Leftrightarrow$

- $\Leftrightarrow$  the syntactic semigroup  $S(L_n(\alpha)^*)$  is aperiodic
- $\Leftrightarrow$  S( $L_n(\alpha)^*$ ) verifies the pseudoidentity  $x^{\omega} = x^{\omega+1}$
- $\Leftrightarrow$   $S(L_n(\alpha)^*)$  ultimately verifies the identity  $x^N = x^{N+1}$
- $\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Leftrightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$
- $\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Rightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$

We could further assume z to be a Lyndon word.

#### LEMMA



# $L_n(\alpha)^*$ is star-free $\Leftrightarrow$

- $\Leftrightarrow$  the syntactic semigroup  $S(L_n(\alpha)^*)$  is aperiodic
- $\Leftrightarrow$  S( $L_n(\alpha)^*$ ) verifies the pseudoidentity  $x^{\omega} = x^{\omega+1}$
- $\Leftrightarrow$   $S(L_n(\alpha)^*)$  ultimately verifies the identity  $x^N = x^{N+1}$

$$\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Leftrightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$$

 $\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Rightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$ 

We could further assume z to be a Lyndon word.

#### LEMMA



# $L_n(\alpha)^*$ is star-free $\Leftrightarrow$

- $\Leftrightarrow$  the syntactic semigroup  $S(L_n(\alpha)^*)$  is aperiodic
- $\Leftrightarrow$  S( $L_n(\alpha)^*$ ) verifies the pseudoidentity  $x^{\omega} = x^{\omega+1}$
- $\Leftrightarrow$   $S(L_n(\alpha)^*)$  ultimately verifies the identity  $x^N = x^{N+1}$

$$\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Leftrightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$$

$$\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Rightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$$

We could further assume z to be a Lyndon word.

#### LEMMA



# $L_n(\alpha)^*$ is star-free $\Leftrightarrow$

- $\Leftrightarrow$  the syntactic semigroup  $S(L_n(\alpha)^*)$  is aperiodic
- $\Leftrightarrow$  S( $L_n(\alpha)^*$ ) verifies the pseudoidentity  $x^{\omega} = x^{\omega+1}$
- $\Leftrightarrow$   $S(L_n(\alpha)^*)$  ultimately verifies the identity  $x^N = x^{N+1}$

$$\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Leftrightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$$

$$\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Rightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$$

We could further assume *z* to be a Lyndon word.

#### Lemma


Notice that, for an  $\omega$ -term  $\alpha$  and a fixed positive integer *n*:

## $L_n(\alpha)^*$ is star-free $\Leftrightarrow$

- $\Leftrightarrow$  the syntactic semigroup  $S(L_n(\alpha)^*)$  is aperiodic
- $\Leftrightarrow$  S( $L_n(\alpha)^*$ ) verifies the pseudoidentity  $x^{\omega} = x^{\omega+1}$
- $\Leftrightarrow$   $S(L_n(\alpha)^*)$  ultimately verifies the identity  $x^N = x^{N+1}$

$$\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Leftrightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$$

$$\Leftrightarrow \quad \forall N > K(\alpha, n) \forall u, v, z \in X^* \left( u z^N v \in L_n(\alpha)^* \Rightarrow u z^{N+1} v \in L_n(\alpha)^* \right)$$

We could further assume *z* to be a Lyndon word.

#### LEMMA

Let  $z_1$  and  $z_2$  be Lyndon words and suppose that w is a word such that  $|w| \ge |z_1| + |z_2|$  and w is a factor of both a power of  $z_1$  and a power of  $z_2$ . Then  $z_1 = z_2$ .

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

Let  $\alpha$  be a term of rank 1 in circular normal form and let  $n \ge \mu(\alpha)$ . If  $z^{\ell} \in L_n(\alpha)$  then there exists a term of rank 1 in circular normal form  $\bar{\alpha}$  such that  $\alpha = \bar{\alpha}^{\ell}$  and  $z \in L_n(\bar{\alpha})$ .

### Proof

Let  $\alpha = (v_1)u_1\cdots(v_r)u_r$  and  $w = z^{\ell}$ . Since  $z^{\ell} \in L_n(\alpha)$ , it follows that  $w = v_1^{\ell}u_1\cdots v_r^{\ell}u_r$ , with  $n_1,\ldots,n_r \ge n$ . If  $\ell = 1$  then we can just take  $\overline{\alpha} = \alpha$ . If  $\ell > 1$ , **Case 1**:  $z < v_1$ . If  $v_1 = z^{\ell}$ , then we set t = z. Otherwise, let t be as in  $v_1 = v_1$ 

Then t is both a proper suffix and a proper prefix of  $v_1$ , which contradicts the hypothesis that  $v_1$  is a Lyndon word. (continues)

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

Let  $\alpha$  be a term of rank 1 in circular normal form and let  $n \ge \mu(\alpha)$ . If  $z^{\ell} \in L_n(\alpha)$  then there exists a term of rank 1 in circular normal form  $\bar{\alpha}$  such that  $\alpha = \bar{\alpha}^{\ell}$  and  $z \in L_n(\bar{\alpha})$ .

### Proof

Let  $\alpha = (v_1)u_1\cdots(v_r)u_r$  and  $w = z^{\ell}$ . Since  $z^{\ell} \in L_n(\alpha)$ , it follows that  $w = v_1^{n_1}u_1\cdots v_r^{n_r}u_r$ , with  $n_1,\ldots,n_r \ge n$ .

Then t is both a proper suffix and a proper prefix of  $v_1$ , which contradicts the hypothesis that  $v_1$  is a Lyndon word. (continues)

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

Let  $\alpha$  be a term of rank 1 in circular normal form and let  $n \ge \mu(\alpha)$ . If  $z^{\ell} \in L_n(\alpha)$  then there exists a term of rank 1 in circular normal form  $\bar{\alpha}$  such that  $\alpha = \bar{\alpha}^{\ell}$  and  $z \in L_n(\bar{\alpha})$ .

### Proof

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

Let  $\alpha$  be a term of rank 1 in circular normal form and let  $n \ge \mu(\alpha)$ . If  $z^{\ell} \in L_n(\alpha)$  then there exists a term of rank 1 in circular normal form  $\bar{\alpha}$  such that  $\alpha = \bar{\alpha}^{\ell}$  and  $z \in L_n(\bar{\alpha})$ .

#### Proof

Let  $\alpha = (v_1)u_1\cdots(v_r)u_r$  and  $w = z^{\ell}$ . Since  $z^{\ell} \in L_n(\alpha)$ , it follows that  $w = v_1^{n_1}u_1\cdots v_r^{n_r}u_r$ , with  $n_1,\ldots,n_r \ge n$ . If  $\ell = 1$  then we can just take  $\bar{\alpha} = \alpha$ . If  $\ell > 1$ , **Case 1**:  $z < v_1$ . If  $v_1 = z^k$ , then we set t = z. Otherwise, let t be as in  $v_1 = t = v_1$ 

$$z z z \cdots z z z \cdots$$

Then t is both a proper suffix and a proper prefix of  $v_1$ , which contradicts the hypothesis that  $v_1$  is a Lyndon word. (continues)

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

**Case 2**:  $z = v_1^k$  is also impossible. **Case 3**:  $v_1^{k-1} < z < v_1^k$  for some  $k \ge 2$ , is also impossible.

Therefore  $v_1^{n_1} \prec z$  and z is not a prefix of any power of  $v_1$ . In particular,  $|z| > n \ge \mu[\alpha] > |u_r|$ . Hence for every  $i \in \{1, \dots, \ell - 1\}$  there exists  $m_i \in \{2, \dots, r\}$  such that

$$|v_1^{n_1} U_1 \cdots v_{m_l-1}^{n_{m_l-1}}| \le |Z^i| < |v_1^{n_1} U_1 \cdots v_{m_l-1}^{n_{m_l-1}} U_{m_l-1} v_{m_l}^{n_{m_l}}|.$$

Taking into account that  $v_1^n < z$  it follows that  $v_1 = v_{m_i}$ ,  $u_1 = u_{m_i}$ and  $v_2 = v_{m_i+1}$ . Inductively, one shows that  $v_j = v_{m_i+j-1}$  and  $u_j = u_{m_i+j-1}$  for all j, which proves that the word  $\bar{\alpha} = (v_1)u_1\cdots(v_{m_1-1})u_{m_1-1}$  is such that  $\alpha = \bar{\alpha}^\ell$  and  $z \in L_n(\bar{\alpha})$ .

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

**Case 2**:  $z = v_1^k$  is also impossible. **Case 3**:  $v_1^{k-1} < z < v_1^k$  for some  $k \ge 2$ , is also impossible. Therefore  $v_1^{n_1} < z$  and z is not a prefix of any power of  $v_1$ . In particular,  $|z| > n \ge \mu[\alpha] > |u_r|$ .

$$|V_1^{n_1}U_1\cdots V_{m_j-1}^{n_{m_j-1}}| \le |Z^i| < |V_1^{n_1}U_1\cdots V_{m_j-1}^{n_{m_j-1}}U_{m_j-1}V_{m_j}^{n_{m_j}}|.$$

Taking into account that  $v_1^n < z$  it follows that  $v_1 = v_{m_l}$ ,  $u_1 = u_{m_l}$ and  $v_2 = v_{m_l+1}$ . Inductively, one shows that  $v_j = v_{m_l+j-1}$  and  $u_j = u_{m_l+j-1}$  for all j, which proves that the word  $\bar{\alpha} = (v_1)u_1\cdots(v_{m_1-1})u_{m_1-1}$  is such that  $\alpha = \bar{\alpha}^\ell$  and  $z \in L_n(\bar{\alpha})$ .

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

**Case 2**:  $z = v_1^k$  is also impossible. **Case 3**:  $v_1^{k-1} < z < v_1^k$  for some  $k \ge 2$ , is also impossible.

Therefore  $v_1^{n_1} < z$  and z is not a prefix of any power of  $v_1$ . In particular,  $|z| > n \ge \mu[\alpha] > |u_r|$ . Hence for every  $i \in \{1, ..., \ell - 1\}$  there exists  $m_i \in \{2, ..., r\}$  such that

$$|v_1^{n_1} u_1 \cdots v_{m_i-1}^{n_{m_i-1}}| \le |z^i| < |v_1^{n_1} u_1 \cdots v_{m_i-1}^{n_{m_i-1}} u_{m_i-1} v_{m_i}^{n_{m_i}}|.$$

Taking into account that  $v_1^n < z$  it follows that  $v_1 = v_{m_l}$ ,  $u_1 = u_{m_l}$ and  $v_2 = v_{m_l+1}$ . Inductively, one shows that  $v_j = v_{m_l+j-1}$  and  $u_j = u_{m_l+j-1}$  for all j, which proves that the word  $\bar{\alpha} = (v_1)u_1\cdots(v_{m_1-1})u_{m_1-1}$  is such that  $\alpha = \bar{\alpha}^\ell$  and  $z \in L_n(\bar{\alpha})$ .

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

**Case 2**:  $z = v_1^k$  is also impossible. **Case 3**:  $v_1^{k-1} < z < v_1^k$  for some  $k \ge 2$ , is also impossible.

Therefore  $v_1^{n_1} < z$  and z is not a prefix of any power of  $v_1$ . In particular,  $|z| > n \ge \mu[\alpha] > |u_r|$ . Hence for every  $i \in \{1, ..., \ell - 1\}$  there exists  $m_i \in \{2, ..., r\}$  such that

$$|v_1^{n_1} u_1 \cdots v_{m_i-1}^{n_{m_i-1}}| \le |z^i| < |v_1^{n_1} u_1 \cdots v_{m_i-1}^{n_{m_i-1}} u_{m_i-1} v_{m_i}^{n_{m_i}}|.$$

Taking into account that  $v_1^n < z$  it follows that  $v_1 = v_{m_i}$ ,  $u_1 = u_{m_i}$ and  $v_2 = v_{m_i+1}$ .

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

**Case 2**:  $z = v_1^k$  is also impossible. **Case 3**:  $v_1^{k-1} < z < v_1^k$  for some  $k \ge 2$ , is also impossible.

Therefore  $v_1^{n_1} < z$  and z is not a prefix of any power of  $v_1$ . In particular,  $|z| > n \ge \mu[\alpha] > |u_r|$ . Hence for every  $i \in \{1, ..., \ell - 1\}$  there exists  $m_i \in \{2, ..., r\}$  such that

$$|v_1^{n_1} u_1 \cdots v_{m_i-1}^{n_{m_i-1}}| \le |z^i| < |v_1^{n_1} u_1 \cdots v_{m_i-1}^{n_{m_i-1}} u_{m_i-1} v_{m_i}^{n_{m_i}}|.$$

Taking into account that  $v_1^n < z$  it follows that  $v_1 = v_{m_i}$ ,  $u_1 = u_{m_i}$ and  $v_2 = v_{m_i+1}$ . Inductively, one shows that  $v_j = v_{m_i+j-1}$  and  $u_j = u_{m_i+j-1}$  for all j, which proves that the word

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             |                    |
|                      |              |                                |                                  |                    |

**Case 2**:  $z = v_1^k$  is also impossible. **Case 3**:  $v_1^{k-1} < z < v_1^k$  for some  $k \ge 2$ , is also impossible.

Therefore  $v_1^{n_1} < z$  and z is not a prefix of any power of  $v_1$ . In particular,  $|z| > n \ge \mu[\alpha] > |u_r|$ . Hence for every  $i \in \{1, ..., \ell - 1\}$  there exists  $m_i \in \{2, ..., r\}$  such that

$$|v_1^{n_1} u_1 \cdots v_{m_i-1}^{n_{m_i-1}}| \le |z^i| < |v_1^{n_1} u_1 \cdots v_{m_i-1}^{n_{m_i-1}} u_{m_i-1} v_{m_i}^{n_{m_i}}|.$$

Taking into account that  $v_1^n < z$  it follows that  $v_1 = v_{m_i}$ ,  $u_1 = u_{m_i}$ and  $v_2 = v_{m_i+1}$ . Inductively, one shows that  $v_j = v_{m_i+j-1}$  and  $u_j = u_{m_i+j-1}$  for all *j*, which proves that the word  $\bar{\alpha} = (v_1)u_1\cdots(v_{m_1-1})u_{m_1-1}$  is such that  $\alpha = \bar{\alpha}^\ell$  and  $z \in L_n(\bar{\alpha})$ .

| 00000 0000 | 0000 | 0000 | 0 |
|------------|------|------|---|

In case  $\alpha$  is a primitive term we get the result.

#### LEMMA

Let  $\alpha$  be a primitive term of rank  $i \ge 0$  in circular normal form and let  $n \ge \mu(\alpha)$ . If  $z^{\ell} \in L_n(\alpha)^k$  then  $z \in L_n(\alpha)^m$  for some m such that  $1 \le m \le k$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             | •                  |
|                      |              |                                |                                  |                    |

# If $v \in \overline{\Omega}_X A$ is a factor of $u \in \Omega_X^{\omega} A$ , then $v \in \Omega_X^{\omega} A$ .

- For  $w \in \overline{\Omega}_X \mathbf{A}$ , let
  - $\mathcal{F}(w)$  be the set of all finite factors  $u \in X^+$  of w;
  - P(w) be the language of all ω-terms in normal form which define factors of w.

・ ロ ト ・ 雪 ト ・ ヨ ト ・

## THEOREM

Let  $w \in \overline{\Omega}_X \mathbf{A}$ . Then  $w \in \Omega_X^{\omega} \mathbf{A}$  if and only if w satisfies the following finiteness conditions:

- *F*(w) has no infinite factor-anti-chains;
- P(w) is a rational language.

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             | •                  |
|                      |              |                                |                                  |                    |

# If $v \in \overline{\Omega}_X A$ is a factor of $u \in \Omega^{\omega}_X A$ , then $v \in \Omega^{\omega}_X A$ .

- For  $w \in \overline{\Omega}_X \mathbf{A}$ , let
  - $\mathcal{F}(w)$  be the set of all finite factors  $u \in X^+$  of w;
  - P(w) be the language of all ω-terms in normal form which define factors of w.

### THEOREM

Let  $w \in \overline{\Omega}_X A$ . Then  $w \in \Omega^{\omega}_X A$  if and only if w satisfies the following finiteness conditions:

- *F*(w) has no infinite factor-anti-chains;
- P(w) is a rational language.

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             | •                  |
|                      |              |                                |                                  |                    |

# If $v \in \overline{\Omega}_X A$ is a factor of $u \in \Omega_X^{\omega} A$ , then $v \in \Omega_X^{\omega} A$ .

- For  $w \in \overline{\Omega}_X \mathbf{A}$ , let
  - $\mathcal{F}(w)$  be the set of all finite factors  $u \in X^+$  of w;
  - *P*(*w*) be the language of all *ω*-terms in normal form which define factors of *w*.

# THEOREM

Let  $w \in \overline{\Omega}_X A$ . Then  $w \in \Omega^{\omega}_X A$  if and only if w satisfies the following finiteness conditions:

- *F*(w) has no infinite factor-anti-chains;
- P(w) is a rational language.

| McCammond's solution | New approach | Star-freeness of $L_n(\alpha)$ | Star-freeness of $L_n(\alpha)^*$ | Other applications |
|----------------------|--------------|--------------------------------|----------------------------------|--------------------|
| 00000                | 0000         | 0000                           | 0000                             | •                  |
|                      |              |                                |                                  |                    |

# If $v \in \overline{\Omega}_X A$ is a factor of $u \in \Omega_X^{\omega} A$ , then $v \in \Omega_X^{\omega} A$ .

- For  $w \in \overline{\Omega}_X \mathbf{A}$ , let
  - $\mathcal{F}(w)$  be the set of all finite factors  $u \in X^+$  of w;
  - *P*(*w*) be the language of all *ω*-terms in normal form which define factors of *w*.

# THEOREM

Let  $w \in \overline{\Omega}_X A$ . Then  $w \in \Omega_X^{\omega} A$  if and only if w satisfies the following finiteness conditions:

- $\mathcal{F}(w)$  has no infinite factor-anti-chains;
- P(w) is a rational language.