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Subshifts

A symbolic dynamical system of AZ, also called subshift, is a

nonempty subset of X such that

X is topologically closed,

σ(X ) ⊆ X ,
σ−1(X ) ⊆ X .

σ((xi )i∈Z) = (xi+1)i∈Z, xi ∈ A

L(X ) = {u ∈ A+ : u = xixi+1 . . . xi+n for some x ∈ X , i ∈ Z, n ≥ 0}.
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Factorial, prolongable and irreducible sets

Let S be a semigroup. A subset K of S is...

... factorial if

u ∈ K and v is a factor of u =⇒ v ∈ K ;

... prolongable if u ∈ K ⇒ su, ut ∈ K , for some s, t ∈ S ;

... irreducible if u, v ∈ K ⇒ ∃w : uwv ∈ K

Proposition

The mapping X 7→ L(X ) is a bijection between the set of subshifts

of AZ and the nonempty factorial prolongable languages of A+.

A subshift is irreducible if L(X ) is irreducible.



Subshifts Chains of regular R-classes Rees matrix representation of J (X ) Rauzy graphs

Factorial, prolongable and irreducible sets

Let S be a semigroup. A subset K of S is...

... factorial if

u ∈ K and v is a factor of u =⇒ v ∈ K ;

... prolongable if u ∈ K ⇒ su, ut ∈ K , for some s, t ∈ S ;

... irreducible if u, v ∈ K ⇒ ∃w : uwv ∈ K

Proposition

The mapping X 7→ L(X ) is a bijection between the set of subshifts

of AZ and the nonempty factorial prolongable languages of A+.

A subshift is irreducible if L(X ) is irreducible.



Subshifts Chains of regular R-classes Rees matrix representation of J (X ) Rauzy graphs

Factorial, prolongable and irreducible sets

Let S be a semigroup. A subset K of S is...

... factorial if

u ∈ K and v is a factor of u =⇒ v ∈ K ;

... prolongable if u ∈ K ⇒ su, ut ∈ K , for some s, t ∈ S ;

... irreducible if u, v ∈ K ⇒ ∃w : uwv ∈ K

Proposition

The mapping X 7→ L(X ) is a bijection between the set of subshifts

of AZ and the nonempty factorial prolongable languages of A+.

A subshift is irreducible if L(X ) is irreducible.



Subshifts Chains of regular R-classes Rees matrix representation of J (X ) Rauzy graphs

Factorial, prolongable and irreducible sets

Let S be a semigroup. A subset K of S is...

... factorial if

u ∈ K and v is a factor of u =⇒ v ∈ K ;

... prolongable if u ∈ K ⇒ su, ut ∈ K , for some s, t ∈ S ;

... irreducible if u, v ∈ K ⇒ ∃w : uwv ∈ K

Proposition

The mapping X 7→ L(X ) is a bijection between the set of subshifts

of AZ and the nonempty factorial prolongable languages of A+.

A subshift is irreducible if L(X ) is irreducible.



Subshifts Chains of regular R-classes Rees matrix representation of J (X ) Rauzy graphs

Factorial, prolongable and irreducible sets

Let S be a semigroup. A subset K of S is...

... factorial if

u ∈ K and v is a factor of u =⇒ v ∈ K ;

... prolongable if u ∈ K ⇒ su, ut ∈ K , for some s, t ∈ S ;

... irreducible if u, v ∈ K ⇒ ∃w : uwv ∈ K

Proposition

The mapping X 7→ L(X ) is a bijection between the set of subshifts

of AZ and the nonempty factorial prolongable languages of A+.

A subshift is irreducible if L(X ) is irreducible.



Subshifts Chains of regular R-classes Rees matrix representation of J (X ) Rauzy graphs

Free pro�nite semigroups and symbolic dynamics

From hereon V contains L Sl.

L(X ): the topological closure of L(X ) in ΩAV

M(X ): the set of elements of ΩAV whose �nite factors

belong to L(X ).

One has L(X ) ⊆M(X ).

In general, the equality does not hold.
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The J -classes J (X ) and JM(X )

If K is a closed, factorial, prolongable, irreducible subset of the

compact semigroup S , then K has a minimum J -class.
This J -class is regular.

For an irreducible subshift X

The setsM(X ) and L(X ) are prolongable and irreducible.

The setM(X ) is factorial.

The set L(X ) is factorial if V is closed under concatenation

(for example, if V = A or V = S).

J (X ): the minimal J -class of L(X ).

JM(X ): the minimal J -class ofM(X ).
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The minimal case

A subshift is minimal if it does not contain proper subshifts.

Example

For the Fibonacci substitution

ϕ(a) = ab, ϕ(b) = a,

the set of factors of the words ϕn(a) de�nes a minimal subshift.

Theorem (Almeida, 2003)

If X is a minimal subshift, then J (X ) = JM(X ) is a maximal

regular J -class.

All maximal regular J -classes are of this form.
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Chains of regular R-classes

Suppose |A| > 1.

Theorem (J. C. Costa, 2001)

There is a <R-chain of 2ℵ0 elements of ΩAV.

X ⊆ Y ⇔ L(X ) ⊆ L(Y)

⇔ J (X ) ≥J J (Y)⇔ JM(X ) ≥J JM(Y)

There is a chain (for inclusion) with 2ℵ0 irreducible subshifts of AZ.

Corollary

There is a <J -chain of 2ℵ0 regular elements of ΩAV.

Theorem (First contribution.

In a work with J. Almeida, J. C. Costa and M. Zeitoun)

There is a <R-chain of 2ℵ0 regular elements of ΩAV.
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Chains of regular R-classes

Let C be a chain of irreducible subshifts of AZ.

Let f be a function Domf ⊆ C → ΩAV such that

f (X ) ∈ JM(X )

X ) Y ⇔ f (X ) <R f (Y) (X ,Y ∈ Domf )

For every u, v ∈ JM(X ) there is w ∈ ΩAV,

depending only on the �nite su�xes of u and on the �nite pre�xes of v ,

such that uwv ∈ JM(X ).

Suppose Domf 6= C . Let Z ∈ C \Domf and v ∈ JM(Z).
Let u be an accumulation point of (f (X ))X(Z .

f
′ : X ∈ Domf ∪ {Z} 7→


f (X ) if X ( Z,
uwv if X = Z,
uwvw ′f (X ) if Z ( X ,
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Chains of regular R-classes

Theorem (First contribution.

In a work with J. Almeida, J. C. Costa and M. Zeitoun)

Suppose |A| > 1.

There is a <R-chain of 2ℵ0 regular elements of ΩAV,

with a minimum at the minimal ideal, and with a subsequence

converging to this minimum.

The proof uses the upper semi-continuity of the entropy of

pseudowords, another concept borrowed from symbolic dynamics by

Almeida and Volkov (2006).
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Rees matrix representation

A regular J -class of a compact semigroup is isomorphic to a Rees

matrix partial compact semigroup M (I ,G ,Λ;P) = I × G × Λ,
where

I and Λ are compact spaces;

G is a compact group;

P is a continuous partial function Λ× I → G ;

(i1, g1, λ1)(i2, g2, λ2) = (i1, g1P(λ1, i2)g2, λ2).
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Right and left rays

We say that a right in�nite sequence

x0x1x2x3 · · ·

of elements of A is a right ray.

If

x = · · · x−3x−2x−1.x0x1x2x3 · · ·

then x0x1x2 · · · is a right ray of x and we use the notation

−→x = x0x1x2x3 · · ·

Dually, one de�nes left ray and ←−x .
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Right and left rays of a pseudoword

Let u be an in�nite pseudoword.

Let

u0u1 · · · un−2un−1
be the pre�x of length n of u.

De�nition

Right ray de�ned by u:

−→u = u0u1u2 · · · un−2un−1unun+1 · · ·
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Right and left rays of X

De�nition

−→
X = {−→x : x ∈ X}

←−
X = {←−x : x ∈ X}

z ∈
−→
X ⇔ ∃y ∈ AZ− : y .z ∈ X
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A parametrization of R-classes and L-classes

Let X be a minimal subshift and u, v ∈ J (X ).

Lemma

u R v if and only if −→u = −→v
u L v if and only if ←−u =←−v

Corollary

u H v if and only if ←−u .−→u =←−v .−→v .
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A closed coordinate system

Let X be a minimal subshift.

Let G be a maximal subgroup of J (X ) with idempotent e.

There are families

(ly )y∈←−X (rz)z∈−→X

such that

ly R e and ly is in the L-class determined by y ;

rz R e and rz is in the R-class determined by z ;

ly ∈ G ⇒ ly = e, rz ∈ G ⇒ rz = e;

the sets {ly : y ∈
←−
X } and {rz : z ∈

−→
X } are closed;

the maps y 7→ ly and z 7→ rz are continuous.
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Rees matrix representation of J (X )

Let X be a minimal subshift.

P :
←−
X ×

−→
X → G

(y , z) 7→

{
ly rz if y .z ∈ X
not de�ned if y .z /∈ X

Second contribution. With J. Almeida.

M (
−→
X ,G ,

←−
X ;P) → J (X )

(z , g , y) 7→ rzgly .
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The Sturmian case

If X is a Sturmian subshift of {a, b}Z, then there are x , y ∈ X such

that

x = · · · x−4x−3x−2a.bx1x2x3 · · · ;
y = · · · x−4x−3x−2b.ax1x2x3 · · · ;
if z ,w ∈ X have a common (right or left) ray, then z = w or

{z ,w} = {σn(x), σn(y)} for some n ∈ Z.

Given z ∈ X , the right ray

znzn+1zn+2zn+3 · · ·

and the left ray

· · · zm−3zm−2zm−1zm
are respectively denoted by z[n and zm].
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The Rauzy graph Σn(X )

The edges are the words in L(X ) with length n + 1.

The vertices are the words in L(X ) with length n.

The edge a1a2 . . . an−1an has origin in a1a2 . . . an−1 and

terminus in a2 . . . an−1an.
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The centrally labeled Rauzy graph Σ2n(X )

We assign to each edge of Σ2n(X ) its middle letter.

This de�nes a nondeterministic automaton over the alphabet A

with transitions

a1a2 . . . a2n
an+1−−→ a2 . . . a2na2n+1

de�ned precisely when a1a2 . . . a2na2n+1 belongs to L(X ).
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aabaabab

abaababa

a

aababaab

ababaaba

b

abaabaab

baabaaba

b

baababaa

b

babaabaa

a

babaabab

a

a

a

a

a
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A crucial property

Two paths labeled u = u1u2, with |u1| = |u2| = n.

u_1u_2

u_1

u_1

u_2

u_2
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The transition semigroup of Σ2n(X ).

The transition homomorphism of Σ2n(X ) is denoted by ηn.

The transition semigroup of Σ2n(X ) is denoted by Tn(X ).

If X is irreducible then Σ2n(X ) is strongly connected and

Tn(X ) has a 0-minimum J -class, denoted Jn(X ).
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A homomorphism of partial semigroups

Let m ≥ 2n.

ψm,n : Tm(X ) \ {0} → Tn(X ) \ {0}

ηm(u) 7→ ηn(u)

Let s1, s2 ∈ Tm(X ).
If s1s2 6= 0 then ψm,n(s1)ψm,n(s2) 6= 0 and

ψm,n(s1s2) = ψm,n(s1)ψm,n(s2).

Lemma

If m ≥ 2n then ψm,n(Jm(X )) = Jn(X ).
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A projective limit of partial semigroups

n � m⇔ 2n ≤ m.

A directed system:

J (X ) = {ψm,n : Jm(X )→ Jn(X ) | n,m ∈ Z+, n � m}

For u ∈M(X ), let θn(u) be an element of A∗ such that

i2n(u) · w · t2n(u) ∈ L(X ).

A well-de�ned continuous function:

ψ : JM(X ) → lim←−J (X )

u 7→
(
ηn

(
i2n(u) · θn(u) · t2n(u)

))
n
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Second contribution revisited

Theorem

The mapping ψ : JM(X )→ lim←−J (X ) is an onto

homomorphism of partial semigroups.

A pair (u, v) of elements of JM(X ) belongs to the kernel of

ψ if and only if ←−u .−→u =←−v .−→v .

Corollary

Suppose V ⊆ A.

If X is a minimal subshift then ψ : JM(X )→ lim←−J (X ) is a

continuous isomorphism of compact partial semigroups.
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Which idempotents are not lost?

Lemma

Let s be an element of Jn(X ). Let m ≥ 2n.

Then s = ψn(e) for some idempotent e of JM(X ) if and only if

s = ψm,n(t) for some idempotent t of Jm(X ).
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