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A symbolic dynamical system of AZ, also called subshift, is a
nonempty subset of X’ such that
m X is topologically closed,
mo(X)C X,

m o l(X)C .

o((xi)iez) = (Xit1)iez,  x €A
|
L(X)={u€A" :u=xiXis1...Xi+n for some x € X, i € Z, n > 0}.
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Let S be a semigroup. A subset K of S is...
m ... factorial if

u € K and v is afactor of u = v € K;
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m ... factorial if

u € K and v is afactor of u = v € K;

m ... prolongable if u € K = su,ut € K, for some s,t € S;

«0O>» «Fr «=>»



SUBSHIFTS

Factorial, prolongable and irreducible sets

Let S be a semigroup. A subset K of S is...
m ... factorial if
u € K and v is afactor of u = v € K;
m ... prolongable if u € K = su,ut € K, for some s,t € S;

Proposition
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of A% and the nonempty factorial prolongable languages of A™.
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SUBSHIFTS

Factorial, prolongable and irreducible sets

Let S be a semigroup. A subset K of S is...
m ... factorial if
u € K and v is afactor of u = v € K;
m ... prolongable if u € K = su,ut € K, for some s,t € S;
m ... irreducible if u,v € K= 3w : uwv € K

Proposition

The mapping X — L(X) is a bijection between the set of subshifts
of A% and the nonempty factorial prolongable languages of A™.

A subshift is irreducible if L(X) is irreducible.



From hereon V contains .ZSlI.

|
m L(X): the topological closure of L(X) in QaV
belong to L(X).

m M(X): the set of elements of Q4V whose finite factors

|
m One has L(X) C M(X).
m In general, the equality does not hold.
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If K is a closed, factorial, prolongable, irreducible subset of the
compact semigroup S, then K has a minimum J-class.

This J-class is regular.
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SUBSHIFTS

The J-classes J(X) and JM(X)

If K is a closed, factorial, prolongable, irreducible subset of the
compact semigroup S, then K has a minimum J-class.
This J-class is regular.

For an irreducible subshift X

m The sets M(X) and L(X) are prolongable and irreducible.
m The set M(X) is factorial.

m The set L(X) is factorial if V is closed under concatenation
(for example, if V.=A or V =5).

m J(X): the minimal J-class of L(X).
m JM(X): the minimal J-class of M(X).



A subshift is minimal if it does not contain proper subshifts.
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SUBSHIFTS CHAINS OF REGULAR R-CLASSES REES MATRIX REPRESENTATION OF J(X) RAuzYy GRAPHS

The minimal case

A subshift is minimal if it does not contain proper subshifts.

For the Fibonacci substitution

p(a) = ab, ¢(b) = a,

the set of factors of the words ¢"(a) defines a minimal subshift.
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SUBSHIFTS CHAINS OF REGULAR TR-CLASSES REES MATRIX REPRESENTATION OF J (X)) RAUZY GRAPHS

The minimal case

A subshift is minimal if it does not contain proper subshifts.

For the Fibonacci substitution

p(a) = ab, ¢(b) = a,

the set of factors of the words ¢"(a) defines a minimal subshift.

Theorem (Almeida, 2003)

If X is a minimal subshift, then J(X) = JM(X) is a maximal
regular [J-class.
All maximal regular J-classes are of this form.
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Suppose |A] > 1.

There is a <-chain of 2%° elements of QAV.
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Suppose |A] > 1.
There is a <-chain of 2%° elements of QAV.

XCY e LX) L) e T(X) 27 TO) & IM(X) 25 TM(Y)
There is a chain (for inclusion) with 2% irreducible subshifts of AZ.
There is a < y-chain of 280 regular elements of QAV.

There is a <.p-chain of 2%° regular elements of QaV.

«0O>» «Fr «=>»



Let € be a chain of irreducible subshifts of AZ.
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Let € be a chain of irreducible subshifts of AZ.

Let f be a function Domf C € — QaV such that
m f(X) e IM(X)

m XDV e f(X) <uf)

(X,Y € Domf)
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Let € be a chain of irreducible subshifts of AZ.

Let f be a function Domf C € — QaV such that
m f(X) e IM(X)

m XDV e f(X) <uf)

(X,Y € Domf)
I ——
For every u,v € JM(X) there is w € Q4V,
depending only on the finite suffixes of u and on the finite prefixes of v,
such that uwv € JM(X).
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Chains of reqular R-classes

Let & be a chain of irreducible subsiﬁfts of AZ,

Let f be a function Domf C € — QV such that
m (X)) e TM(X)
R XD2YVE (X)) <z () (X,Y € Domf)

For every u,v € JM(X) there is w € QaV,
depending only on the finite suffixes of u and on the finite prefixes of v,
such that uwv € JM(X).

Suppose Domf # €. Let Z € € \ Domf and v € JM(Z).
Let u be an accumulation point of (f(X))xcz.

F(X) if ¥ C 2,

f': X € Domf U{Z} — ¢ uwv if X =2,
uww'f(X)  if 2 C X,



CHAINS OF REGULAR TR-CLASSES

Chains of reqular R-classes

Theorem (First contribution.
In a work with J. Almeida, J. C. Costa and M. Zeitoun)

Suppose |A| > 1.
There is a <.p-chain of 2%° regular elements of QaV,
with a minimum at the minimal ideal, and with a subsequence

converging to this minimum.

The proof uses the upper semi-continuity of the entropy of
pseudowords, another concept borrowed from symbolic dynamics by
Almeida and Volkov (2006).



REES MATRIX REPRESENTATION OF J(X)

Rees matriz representation

A regular J-class of a compact semigroup is isomorphic to a Rees
matrix partial compact semigroup A (I, G,\; P) =1 x G x A,
where

m / and A are compact spaces;
m G is a compact group;

m P is a continuous partial function A x | — G;
(11,81, A1)(12, 82, A2) = (i1, 81P (A1, 2)82, A2).



~ SUBSHIFTS  CHAINS OF REGULAR R-CLASSES  REES MATRIX REPRESENTATION OF J(X)  RAUZY GRAPHS
|
We say that a right infinite sequence

X0X1X2X3
of elements of A is a right ray.
If

X =+ X_3X_2X_1.X0X]X2X3 " - -

then xpx1xo - - - is a right ray of x and we use the notation
—
X = XgX1X2X3 * - -

Dually, one defines left ray and ‘x.
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Let u be an infinite pseudoword.

bouy - - Up—2Up—1
be the prefix of length n of u.
Right ray defined by u:

H_
U = ugurup---Up2Up_1Uplp41 -~
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Let & be a minimal subshift and u,v € J(X).
muRvifandonlyif d =7V
mulvifandonlyifu =V
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Let & be a minimal subshift and u,v € J(X).
muRvifandonlyif d =7V
mulvifandonlyifu =V

uH v ifandonly if ' v. v =V.V.
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Let X be a minimal subshift.

There are families

(/}/)yey
such that

(rz)ze?

m r, R e and r, is in the R-class determined by z;
mleG=>l, =e

m /|, R eandl, isin the L-class determined by y;
e G=r,=e¢
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REES MATRIX REPRESENTATION OF J(X)

A closed coordinate system

Let G be a maximal subgroup of J(X) with idempotent e.

There are families

such that
m /[, R eand /, is in the L-class determined by y;
m r, R e and r, is in the R-class determined by z;
mleG=>l=e rneG=r,=¢
— —
m thesets {/, : y€ X} and {r, : z € X'} are closed;



REES MATRIX REPRESENTATION OF J(X)

A closed coordinate system

Let G be a maximal subgroup of J(X) with idempotent e.

There are families

such that
m /[, R eand /, is in the L-class determined by y;
m r, R e and r, is in the R-class determined by z;
mleG=>l=e rneG=r,=¢
— —
thesets {/, : y € X} and {r; : z€ X'} are closed;

the maps y +— I, and z +— r, are continuous.



Let X be a minimal subshift.

— =
P:XxXx — G

(v,2) — {/yrz

ifyzeX
not defined

fyz¢X
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Let X be a minimal subshift.

— =
P:XxXx — G

(. 2) lyrs ifyzeX
Z [ d
Y not defined

fyz¢X
Second contribution. With J. Almeida.
MX, G, X P) — T(X)

(Z,g,)/) = rzg/y-
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|
If X is a Sturmian subshift of {a, b}%, then there are x,y € X such
that
B X = X_4X_3X_2a.bxyxoxz---;

By = -X_4Xx 3X_obaxixoxz---;

m if z,w € X have a common (right or left) ray, then z = w or
{z,w} ={0"(x),0"(y)} for some n € Z.
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REES MATRIX REPRESENTATION OF J(X)

The Sturmian case

If X is a Sturmian subshift of {a, b}”, then there are x,y € X such

that
B X = X_4X_3X_2a.bxyxoxz---;

By = - X_4x_3X_ob.axixpxz---;
m if z,w € X have a common (right or left) ray, then z = w or
{z,w} ={0"(x),0"(y)} for some n € Z.
Given z € X, the right ray

ZnZpn+1Zn42Zn+3 -

and the left ray
1 Zm—-3Zm—-2Zm—1Zm

are respectively denoted by z|, and z;.
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REES MATRIX REPRESENTATION OF J(X)
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|
m The edges are the words in L(X') with length n + 1.
m The vertices are the words in L(X’) with length n.

m The edge a1a>...a, 1a, has origin in a1a>...a, 1 and
terminus in as...ap—1an.
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We assign to each edge of X,(X) its middle letter.
with transitions

This defines a nondeterministic automaton over the alphabet A

n+1
didz...dxyy —> d2...d2pd2pn4+1

defined precisely when ajas ... azpa2n11 belongs to L(X)
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Two paths labeled u = uyup, with |u]| = || = n.
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|
m The transition homomorphism of ¥,,(X) is denoted by 7,.

m The transition semigroup of Y,(X) is denoted by T,(X).
|
If X is irreducible then ¥,,(X) is strongly connected and

Th(X) has a O-minimum J-class, denoted 7,(X).
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Let m > 2n.

e
Yma: Tm(X)\ {0} — Ta(X)\ {0}

Nm(u) —  na(v)
Let 51,5 € Tm(X).

If s15p # 0 then ¢m n(s1)Ym n(s2) # 0 and
wm,n(5152) = "/Jm,n(sl )wm,n(52)-

Lemma
If m > 2n then Ym o(Tm(X)) = Tn(X).




mn=<m<s2n<m.

m A directed system:

(X)) ={Vmn: Im(X) = Tn(X)|n,m €Z", n =< m}

m For u € M(X), let 6,(u) be an element of A* such that
ion(u) - w - top(u) € L(X).

A well-defined continuous function:
Y IM(X) — lim _7(X)

=

u

—

N (i2n() - On(u) - t2n(”))

),



RAUZY GRAPHS

Second contribution revisited

Theorem

m The mapping v : JM(X) — lim #(X) is an onto
homomorphism of partial semigroups.
m A pair (u,v) of elements of JM(X) belongs to the kernel of

W ifand only if U. 0 = V. V.

Corollary

Suppose V C A.
If X is a minimal subshift then ¢ : TM(X) — lim #(X) is a
continuous isomorphism of compact partial semigroups.
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Let s be an element of J,(X). Let m > 2n.

Then s = 1p(e) for some idempotent e of JM(X) if and only if
s = Ym,n(t) for some idempotent t of Jm(X).
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