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Abstract

 For their intimate connections with the theory of rational languages, relatively free profinite semigroups have become a well-established tool in many aspects of the theory and its applications, particularly in the framework of Eilenberg-type algebraic classification schemes. They serve as a powerful descriptive tool and, despite their rather general tendency to be uncountable, they often provide a route to decidability results. By focusing our attention on rich structural entities, they also fit well into the solid ground of classical Mathematics, opening at the same time doors to toolboxes and drawing analogies with other areas, such as group theory, topology, and dynamical systems. The purpose of this talk is to introduce and put into (the authors') perspective the results presented in more detail in talks given by A. Costa, J. C. Costa, B. Steinberg, and M. Zeitoun. They are all concerned with various structural aspects of free profinite semigroups over `large' pseudovarieties. Until recently, not much was known in such cases. 

With...

Introducing joint work with A. Costa, J. C. Costa, B. Steinberg, and M. Zeitoun

http://www.fc.up.pt/
http://www.fc.up.pt/
http://www.fc.up.pt/cmup/
http://www.fc.up.pt/mp/
http://www.fc.up.pt/
http://www.up.pt/
http://www.fc.up.pt/cmup/jalmeida
http://www.fc.up.pt/
http://www.math.muni.cz/~kunc/conf/etherela.html


1 PRELIMINARIES
Profinite semigroups
V-recognizable languages
Implicit operations
The monoid of continuous endomorphisms

2 TAMENESS
Implicit signatures
Tameness
Computing closures and fullness

3 SOME CASE STUDIES
Groups
p-groups
J-trivial
R-trivial
Aperiodic

4 STRUCTURE
Equidivisibility
Pseudovarieties closed under concatenation
Connection with symbolic dynamics
Subgroups and free submonoids

2 / 32



PSEUDOVARIETIES

Pseudovariety: class of finite semigroups (or of finite monoids)
closed under taking homomorphic images, subsemigroups
(resp. submonoids) and finite direct products.

S = {all finite semigroups}
G = {groups}

Gp = {p-groups}
Gnil = {nilpotent groups}
Gsol = {solvable groups}
Ab = {Abelian groups}

Com = {commutative semigroups}
CR = {unions of groups}

N = {nilpotent semigroups}
D = {idempotents are right zeros}
K = {idempotents are left zeros}
Sl = {semilattices}
J = {J -trivial}
R = {R-trivial}
L = {L-trivial}
A = {aperiodic semigroups}

DV = {regular J -classes form subsemigroups in V}
EV = {S ∈ S : 〈E(S)〉 ∈ V}
LV = {S ∈ S : ∀e ∈ E(S), eSe ∈ V}
BV = {S ∈ S : every block of S belongs to V}

H̄ = {S ∈ S : ∀H ∈ G (H ≤ S =⇒ H ∈ V)} (H ⊆ G)

V ∗W = 〈V ∗W : V ∈ V, W ∈ W〉
V©m W = 〈S ∈ S : ∃T ∈ W ∃ homo. h : S → T ∀e ∈ E(T ), h−1(t) ∈ V〉
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PROFINITE SEMIGROUPS

A topological semigroup is a semigroup S endowed with a
topology such that the multiplication S × S → S is
continuous.
If X is a topological space, then a continuous mapping
ϕ : X → S is said to generate S if S = 〈ϕ(X )〉.

We then also say that S is X-generated (via ϕ).
A compact semigroup is a topological semigroup whose
topology is compact (and Hausdorff).
Finite semigroups are viewed as topological semigroups
under the discrete topology.
A residually V semigroup is a topological semigroup S
such that
∀s1, s2 ∈ S

`
s1 6= s2 =⇒ ∃T ∈ V ∃ cont. homo. h : S → T : h(s1) 6= h(s2)

´
A pro-V semigroup is a compact semigroup that is
residually V.
A profinite semigroup is a pro-S semigroup.

Equivalently, it is a compact totally disconnected semigroup.
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RELATIVELY FREE PROFINITE SEMIGROUPS

The free pro-V semigroup on a topological space X is defined by
the following universal property: it is given by a continuous
mapping ι : X → ΩX V into a pro-V semigroup such that, for
every continuous mapping ϕ : X → S into a pro-V semigroup
there is a unique continuous homomorphism ϕ̂ such that the
following diagram commutes

X
ι //

ϕ
!!CC

CC
CC

CC
C ΩX V

ϕ̂

��
S

The obvious way to construct ΩX V is to take the direct product of
all X -generated pro-V semigroups Si , via ϕi (i ∈ I), in the
category of all X -generated topological semigroups, that is the
closure of the subsemigroup generated by {(ϕi (x))i∈I : x ∈ X}.

In fact, it suffices to take X -generated semigroups from V.
This is usually viewed as the projective limit of all
X -generated semigroups from V.
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ALTERNATIVE CONSTRUCTION

Another convenient way to construct ΩX V is to consider
the following pseudo-metric on the free semigroup X +:

d(u, v) = 2−r(u,v)

r(u, v) = min{|S| : S ∈ V,∃ cont. mapping h : X → S; S 6|= u = v [h]}

and to take the completion X̂ +, which is a metric space.
The multiplication in X + is uniformly continuous with
respect the pseudo-metric d and, therefore, it extends to a
continuous multiplication on X̂ +.
This only works well in case X is finite since otherwise ΩX V
is in general not metrizable.
The problem lies in that, for X infinite, X + is in general not
covered by finitely many balls of radius 2−n (for instance if V
is nontrivial and X is totally disconnected), which entails
that the completion X̂ + is not compact, and therefore not a
pro-V semigroup.
From hereon, unless something is explicitly stated to the
contrary, X is taken to be a finite (discrete) set.
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V-RECOGNIZABLE LANGUAGES

A language L ⊆ X + is said to be V-recognizable if

∃S ∈ V ∃ homo. ϕ : X + → S : L = ϕ−1ϕ(L)

It is simple to show that L ⊆ X + is V-recognizable if and
only if, denoting ῑ : X + → ΩX V the natural homomorphism,

1 ῑ(L) ⊆ ΩX V is an open set
2 L = ῑ−1(ῑ(L)).

The second condition is superfluous if ῑ is injective and the
induced topology on X + (the pro-V topology) is discrete.
This is the case whenever V ⊇ N. In fact

PROPOSITION (JA-JCCOSTA-ZEITOUN)
V ⊇ N if and only if for every finite alphabet X , the natural
mapping X + → ΩX V is injective and its image is an open
discrete subset of ΩX V.
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IMPLICIT OPERATIONS AND PSEUDOIDENTITIES

The diagram describing the universal
property of X → ΩX V suggests a natu-
ral way to interpret each w ∈ ΩX V as an
operation wS : SX → S on each pro-V
semigroup S:

wS(ϕ) = ϕ̂(w)

X
ι //

ϕ

!!B
BB

BB
BB

BB
ΩX V

ϕ̂

��
S

This interpretation commutes with all continuous
homomorphisms between pro-V semigroups.

Operations with this property with respect to a certain class of
topological semigroups are called (|X |-ary) implicit operations on
the class.

In particular, the homomorphisms between the members of V
respect the enriched algebraic structure, obtained by adding all
such operations.

It is well-known that the correspondence w 7→ (wS)S∈V is a
bijection from ΩX V to the set of all |X |-ary implicit operations
on V. 8 / 32



DESCRIPTIVE POWER OF ΩX V

Given u, v ∈ ΩX V and a pro-V semigroup S, we write
S |= u = v if uS = vS.
Such a formal equality u = v is known as a
(V-)pseudoidentity.
Given a set Σ of pseudoidentities, the class

JΣKV = {S ∈ V : ∀σ ∈ Σ, S |= σ}

THEOREM (REITERMAN)
Every subpseudovariety of V is of this form.

In case V = S, we drop the index V.
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EXAMPLES

Note that, every profinite semigroup S, given s ∈ S, the
sequence (sn!−1)n converges to some element, denoted
sω−1.
In fact, sω−1 is the inverse of es in the group minimum
ideal of 〈s〉, with idempotent e = sω−1s.
We naturally also write sω for ssω−1 and sω+1 for ssω.

S = Jx = xK
G = Jxω = 1K

CR = Jxω+1 = xK
A = Jxω+1 = xωK
N = Jxω = 0K

Com = Jxy = yxK
D = Jxyω = yωK
K = Jxωy = xωK
J = J(xy)ω = (yx)ω, xω+1 = xωK
R = J(xy)ωx = (xy)ωK
L = J(xy)ωx = (yx)ωK
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THE MONOID OF CONTINUOUS ENDOMORPHISMS

Let S be a compact semigroup. Then the continuous
endomorphisms of S constitute a monoid End(S) under
composition.
As a function space, there are two classical candidates for
topologies on End(S), namely:

the pointwise convergence topology, i.e., as a subspace of
the product space SS or in which a sequence converges if
and only if it converges pointwise;
the compact open topology, which in our context can be
described by stating that a sequence converges if and only
if it converges it converges uniformly.

The former topology is in a sense very familiar while the
latter has the advantage that the evaluation mapping

End(S)× S −→ S
(ϕ, s) 7−→ ϕ(s)

is continuous.
11 / 32



THEOREM (JA (2003))
If S is a finitely generated profinite semigroup, then the two
topologies coincide on End(S) and End(S) is a profinite
semigroup with respect to them.

In particular, if X is a finite set and V is any pseudovariety
of semigroups, given ϕ ∈ End(ΩX V), there is an
idempotent ϕω = limn→∞ ϕ

n!, which we view as a
canonical infinite iteration of the substitution ϕ.
For example, the substitution ϕ(x) = xp, where x is a
variable, induces the idempotent ϕω ∈ End(Ω{x}S), which
satisfies

ϕω(x) = lim
n→∞

ϕn!(x) = lim
n→∞

xpn!
.

We define xpω to be ϕω(x). It is easy to show that

Gp = Jxpω = 1K.
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IMPLICIT SIGNATURES

Let σ be a set of implicit operations (on S), containing the binary
multiplication. We call σ an implicit signature.

Canonical example: κ = {_ · _ , _ω−1}.
Recall that every profinite semigroup has a natural structure as a
σ-algebra.

Given a pseudovariety V and a finite set X , let ι : X → ΩX V be
the natural mapping.

Denote by Ωσ
X V the σ-subalgebra generated by ι(X ). The

mapping X → Ωσ
X V determined by ι has the suitable universal

property of the free σ-algebra on X in the Birkhoff variety
generated by V:

X
ι //

ϕ
!!CC

CC
CC

CC
C Ωσ

X V

ϕ̂

��
S

where now S is any member of the variety and ϕ̂ is a
homomorphism of σ-algebras.
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REDUCIBILITY

We say that a system of equations (ui = vi)i∈I over an
alphabet X , with a set of clopen constraints Kx ⊆ ΩAS has
a solution γ modulo V if γ : ΩX S→ ΩAS is a continuous
homomorphism such that the following two conditions hold:

1 ∀x ∈ X , γ(x) ∈ Kx ;
2 ∀i ∈ I, V |= γ(ui ) = γ(vi ).

We say that V is σ-reducible with respect to a class C of
constrained systems of equations if every constrained
system in the class that has a solution γ : ΩX S→ ΩAS
modulo V admits such a solution satisfying γ(X ) ⊆ Ωσ

AS.
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TAMENESS

Finally, we say that V is σ-tame with respect to a class C of
constrained systems of equations if σ is an implicit
signature such that:

1 σ is recursively enumerable;
2 the operations in σ are computable;
3 the word problem for Ωσ

X V is decidable for every finite set X ;
4 V is σ-reducible with respect to C.

If this property holds, then
in case C consists of all constrained systems of equations
associated with finite digraphs

x
y−→ z 7−→ xy = z

we simply say that V is σ-tame;
in case C consists of all constrained systems of equations
of the form u = v with u, v ∈ Ωσ

X S, we say that V is
completely σ-tame.
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COMPUTING CLOSURES AND FULLNESS

Given a subset L ⊆ S of a topological semigroup, let clS(L)
denote its closure.

In the special case S = ΩX S, we let cl(L) = clΩX S(L).
If S = ΩX V, we let clσ,V(L) = clΩσ

X V(L).

We say that the pseudovariety V is σ-full if it satisfies the
following condition for every rational language L ⊆ X +:

clσ,V(L) = pV
(
cl(L) ∩ Ωσ

X S
)

THEOREM (JA-STEINBERG (2000))
If V is a recursively enumerable pseudovariety of semigroups
and σ is a recursively enumerable implicit signature consisting
of computable operations such that the word problem for Ωσ

X V is
decidable and V is σ-full, then there is an algorithm to compute
the closure clσ,V(L) ⊆ Ωσ

X V for every rational language L ⊆ X +.
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THE (GENERALIZED) PIN-REUTENAUER PROCEDURE

The proof of the preceding theorem is obtained by
exhibiting two semi-algorithms, one for enumerating the
elements in the closure, the other for its complement.
Given a rational expression for the language, can one do
better?
For a subset L of a σ-algebra S, denote by 〈L〉σ the
σ-subalgebra generated by L.
We say that the Pin-Reutenauer procedure holds for a
pseudovariety V in the implicit signature σ if, for all rational
languages K ,L ⊆ X +, the following equations hold:

clσ,V(KL) = clσ,V(K ) · clσ,V(L),

clσ,V(L+) = 〈clσ,V(L)〉σ.
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A DIAGRAM BORROWED FROM JA-STEINBERG (2000)�-recursive�-WP decidable computable �-closures �-fullweakly �-reducible �-reducible�-equationalhyperdecidablestrongly decidabledecidable recursively de�nable

algorithmic propertiesconcerning � abstract propertiesconcerning �

algorithmic properties
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G (GROUPS)

Ωκ
X G is the free group on X and so the solution of the word

problem for Ωκ
X G is simple and well known.

THEOREM (ASH (1991) + JA-STEINBERG (2000))
G is κ-tame.

THEOREM (PIN-REUTENAUER (1991) + RIBES-ZALESSKIĬ (1993)
OR ASH (1991))
The Pin-Reutenauer procedure holds for G.

THEOREM (DELGADO (2001))
G is κ-full.

THEOREM (COULBOIS-KHÉLIF (1999))
G is not completely κ-tame.
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Gp (p-GROUPS)

Since the free group is residually Gp [Baumslag (1965)],
Gp cannot be κ-tame.
Gp is not κ-full either [Steinberg (2001)].

THEOREM (JA (2002), BUILDING ON RESULTS OF

RIBES-ZALESSKIĬ (1994), MARGOLIS-SAPIR-WEIL (2001),
STEINBERG (2001))
Let H be an extension-closed pseudovariety of finite groups. If
there is an algorithm to decide whether a finite subset of the
free group Ωκ

X G generates a dense subgroup in the pro-H
topology (i.e., in the subspace topology Ωκ

X G = Ωκ
X H ⊆ ΩX H),

then H is σ-tame, for a certain infinite implicit signature
constructed by the infinite iteration of appropriate substitutions.

From the proof of this result, it follows that H is σ-full.
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Ribes-Zalesskiı̆ (1994): an algorithm to compute the
closure clκ,Gp (L) ⊆ Ωκ

X Gp for a rational language L ⊆ X +.

COROLLARY

Gp is tame.

Can one decide denseness of finitely generated subgroups
of the free group for the pro-Gsol topology?
Likewise for the pro-Godd topology?
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J (J -TRIVIAL SEMIGROUPS)

THEOREM

1 ΩX J = Ωκ
X J.

2 The variety of κ-algebras generated by J is defined by the
identities

xω−1x = xxω−1 = xω−1, (xω)ω = xω

(xy)z = x(yz), (xy)ω = (yx)ω = (xωyω)ω.

3 Solution of the word problem for Ωκ
X J.

4 J is completely κ-tame.
5 J is κ-full.
6 The Pin-Reutenauer procedure holds for J. (Follows from

the results presented by M. Zeitoun.)
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R (R-TRIVIAL SEMIGROUPS)

JA-Weil (1997), JA-Zeitoun (2007): structural descriptions
of ΩAR.
JA-Zeitoun (2007): efficient solution of the word problem
for Ωκ

X R.
JA-JCCosta-Zeitoun (2007): R is completely κ-tame
JA-JCCosta-Zeitoun: R is κ-full and the Pin-Reutenauer
procedure holds for R. (See M. Zeitoun’s talk.)
Partial extension:

Moura: structural description of ΩX DA and solution of the
word problem for Ωκ

X DA.
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A (APERIODIC SEMIGROUPS)

McCammond (2001): an algorithm to decide the word
problem for Ωκ

X A.
The algorithm consists in the rewriting of any given
description of an element of Ωκ

X A, as a κ-term, in a certain
normalized form.
The hard part of the proof of correctness of the algorithm
consists in showing that distinct κ-terms in normal form
represent distinct elements of Ωκ

X A.
McCammond’s proof uses his own solution (1991) of the
word problem for free Burnside semigroups

〈X : ∀t , tn+1 = tn〉

for sufficiently large n (which he had achieved for n ≥ 6).
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A NEW PROOF

JA-JCCosta-Zeitoun: a new proof of correctness of
McCammond’s algorithm is obtained as follows:

to each κ-term w , a descending sequence Ln(w) of
rational languages is associated;
Ln(w) is shown to be star-free (i.e., A-recognizabe
[Schützenberger (1965)]) provided w is in normal form
and n is sufficiently large;
for distinct κ-terms in normal form v and w , it is shown
that Ln(v) ∩ Ln(w) = ∅ for sufficiently large n.

See J. C. Costa’s talk for details.
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STRUCTURAL RESULTS

So far, complete structural results for relatively free
profinite semigroups ΩX V concern relatively small
pseudovarieties, like J, R, DA, CR [JA-Trotter (2001)] and
some related pseudovarieties.
These are all subpseudovarieties of DS, a pseudovariety
for which there are plenty of idempotents: it is precisely
characterized by the property that every regular H-class
contains an idempotent.
Outside DA, there are not many cases for which the
structure has been identified.
Examples are the pseudovarieties LSl = Sl ∗ D and
ESl = Sl ∗G, usually taking advantage of such
decompositions to obtain the desired structural results.

JCCosta-Nogueira: LSl is completely κ-tame.
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LARGE PSEUDOVARIETIES

For large pseudovarieties, say containing A, there are so
far no such structural results but only partial information.
There is nevertheless a free semigroup-like property that
many large pseudovarieties share that may lead to
complete structural results: equidivisibility.
A refinement of a factorization s1 · · · sn in a semigroup is
obtained by further factorizing some (possibly none) of the
factors.
A semigroup S is said to be equidivisible [McKnight-Storey
(1969)] if any two factorizations of the same element admit
a common refinement.

PROPOSITION (JA-ACOSTA (2009))

If V is a pseudovariety closed under concatenation, then ΩX V is
equidivisible.
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PSEUDOVARIETIES CLOSED UNDER CONCATENATION

THEOREM (STRAUBING (1979))
A pseudovariety V is closed under concatenation if and only if it
satisfies the equation V = A©m V.

It is easy to deduce that every pseudovariety of the form H̄,
where H is a pseudovariety of groups, is closed under
concatenation.
In particular, ΩX S and ΩX A are equidivisible.
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THEOREM (JA-ACOSTA-JCCOSTA-ZEITOUN)
The following are equivalent for V ⊇ N ∩ Com:

1 V is closed under concatenation;
2 A©m V = V;
3 the multiplication ΩX V× ΩX V→ ΩX V is an open mapping

for every finite set X ;
4 (lifting factorizations) for every finite set X , if u, v ,w ∈ ΩX S

are such that V |= uv = w then there is a factorization
w = u′v ′ in ΩX S such that V |= u = u′, v = v ′.

COROLLARY

If V is closed under concatenation and the products u1 · · · um
and v1 · · · vn of elements of ΩX S coincide in V, then they admit
refinements whose factors in corresponding positions are equal
over V.
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CONNECTION WITH SYMBOLIC DYNAMICS

By a subshift over a finite alphabet X we mean a closed
subset of XZ that is stable under arbitrary shifts of the
origin (in the elements of XZ, which are viewed as
bi-infinite words in the letters of X ).
It is well known that a subshift X is characterized by its
language of finite blocks (or finite factors) L(X ), which is an
arbitrary factorial extendable language.

THEOREM (JA (2005,2007))
For every V ⊇ LSl, the correspondence

S 7−→ J(X ) = L(X ) \ X + ⊆ ΩX V

defines a bijection between minimal subshifts and the
J -maximal regular J -classes of ΩX V.
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FINITE PRIMITIVE SUBSTITUTIONS

We say that an endomorphism ϕ of X + is primitive if

∃n ∀x , y ∈ X , x apears in ϕ(y).

The continuous extension ϕ̂ to ΩX S of an endomorphism ϕ
of X + is also called a finite substitution (of X).
A finite substitution ϕ (of X ) defines a subshift Xϕ whose
finite factors are the factors of some ϕn(x) for arbitrarily
large n.
It is well known that, if ϕ is primitive, then Xϕ is a minimal
subshift.

THEOREM (JA (2005,2007))

Let ϕ ∈ End(ΩX S) be a finite primitive substitution. If ϕ induces
an automorphism of the free group Ωκ

X G, then the maximal
subgroups of J(Xϕ) are finitely generated free profinite groups.

For further recent developments, se A. Costa’s talk.
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CLOSED SUBGROUPS

So, just which profinite groups may appear as closed
subgroups of free profinite semigroups?

THEOREM (RHODES-STEINBERG (2008))
Precisely the same that appear as closed subgroups of free
profinite groups, namely the projective profinite groups.

What about clopen subsemigroups?

THEOREM (JA-STEINBERG (2009))
Let H be an extension-closed pseudovariety of groups and X a
finite set. Then the free clopen subsemigroups of ΩX H̄ are the
closures of H̄-recognizable free subsemigroups of X +.

See B. Steinberg’s talk for more details and results on the
minimum ideal.
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