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ON THE STICKELBERGER IDEAL AND
CIRCULAR UNITS OF SOME GENUS FIELDS

RADAN KUCERA

ABSTRACT. The Stickelberger ideal and the group of circular units of a com-
positum of imaginary fields of prime power conductors are studied. Bases of these
structures are found and formulae for the first and second factor of the class
number are derived.

1. Introduction. The Stickelberger ideal and the group of circular units of
abelian fields were introduced by Sinnott in his series of two papers [S1] and [S2],
where he also derived formulae for the indices of the Stickelberger ideal and of
the group of circular units. (By abelian field we mean a finite Galois extension of
the rational numbers with abelian Galois group.) Unfortunately, these formulae
are not fully explicit in general, since they contain indices of Sinnott modules.
Sinnott was successful in computing the indices of these modules only for
some classes of abelian fields. His results on these indices are based mostly on
cohomological computations.

Besides this cohomological way, there is also an elementary way of studying
the Stickelberger ideal and the group of circular units, which is based on explicit
description of Z-bases. At first this method was used by Skula who gave a
Z-basis of the Stickelberger ideal of the p"th cyclotomic field (p being an odd
prime) to obtain an elementary proof of Iwasawa’s class number formula (see [S]).
Similarly, in [KK2] we have used results of [K1] to construct explicit bases of the
Stickelberger ideal and of the group of circular units for any cyclotomic field.
Later on, a similar construction for some composita of quadratic fields enabled
us to compute explicit formulae for the indices of the Stickelberger ideal and the
circular units of these fields (see [K3]).
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The aim of this paper is to show that although [K1] was written to cover the
cyclotomic case, it can be also used in a more general situation: for any abelian

field K such that
1. the Galois group of K is the direct product of its inertia groups, and

2. any maximal subfield of K ramified at precisely one (finite) prime is
imaginary.
It is easy to see that such a field can be characterized as a compositum K of
a finite number of imaginary subfields of cyclotomic fields with prime power
conductor.

In this paper we shall construct bases of the group of circular units and of
the Stickelberger ideal for fields of the given type. By means of this basis we
shall show that, for a field of this type, Washington’s definition of cyclotomic
units [W, page 143] coincides with Sinnott’s definition of circular units. This can
be said also in another way: circular units for fields of this type satisfy Galois
descent. Moreover, we shall obtain formulae for the first and the second factor
of the class number of such a field in the form of a determinant.

2. Circular units. Let K = [] K,, where .J is a non-empty finite set of
peJ

primes and, for any p € .J, K, is an imaginary abelian field of conductor p'» for
a suitable positive integer ¢ - For convenience we suppose K to be contained in
the complex field C.

For any S C .J, let (by convention, ny =1 and Ky = Q)
nNg = H ptp ’ CS = 62ﬂi/ns ) QS - Q(Cs), I{S = H I{p .
pES peES

It is easy to see that n; is the conductor of K. Let us define ¢; = —1 and
g = N@S/Ks(l —(g) forany SCJ, S#0.

Let E, W, and C be the group of units of I, the group of roots of unity in
K, and the Sinnott group of circular units of I, respectively. Let G = Gal(£/Q)
be the Galois group of K and let D be the subgroup of the multiplicative group
K> generated by {¢%: .S C J, 0 € G}. Then we have

LEMMA 1. C=FEND.

Proof. Let ¢, = e2™/" for any positive integer n. Lett] proved that
C = END', where D' is generated by

{=1. Ny /mnaen(t =G L <nlny, (an) =1}

(see [L]). Let us fix a divisor n > 1 of n;. Then n = [] p'r, where 0 < i, <t,
PES
for each p € S C J and S # 0. It is a well-known fact that

L= ¢ = Nos jgien) (1 = Cs)
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SO

Nocewysrnoe) = 6) =Nos knge.) (I = Cs) = II €5
o €Gal(KS JKN0(¢r))

Hence D = D’ and the lemma follows. O

In order to obtain a basis of C' we shall use the results of [K1] in the same
way as in [K2].

Forany p € J,let T = Ga,l(K/KJ\{p}) be the inertia group of p in G, €, =
#LT,, g% 7 € Q[G] be the corresponding idempotent and A = Frob (p, K) ',
where Ffrob (p, K) € G is an extension of the Frobenius automorphism of p in
Kpn/Q,s0 €,A, € Q[G] is well-defined. For any p € J we need to consider
the abelian semigroup T = T, U {g;} which is obtained from T, by adding a
new element ¢ and putting 7¢; = g, for any 7 € T ;.

We shall need an induction. Let p,,...,p,  be the elements of J. For any

i €{0,...,n} let
Gi - H T;k H TPk
k=1 k=i+1

and a;: G, — Q[G] be defined in the following way: a,(7) = 7 for any 7 €
G, =G and
a,(t)=(1— 6p,~/\p,~)ai—1 (1),
ai(g;,-T) = (#Tp;)epiai—l(T)
forany 1 € {1,...,n} and T € G,_,.

Let us consider the homomorphisms (: K* — R[G] and h: R[G] — R[G]
defined by

l{a) = loglaT|z™',  h(z)=(1-e)

TEG
for any o € K* and any = € R[G], where e = ﬁ oor=1]1 €, -
U reG =1
Let ®: Q[G] — R[G] be the G-module homomorphism determined by

IT A»
pEJ\S
(1) =12(1-¢) ) et z<55 )
SCJ
LEMMA 2. For any i € {0,...,n} and any o € G, we have

m I1 Ap
pCI\S
P =300 X i),

{plr"vpi}gsg‘]
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where T'={p € J: 0g; = o} and 7 € G satisfies o =1 [] g7 .
peT

Proof. This can be proved by induction with respect to i (similarly as
Lemma 4.1 in [K2]). a

LEMMA 3. Let j € G be the complex conjugation on X and U be the additive
subgroup of Q[G] generated by {a,(c): 0 € G, }. Then

WD) = B((1+)U).

Proof. Lemma 2 implies

<I><1+] (1;1[9,,)> (L—e)l(ehr)

for any 7 € G and any T C .J, and the lemma follows. O
LEMMA 4. The group (D) Nkerh is generated by {%((p): p€ J}.
Proof. Let us fix p € J and a system H of representatives of
Gal(K,/Q)/ Gal(K,/K),

where K]')" is the maximal real subfield of K, . It is easy to see that

Zf(ggp}):% Z ((e7,y) = 30(p) € ((D) Nkerh.

TeH T€Gal(K,/Q)
The rest of the Lemma can be proved similarly as Lemma 2.6 in [K2]. O

Now we can use the result of [[K1] for the construction of a basis of C'. The
Galois group G is the direct product [] T,, so we can define J, €7, by the
peJ
equality 7 = [] Ty (recall that j € G is the complex conjugation). For each

peJ
p € J, let us choose and fix a system TI; of representatives of T /{1,j,} in

such a way that 1 € 7). We shall need the following sets M, , M_ C [17; (an

empty product is considered to be 1): peJ

M, = (ﬁ(T;‘,. \ {j,,,.}))

1=1

\(Niu kL:J E(T;,.\{j,,,.w) (Tpk\<T;kU{jm}>>< 11 {1,9;,,})),

1=k+1

where Ni:{ [Mg:SCI (- )#(J\S):ZFI}.
PES
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For any o € [] T7 ., we define n, € C as follows: let T' = {peJ: ogy = o}

peJ
and let 7 € G satisfy o =7 [] g,; then
peT
5J\T if #T #n—1,
o = g if #T=n—1.

THEOREM 1. The set
B:{nU:UGM_l_,J#Hg;}
peJ
is a basis of (the non-torsional part of ) C, considered as a Z-module.
Proof. By the Theorem in [K1], {(1 +j)a,(0): 0 € M} is a basis of the
Z-module (1 + j)U. By Lemma 3, we obtain that {®((1+ j)a,(c)): 0 € M}

is a system of generators of h(((D)) considered as a Z-module. From the proof
of Lemma 3 we have

<I><1-I—] (PI;[TQ,,)) n(0(Enr)

forany 7 € G and any T C J.

Let p€ J. We have 7 [[ gy € M, forany 7 €T \ {1} and
q€\{p}

TeT]
Hence, Lemma 4 implies that
{K(s{p}): peJyu{l(n,): ceM,_}
is a system of generators of ((D).
Therefore, by Lemma 1, for any a € C there are x, y, € Z such that

a) = Z:l:pﬁ(s{p}) + Z y l(n,).

peEJ O'EM+

logNA/@ ZT—K Z

TG TG

Because

for any 3 € K™, we obtain

0= (logNyg(a)) Y 7= <Z$ log Ny /g (£ ) + D 4,108 Ny (1) ) 2.7

TEG peJ ocEMy 7€G

_ <1Og 11 prp[K:Kp]) Yo

peJ TEG
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Hence z, = 0 for each p € J. Moreover, ((n,) =0 for ¢ = [] g5, s0o ((B) is
a system of generators of ((C'). pe]
Because C is of finite index in E (by [S2]), the Zrank of C' is 1[K : Q]—1 =

#B and the theorem follows, since C'Nker ¢ is the group of roots of unity in i’
(see, e.g., [B-S, Chap. II, Sect. 3, Theorem 2]). O

The knowledge of a basis of C' gives the determinant formula for the index
[E: C]. We can use the basis B of Theorem 1 and compare this formula with
results of Sinnott to obtain the following class number formula.

THEOREM 2. Let ht be the class number of the maximal real subfield K+
of K and let Gt = Gal(K*/Q). Then

oz
QReg(K)

where Reg(K) and Q = [E : (ENK)W] are the regulator and the Hasse unit
index of K, respectively, and a =0 if n =1 and a =2""%—n if n > 1 (recall
that n = #.J).

Proof. Theorem 4.1 of [S2] gives
[1[x,:Q

peJ
[K : Q]

where R = Z[G], U is the Sinnott module of K (for the definition of U see
[S2]), et = %(1 +j) and ¢’ =n by Proposition 4.1 of [S2]. So

[E:Cl=htQ27"(¢tR:eTU).

+

(2loge7]) GB,rGG"’\{l}”

[E:C]=htQ29 (etR:eU),

Because G is the direct product of its inertia groups and K is imaginary for each
p € J, we can use Theorem 5.4 of [S2] (with H = {1,;}) for the computation
of the index (et R: etU). By this theorem

P if n=1,
(R'U)_{zz"‘2—1 if n>1,

where R’ = Z[Gal(K*/Q)] and U’ is the Sinnott module of K*. We have
(€+RZ€+U) ( 1+J)R 1—|—])U)
= (c cor g e+ R corpe o U ) (COTK/K+ U (1+5)U)
=2(R':U"),

because cor K+ is an injective homomorphism (for the definition of cor, see

[S2]), cory /v B = (1+47)R, and (corK/K+ U':(1+7)U) =2 by (5.32) of [S2].

98



ON THE STICKELBERGER IDEAL AND CIRCULAR UNITS OF SOME GENUS FIELDS

On the other hand, Theorem 1 gives

[E: C] = R L det(2log |7|)

eg(K)

and the theorem follows. O

c€B,reGT\{1} |

Let C’ be the group of cyclotomic units of K defined in [W, page 143],
namely the intersection of K and the group of circular units in the smallest
cyclotomic field containing K . It is easy to show that C' C C’ for any abelian
field and it is not difficult to construct abelian fields for which C # C’. By
means of Theorem 1 we can compare both groups for the field K considered in
this section.

PRrROPOSITION. C = (C".

Proof. The smallest cyclotomic field containing I is the field K =0Q’.
Let G = Gal(K/Q) and j € G be the complex conjugation. Similarly, let
7:p7 Jp» Gy, and T mean T ,~jp, g, and T, respectively, when considering
K instead of K. Let r: [] T — IT T be the semigroup homomorphism

peJ peJ

satisfying r(fj;) = g, for any p € J, and r(r) = resi g T for any 7 € G. For
any p € J, let Tv]; ={re Tp: r(r) € T];}. It is easy to see that Tv]; is a system
of representatives of fp/{l,jp} such that 1 € Tv]; Let ]T/_f+ C ] f; be the set
reJ

M, when considering I instead of I (defined by means of these sets T7).

Because T(T; \ {‘;”N}) C T and r(Tp \ (T}g U {jp}))g T,\T,, it is easy to
check that if o € [[ T satisfies r(c) € M, then o € M, .

peJ
Let 7, mean 7, when considering K instead of K, namely

) 1=y if H#T#n—1,
Tl =)t i #T =01

for any T C .J and any TEé,Where o=11]] g, -
peT

For any T'C J and any 7 € G, let us denote o = 7w, where w = [] g, It
is easy to see that pET

I n, if #T #n—-1,

zeX,r(z)=0
- (1)

1T n, " 1T un if #T =n—1,

zeX,r(z)=0c z€X,r(z)=w

Mg =

where X = [] T;
peJ
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Now we can prove the Proposition. It is enough to show that C’ C C'. Let us
suppose a € C’'. Then, by Theorem 1,

a=p[] e (2)

IGM+

for some a, € Z and some root of unity p. Because a € K, we have o0 K] —
Ngs / i (a) € C, hence, again by Theorem 1,

J g
e | E
O‘GM+

If we substitute n_ by means of (1) and compare the obtained expression with

(2), we get that [Q” : K] divides b, for each 0 € M, , so o € C and the

Proposition is proved. O

3. Stickelberger ideal. Let us keep the notation of the previous section. Let

S be the Stickelberger ideal of I, i.e., S =8’ NZ[G], where S’ is the additive
subgroup of Q[G] generated by {€' (a): a,n € Z,n > 1} (for the definition of

6’ (a) see [S2] or Section 6 of [K3]). Let N = ) 7 and, for any S C J, let
TelG

Yo = 9:15(—1) — %[QS : KN .
LEMMA 5. S’ is the additive subgroup of Q|G| generated by

{U’)’S:SQJ,O'EG}U{%N}.

Proof. The remark at the end of Section 6 of [K3] states that S’ is the
additive subgroup of Q[G] generated by

{00/ (-1):1<n|n;, 0 e G}U{IN}.
Let us fix a divisor n > 1 of n ;. Then n = [] p'r , where 0 < i, <t, for each
peES

p€eESC.Jand S#0. Let Q) be the nth cyclotomic field. Lemma 12 of [K3]
implies by induction that there is x € Z such that

(9"(—1) = res@s /@(n) (9”5(—1) + % Z T,
T€Gal(Q™) /Q)
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hence

9:1(—].) = CorI\'/I\'ﬁQ(") reSQ(")/I\'ﬁQ(") 9n(—1)
2[QM™ : K n Q)]

= > N + COI’K/Kn@(n) reS@S/Km@(n) ens(_l)
_ x[Q(”) KN Q(”)]N
2

+ COT e/ ey COT Ry Knm) TS g imQm) 1685 iy O g (1)

B 2[QM™ : K n Q(”)]N
B 2

+ COT k) g <(res@5/K5 0,,(-=1) > U)

o€Gal(Ks /KnQ(m))

by Lemma 13 of [K3]. For any o € Gal(K /K N Q™) let us choose and fix
o’ € G such that Tes 1 ey o' = o. Then

z[QM : K N Q] .
6,(~1) = 5 N+ ) (s +3Q%: K N)
c€Gal(Kg /KnQ("))

and the lemma follows. O
Let ¥: Q[G] — Q[G] be the G-module homomorphism determined by
o)== —2 11>
-5 ..o s :
2 SCJ [AJ\S :Ql peJ\S g
LEMMA 6. For any i € {0,...,n} and any o € G, we have
1 1
{p1,..piyCscr & I\S peEJ\S

where T = {pE J:og, :g;} and T € G satisfies 0 =T I;ITg;.
P

Proof. This can be proved similarly as Lemma 4.1 in [K2] if we show that
v satisfies the distribution relations, namely that for any S C J andany p € S

we have
D s = 1= -
reTl),
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Let us suppose that p € § C .J. Then
Y s = —5[Q%  KQJ#HT,)N +) b, (1)

TeT), TeT),
11nS . -
= —3lQ7 Ky IV
+ COT e/ e COT g /K g\ 1y O Ks [ Koy gy TO505 /K5 9n5 (—1)

by Lemma 13 of [KK3], because res, /K gives a bijection of T, onto Ga,l(KS /
I(S\{p}). Hence

1[OS . 7o
Z TYg = —73 [Q : Ixs\{p}] N+ COT /i g 1y TOSONY /K g1 TESQS 705\ () 6, (—1).
TeT),

Lemma 12 of [K3] implies by induction that
—1
resgs /gs\ir) 0, (—1)= (1 — Frob (p, QS\{p}) )9ns\{p} (=1)

+ %[QS . QS\{p}] Z o,
rE€Gal(QS\ (7} /Q)

which implies the desired equality.
For any o € [[ T we define 3, € S" as follows: let T = {p € J: 0g, = o}

reJ
and let 7 € G satisfy o =7 [] 9y then 3, = TY T
peT
Consider the set M_ C [] T which was defined before Theorem 1. O
peJ

THEOREM 3. The set B' = {iN}U{B : 0 € M_} is a basis of S'.
Proof. Because
(14 )y =0, (-1)+6, (1)—[Q°: Kg]N =0

for any S C J, Lemma 6 implies \Il((l —j)an(a)) = [, for any o € [] T;.
peJ
Therefore

S'=1INZ+9((1-;)U)
by Lemma 5. The Theorem in [K1] states that {(1 — j)a,(c): 0 € M_} is a
basis of the Z-module (1 — j)U, hence B’ is a system of generators of S’.
Let A={a €Z[G]: (14 j)oa € NZ}. Because S is of finite index in &" and
alsoin A (by [S2]), rank, S8’ = rank, A = 1[K : Q]+ 1 = #B’ and the theorem
follows. O

Remark. In fact, Theorem 3 describes only a basis of S’ instead of a basis of
the Stickelberger ideal. But it is not difficult to construct such a basis in any
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concrete case, since §’'/S = W by Proposition 2.1 of [S2]. Nevertheless, this
construction for the general case is too technical, so we shall not include it here.

Similarly as for circular units, we shall use the basis B’ of Theorem 3 and
compare the corresponding determinant formula with the results of Sinnott to
obtain the class number formula for the relative class number of K .

€ Q as follows: let

T

For any o € |] T; and any 7 € G we define z

peJ
S={pe€J:iog, # o} andlet w € G and a € Z satisfy o =w [] g; and
(& = (¢. Then we put pEI\S

at 1
xa,r = Z(<E> - 5) ’
t
where (z) is the fractional part of the rational number = (0 < (2) <1, 2 —(z) €
Z) and the sum is taken over all positive integers ¢t < ng which are relatively

prime to ng such that resgs JKs O = TeSy pe T for the automorphism o, of Q°
determined by (2" = (L.

THEOREM 4. Let h~ be the relative class number of K and let G~ be a
system of representatives of G/{1,7}. Then

h™ = Qw2_b|det(:rajr)aeM_’reG_ ’ ,

where w = #W is the number of roots of unity in K, Q = [E : (ENKT)W] is
the Hasse unit index of K, and b=10 if n =1 and b=2""% if n > 1 (recall
that n = #.J).

Proof. Theorem 2.1 of [S2] gives

[A:S]= %(G_R e U),

where R = Z[G], U is the Sinnott module of K, e = %(1 —7J),and A =
{oz EZIG]: (14+j)ae NZ}. Similarly as in the proof of Theorem 2 we can use
Theorem 5.4 of [S2] for the computation of the index (e"R : e~ U). By (5.34)
and (5.35) of [S2] if n > 1 and by Theorem 5.1 of [S2] if n = 1 we obtain

(e"R: e U) = 2°. Proposition 2.1 of [S2] gives [S’: S] = w, therefore

2bp—

w

(A:8) =

It is easy to see that

{(1-j)T;TeG—}u{ D T}

TeEG—
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is a basis of A and that
N==>Y ta-jr+ ) r.
T€EG— T€G—

Let usfix 0 € M_.Let S={p€ J:0g, # 0} andlet w € G and a € Z satisty

oc=w [] g, and (§ = (¢. From the definitions of 74 and 6 (a) (see Section
peEJ\S
6 of [I{3]) we easily find that

50 =Wyg = _% QS : I(S]N —|—9:15(—a) = Z TorT = Z xﬂﬂ'(l _j)T'
Te@G TeEG™

N[ =

Thus, Theorem 3 gives

(A : S/) = ’det(xa,r)aeM_,reG_|
and the theorem follows. O
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