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Abstract. A regular language L over an alphabet A is called piece-
wise testable if it is a finite boolean combination of languages of the
form A∗a1A

∗a2A
∗ . . . A∗a`A

∗, where a1, . . . , a` ∈ A, ` ≥ 0. An effective
characterization of piecewise testable languages was given in 1972 by Si-
mon who proved that a language L is piecewise testable if and only if
its syntactic monoid is J -trivial. Nowadays there exist several proofs of
this result based on various methods from algebraic theory of regular
languages. Our contribution adds a new purely combinatorial proof.
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1 Introduction

Piecewise testable languages occur as languages which are recognized by a special
model of automaton which can be called Hydra automaton. Such an automaton
has a finite number (say k) of heads, which are ordered and each head can read a
letter of the input word. So, together they can read a subword of the input word
of length at most k and put it into the memory. (Note that in the whole paper
the term subword means scattered subword.) Finally, the automaton accepts
the input word if the collection of words in the memory is from a given list of
possible sets of subwords.

More formally, a language L over an alphabet A is piecewise testable if and
only if there exists a natural number k such that L is a union of classes of the
equivalence relation ∼k defined in the following way: u ∼k v if and only if words
u, v ∈ A∗ have the same subwords of length at most k.

The first basic observation (see Lemma 1) says that a language L over an
alphabet A is piecewise testable if and only if it is a finite boolean combination
of languages of the form

A∗a1A
∗a2A

∗ . . . A∗a`A
∗, where a1, . . . , a` ∈ A, ` ≥ 0 .

The property is used as a formal definition of piecewise testable languages in
some papers. Unfortunately, such a characterization is not effective. It is not
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clear how one can recognize whether a language (e.g. given by an automaton) is
piecewise testable or not.

An effective characterization of piecewise testable languages was given by
Simon [7, 8] who proved that a language L is piecewise testable if and only if its
syntactic monoid is J -trivial. The direct implication in this statement is quite
easy. The difficulty is contained in the converse implication. There exist several
proofs of the converse implication which use different techniques: the original
combinatorial proof by Simon [7, 8], see Pin [4] for a slightly improved version,
the proof by Straubing and Thérien [9] using ideas concerning ordered monoids,
the proof by Almeida [1] using sophisticated profinite topology and the proof
by Higgins [3] working with transformation semigroups. Many other interesting
papers on the topic were written — we refer to the survey paper by Pin [6] and
the book by Almeida [2] for more information.

The content of our contribution is a new proof of Simon’s result. In fact, we
show a straightforward proof of the converse implication based just on combi-
natorics on words. The whole paper is self-contained, in particular we give not
only the proof of the crucial statement (Lemma 3), but we also repeat the proofs
of all used statements (Lemma 1 and Lemma 2), which can be find in any pa-
per concerning piecewise testable languages. The complete proof is contained in
Section 3, while technical notation is summarized in Section 2.

2 Notation

Let A∗ denote the set of all words over an alphabet A including the empty
one, denoted by λ. The length of a word u ∈ A∗ is denoted by |u|. For words
u, v ∈ A∗ we write u / v if and only if u is a subword of v, i.e. there are letters
a1, a2 . . . , a` ∈ A and words v0, v1, . . . , v` ∈ A∗ such that u = a1a2 . . . a` and
v = v0a1v1a2 . . . a`v`. For v ∈ A∗ we denote Subk(v) = {u ∈ A∗ | u / v, |u| ≤ k}.
We define the relation ∼k on A∗ by the rule

u ∼k v if and only if Subk(u) = Subk(v) .

A language L over an alphabet A is a set L ⊆ A∗ and the complement of L
is denoted by Lc, i.e. Lc = A∗ \ L. Further, for a given word u ∈ A∗ we denote
by Lu the language of all words which contain the word u as a subword, i.e.
Lu = {v ∈ A∗ | u / v}. If u = a1a2 . . . a`, where a1, a2, . . . , a` ∈ A, then we can
write

Lu = A∗a1A
∗a2A

∗ . . . A∗a`A
∗ .

For a regular language L ⊆ A∗ we define the relation ∼L on A∗ as follows:
for u, v ∈ A∗ we have

u ∼L v if and only if ( ∀ p, q ∈ A∗ ) ( puq ∈ L ⇐⇒ pvq ∈ L ) .

It is easy to see that the relation ∼L is a congruence on A∗, i.e. ∼L is an
equivalence relation on A∗ which satisfies

u ∼L v =⇒ wu ∼L wv, uw ∼L vw
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for every u, v, w ∈ A∗. The relation ∼L is called the syntactic congruence of L
and the corresponding quotient monoid A∗/∼L is called the syntactic monoid
of L. A basic observation in algebraic theory of regular languages says that
the monoid A∗/∼L is isomorphic to the transformation monoid of the minimal
automaton of the language L. In particular, the monoid A∗/∼L is finite and
consequently ∼L has a finite index. Further, it is easy to see that the language
L is a union of some classes in the partition given by ∼L. The reader can see
the survey papers [5] or [6] for an introduction to syntactic methods, however it
is not needed for understanding the paper.

The last definition which we will need is that of J -trivial monoids. To make
the presentation as simple as possible we rephrase this notion for congruences.
We say that a congruence ∼ on A∗ is J -trivial if and only if

w1w2uw3w4 ∼ u =⇒ w2uw3 ∼ u

for every words u,w1, w2, w3, w4 ∈ A∗.

3 A Proof of Simon’s Theorem

The following lemma can be found in any paper concerning piecewise testable
languages.

Lemma 1. Let A be an alphabet and L be a regular language over A. Then the
following two conditions are equivalent.
(i) There exists a natural number k such that ∼k ⊆ ∼L.
(ii) The language L is a finite boolean combination of languages Lu, u ∈ A∗.

Proof. If ∼k ⊆ ∼L then each class of the partition A∗/∼L is a union of classes
of the partition A∗/∼k. Since L is a union of classes of A∗/∼L, it is enough to
show that each class of the partition A∗/∼k can be written as a combination
of languages of the form Lu, u ∈ A∗. If we take v ∈ A∗ then for the class
v∼k= {w ∈ A∗ | w ∼k v} the following expression is easy to see:

v ∼k =
⋂

u∈Subk(v)

Lu ∩
⋂

u6∈Subk(v),|u|≤k

Lc
u .

Now let L satisfy condition (ii), i.e. L be a finite union of finite intersections
of languages of the form Lu and Lc

u where u ∈ A∗. Let k be a natural number
such that |u| ≤ k for all words u used in this expression. We would like to prove
∼k ⊆ ∼L. So, let v, w ∈ A∗ be such that v ∼k w, i.e. Subk(v) = Subk(w). Let
p, q ∈ A∗ be arbitrary words such that pvq ∈ L. Our goal is to prove pwq ∈ L.
We can assume that pvq ∈ K = Lu1 ∩ · · · ∩ Lum

∩ Lc
v1
∩ · · · ∩ Lc

vn
where K is

one of the summands in the considered expression of L. All mentioned words
u1, . . . , um, v1, . . . , vn have length at most k. For each i = 1, . . . ,m we have
pvq ∈ Lui and for each j = 1, . . . , n we have pvq 6∈ Lvj . Now for each i = 1, . . . ,m
we have ui / pvq and one can deduce that ui / pwq because Subk(v) = Subk(w).
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This means pwq ∈ Lui
for each i = 1, . . . ,m. Further pwq 6∈ Lvj

for each
j = 1, . . . , n, because the fact pwq ∈ Lvj implies pvq ∈ Lvj , which is not true.
So, we have proved that pwq ∈ K and finally pwq ∈ L. If we exchange v and w,
we obtain also the proof of the converse implication pwq ∈ L =⇒ pvq ∈ L and
the proof is complete. ut

Recall that both conditions in the previous lemma are used in literature to
define that a language L is piecewise testable. The following lemma uses quite a
standard technique from semigroup theory and the proof is not new.

Lemma 2. Let A be a finite alphabet and L be a piecewise testable language
over A. Then ∼L is a J -trivial congruence on A∗.

Proof. Let L be a piecewise testable language, i.e. we have ∼k ⊆ ∼L for some k.
Assume that for words u,w1, w2, w3, w4 ∈ A∗ we have w1w2uw3w4 ∼L u. Since
∼L is a congruence, we have

(w1w2)2u(w3w4)2 ∼L w1w2uw3w4 ∼L u .

If we denote un = (w1w2)nu(w3w4)n then it is easy to prove (by induction on n)
that un ∼L u for every natural number n. It is clear that u/u1/u2/. . . , hence we
have Subk(u) ⊆ Subk(u1) ⊆ Subk(u2) ⊆ . . . . Since there are only finitely many
possible sets of the form Subk(v), v ∈ A∗, we see that Subk(un) = Subk(un′)
for some n < n′. Then Subk(un) ⊆ Subk(w2unw3) ⊆ Subk(un′), so the equality
Subk(un) = Subk(w2unw3) follows. This means un ∼k w2unw3. Since un ∼L u
and ∼k ⊆ ∼L, we can conclude with u ∼L w2uw3. We have proved that ∼L is a
J -trivial congruence. ut

The following lemma formulates the difficult part of Simon’s result. The proof
of Lemma 3 is an essence of our contribution.

Lemma 3. Let A be a finite alphabet and L be a regular language over A such
that ∼L is a J -trivial congruence on A∗. Then L is piecewise testable.

Proof. Assume that L ⊆ A∗ is such that ∼L is a J -trivial congruence. Let m be
the index of this congruence. We show that ∼k ⊆ ∼L for k = 2m− 2.

Let u = a1a2 . . . ap and v = b1b2 . . . bq, where a1, a2, . . . , ap, b1, b2, . . . , bq ∈ A,
p, q ≥ 0, be such words that u ∼k v. We consider all the prefixes of u, namely
ui = a1a2 . . . ai for each i = 0, . . . , p, where u0 = λ. Since ∼L is J -trivial, we
know that the fact ui ∼L uj for some given i < j implies ui ∼L ui′ for each
i′ ∈ {i, i+1, . . . , j}. We call an index i ∈ {1, . . . , p} blue if ui−1 6∼L ui−1ai. Since
the number of classes in the partition A∗/∼L is m, there are at most m − 1
blue indices i1 < i2 < · · · < ir in u, where r ≤ m − 1. For an index i which is
not blue we have ui−1 ∼L ui−1ai. So, for a blue index it and an arbitrary index
i ∈ {it + 1, . . . , it+1 − 1} we have

uit ∼L uitait+1 ∼L . . . ∼L uitait+1 . . . ai−2 ∼L ui−1 ∼L ui .
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Since ∼L is a congruence and uit
∼L ui−1 we get uit

ai ∼L ui ∼L uit
. Hence we

can state the following observation.
Claim 1: Let u′ be a subword of the word u which contains all occurrences of
letters at the blue positions (and some others). Then u′ ∼L ai1ai2 . . . air

∼L u.
Moreover, the blue indices denote the leftmost occurrence of the word uleft =

ai1ai2 . . . air as a subword of the word u, i.e. for an arbitrary r′ ≤ r the word
ai1 . . . air′ is not a subword of the word uir′−1. Since u ∼k v, we can consider
also the leftmost occurrence of the word uleft in the word v and we denote the
appropriate indices by i1 < i2 < · · · < ir from the set {1, . . . , q} blue indices in
the word v.

Now we use the dual construction for the word v. We consider red indices
j such that bjvj+1 6∼L vj+1, where vj+1 is the suffix of v starting after the
j-th letter. For red indices j1 < j2 < · · · < js, s ≤ m − 1, we have the dual
property, i.e. they are indices which determine the rightmost occurrence of the
word vright = bj1bj2 . . . bjs in v. We consider the rightmost occurrence of vright in
u too and we speak about red indices j1 < j2 < · · · < js in u.

Now we formulate the crucial claim which says that the leftmost occurrence
of the word uleft and the rightmost occurrence of the word vright are shuffled in
the same way in both words u and v.
Claim 2: Let u be the subword of u consisting of the occurrences of letters at
blue and red positions in u and similarly let v be the subword of v consisting of
the occurrences of letters at blue and red positions in v. Then u = v.
Proof of Claim 2: Consider the occurrence of air′ at a blue position ir′ and the
occurrence of bjs′ at a red position js′ in u. If air′ and bjs′ = ajs′ are different
letters then ir′ < js′ if and only if

wr′s′ = ai1 . . . air′ bjs′ . . . bjs = ai1 . . . air′ajs′ . . . ajs

is a subword of u. Indeed, the direct implication is trivial and for the converse
implication assume that wr′s′ / u. So, let appropriate indices be `1 < · · · < `r′ <
`′s′ < · · · < `′s, i.e. wr′s′ = a`1 . . . a`r′a`′

s′
. . . a`′

s
. Since blue indices i1, . . . , is de-

note the leftmost occurrence of the word uleft in u one can prove by an induction
on t = 1, . . . , r′ that it ≤ `t. Dually, for t = s′, . . . , s, we have `′t ≤ jt. Hence
ir′ ≤ `r′ < `′s′ ≤ js′ .

Now assume that air′ and bjs′ are the same letter. We can state the following.
(i) If wr′s′ is a subword of u then ir′ < js′ .
(ii) If wr′s′ is not a subword of u, but wr′s′ = ai1 . . . air′ bjs′+1

. . . bjs
/ u, then

ir′ = js′ , i.e. the considered index is both blue and red at the same time.
(iii) If wr′s′ is not a subword of u then j

′
s < ir′ .

Altogether we see that the relative position of the considered blue and red in-
dices is given by Subk(u), because all words wr′s′ and wr′s′ are not longer than
|uleftvright| ≤ 2m − 2 = k. So, the statement of the claim follows from the as-
sumption u ∼k v.

Finally, we proved that u = v and we have u ∼L u by Claim 1. Similarly,
v ∼L v, and we can conclude with u ∼L u = v ∼L v. ut
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Note that we slightly improve the original estimate of Simon who proved the
inclusion ∼k ⊆ ∼L for k = 2m− 1. In fact, the parameter m can be the length
of the longest chain of ideals in the syntactic monoid (see [4]).

When we put the lemmas together, we obtain the result of Simon.

Theorem 1 (Simon [8]). Let A be a finite alphabet. Then a regular language
L is piecewise testable if and only if ∼L is a J -trivial congruence on A∗.
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