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History of the paper In 2007 I have started to write this paper and then I
realized that Almeida,Volkov and Goldberg wrote the article [1]. Since results
from [1] cover some of my results, I stoped improving of the paper and I moved
my attantion to the missing case T4. Consequently, I prepared paper [10]. Since
the intersection of what follows with [1] is not large, still the paper contains many
original results. Hopefully, one day I return to the paper and prepare a final
version of it. Or maybe, the material contained in this paper would distribute
to another papers on the topic.

One can recognize that some of the proving techniques used here are those
from [10].

Abstract We study the computational complexity of checking identities in a
fixed finite monoid. In this paper we concentrate on the case of monoids of
transformations. We prove that the problem of checking identities in the monoid
of all transformations of a two-element set is decidable in polynomial time, but
the same problem is coNP-complete for the monoid of all transformations of
three-element set, five-element set and any larger set. Similar results are estab-
lished for monoids of all partial transformations and monoids of injective partial
transformations.
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1 Introduction

The fundamental question in universal algebra is the verification of identities
in algebras. In this paper we consider the problem of checking identities in a
fixed finite monoid, which we refer to as the Term Equivalence (TERM-EQ)
problem, and its generalization the Polynomial Equivalence (POL-EQ) problem.
A polynomial for a finite monoid M is a sequence of variables and elements of M
and the POL-EQ(()M) problem asks to decide for a given pair of polynomials
whether the product of the sequences is equal in M under any assignment of
variables. Easily the problems are in the complexity class coNP, therefore the
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goal of the study is an observation for which monoids the problems are decidable
in polynomial time and for which when they are coNP-complete. Of course, these
questions are interesting only under the assumption that coNP 6=P (and NP 6=P)
which we will assume throughout the paper. (See [13] for an introduction to
complexity theory.)

The Polynomial Equivalence problem was studied also in ring theory where
a dichotomy theorem was proved by Hunt and Stearns [8] for finite commutative
rings and later by Burris and Lawrence [3] in the general case: a ring has tractable
Polynomial Equivalence problem if it is nilpotent and this problem is hard oth-
erwise. Burris and Lawrence used the same idea to obtain a result (unpublished)
in the case of groups: the POL-EQ problem is tractable for nilpotent groups and
it is coNP-complete for non-solvable groups. Probably other researchers stated
these observations but upto our knowledge it is contained only in the recent
paper [5].

An interesting case which can be studied is the case of the group of all permu-
tations of an n-element set, denoted by Sn. The Polynomial Equivalence problem
is tractable for S2 trivially and the tractability was also proved for S3 [6]. On the
other side, Sn is a non-solvable group for n ≥ 5 and hence the Term Equivalence
problem is coNP-complete for these groups. Finally, the complexity of the iden-
tity checking problem for S4 is an interesting open problem. Description of the
complexity of the TERM-EQ(S4) problem could help to better understanding of
checking identities in solvable non-nilpotent groups.

In the case of semigroups and monoids the study of the identity checking
problem were started by Popov and Volkov [14]. From a variety of papers touch-
ing this topic we can mentioned for example papers concerning completely 0-
simple semigroups and matrix semigroups over finite fields [16, 17]. In [18] Szabó
and Vértesi prove the hardness of the Term Equivalence problem for the monoid
of 2 × 2 matrices over Z2 and ask for the smallest example of such a semigroup.
In [9] the author mentioned a significant class of finite monoids for which the
problem is tractable and found the smallest monoid for which this problem is
coNP-complete, namely the six-element Brandt monoid. The letter observation
was independently made by Seif [15]. The natural representation of the Brandt
monoid, which was applied in [9], used partial transformations of a two-element
set. More precisely, the Brandt monoid consists of all partial transformations of
a two-element set having one-element domain, together with the empty trans-
formation and the identity transformation.

In this paper we continue the study of the Term and Polynomial Equivalence
problems for small monoids. As natural extensions of the techniques used in [9],
we try to describe the complexity of the problems for monoids of transformations.
For example, if we add to the Brandt monoid one element corresponding to
the non-identical permutation of the two-element set, then we obtain a seven-
element monoid with a tractable Polynomial Equivalence problem. This monoid
is, in fact, the monoid of all injective partial transformations of a two-element
set. But if we consider the monoid of all partial transformations of a two-element
set, then the Term Equivalence problem is coNP-complete again.



These results are parts of the present paper. If we denote by Tn the monoid
of all transformations of an n-element set Xn, PTn the monoid of all partial
transformations of Xn and In the monoid of all injective transformations of Xn

then the results of the paper are following. The Polynomial Equivalence problem
is decidable in polynomial time for monoids T2 and I2 and is coNP-complete for
monoids Tn and In for n ≥ 3. Analogically, the Polynomial Equivalence problem
is coNP-complete for all monoids PTn for n ≥ 2. We prove the same result for
the Term Equivalence problem with the exception n = 4. We strongly believe
that our method of the proof for the case n = 3 can be modified for the missing
case n = 4, but such modification would be probably too technical.

Note that the monoids of transformations play the important role in theory
of representation of semigroups. It is well-known that for any finite group there
is an injective morphism from this group to some group Sn. The same is true in
the case of semigroups for the monoids Tn. The monoids In play the same role
in the class of inverse semigroups.

In the paper we will also study one problem which is really close to the
identity checking problem, namely the problem of solving of single equation.
Usually the techniques which can be used for solving of single equations can
help also in the case of identities and also the hardness results can be obtained
for both problems in a similar way. For example in paper [2] it was shown that
the problem of solving one equation in the Brandt monoid is NP-hard. By the
modification of the proof of this result the author obtained the coNP-hardness
for the identity checking problem.

We should mentioned that for the problem of solving system there are more
complete results. A dichotomy theorem was proved in the case of systems of
equations over finite groups [4]: a group has tractable problem of solving sys-
tems of equations if it is commutative and this problem is NP-hard otherwise.
The case of monoids and semigroups was studied in [12] and [11] where some
dichotomy theorems were established and also an interesting connections to con-
strain satisfaction problem were studied.

Some of these mentioned results will be used in this paper to help prove our
results. Note that we are really far from establishing an analogical dichotomy
theorem in the case of one equation or the identity checking problem.

The structure of the paper is the following. In the second preliminary section
we fix notation and recall known results. In Section 3 we concentrate to the
case of monoids of transformation on two elements set. Then, in Section 4, we
interrupt the results concerning concrete monoids and we establish few general
reductions between studied problems in the case of an arbitrary n-elements set.
In Section 5 we present hardness results concerning three elements set. Finally,
in the last section we summerize the results and we discuss few questions which
could be solve in the future research.



2 Preliminaries

2.1 Definition of the problems

The free monoid over an arbitrary alphabet A is denoted A∗.
Let M be a finite monoid and X be a countable set of variables. The elements

from X ∗ and (M∪X )∗ are called terms and polynomials respectively. We say that
two polynomials (or terms) u, v are equivalent in M if and only if σ(u) = σ(v)
for any morphism σ : (M ∪X )∗ →M which behaves as an identity on elements
from M . Note that any such morphism is fully established by a mapping σ|X :
X →M .

We adopt some notation from combinatorics on words. We say that a poly-
nomial u ∈ (M ∪ X )∗ is a factor of a polynomial v ∈ (M ∪ X )∗ if v = sut for
some polynomials s, t ∈ (M ∪ X )∗. For an arbitrary polynomial u ∈ (M ∪ X )∗

we denote by var(u) the set of all variables from X which occur in u and con(u)
the set of all constants from M which occur in u.

Definition 1. Let M be a finite monoid. Given a pair of polynomials as an
instance of the POL-EQ(M) problem, the task is to decide whether these poly-
nomials are equivalent in M . The TERM-EQ(M) problem is the restriction of
the POL-EQ(M) problem where only terms are considered.

The TERM-EQ(M) problem is also called the identity checking problem for
M , because the instance of the problem is an identity and the question is whether
this identity is satisfied in M .

A basic idea for solving the POL-EQ(M) problem is to consider its comple-
ment, which is trivially in NP; therefore the POL-EQ(M) problem (and hence
also the TERM-EQ(M) problem) is in coNP.

It is natural to consider an analog of the POL-EQ(M) problem namely prob-
lem of solving equations. The reasons are basically two; there are reductions
between mentioned problems on one side and the proving techniques are usually
same on the other side.

Definition 2. Let M be a finite monoid. Given a finite set of pairs of polynomi-
als {(ui, vi) | ui, vi ∈ (M ∪X )∗, i = 1, 2 . . . ,m} as an instance of the S-EQN(M)
problem, the task is to decide whether there is a morphism σ : (M ∪ X )∗ → M
which behaves as an identity on elements from M such that σ(ui) = σ(vi) for
all i = 1, 2 . . . ,m. The EQN(M) problem is the restriction of the S-EQN(M)
problem where just one equation is considered, i.e m = 1.

Again, the defined problems are trivially in NP. The following observation is
easy exercise.

Lemma 1 ([9]). Let M be a group. Then the coPOL-EQ(M) problem can be
reduced to the EQN(M) problem.

When dealing with the complement of the POL-EQ(M) problem, we are
looking for a morphism which distinguishes the given pair of polynomials, so we



can take all possible pairs of different elements of the monoid and ask whether
there is a morphism which maps the given polynomials to these elements. The
EQN(M) problem can be solved in the same way but the considered pairs are
not different. This idea leads to consideration of the following problem.

Definition 3. Let M be a finite monoid. Given a pair of polynomials u, v and
a pair of elements m,n ∈M , the 2T-EQN(M) problem is to determine whether
there is a morphism σ : (M∪X )∗ →M which behaves as an identity on elements
from M such that σ(u) = m and σ(v) = n.

The previous observation can then be formulated in the following way.

Lemma 2. For any finite monoid M there are polynomial reductions of the
EQN(M) and coPOL-EQ(M) problems to the 2T-EQN(M) problem. ut

2.2 Monoids of transformations

In this paper we will study complexity issues of the defined problems for monoids
of transformations. For an arbitrary finite set A, the monoid of all transforma-
tions of A is denoted by TA, the monoid of all partial transformations of A
is denoted by PTA, the monoid of all injective partial transformations of A is
denoted by IA and the group of all permutations of A is denoted by SA. For a
natural number n we denote the set Xn = {1, 2, . . . , n} and write Tn instead of
TXn

and so on.
For any n ∈ N the inclusions Sn ⊆ Tn ⊆ PTn and Sn ⊆ In ⊆ PTn are clear

and we have also Sn = Tn ∩ In. Because Xn ⊆ Xn+1 we also have the inclusions
PTn ⊆ PTn+1 and In ⊆ In+1. For A ⊆ Xn we also

We represent an element of the set PTn, i.e. a partial mapping from the
set Xn into itself, as a sequence of the values of the single elements of the set
Xn. For example 〈13 − 2〉 represents a partial mapping f ∈ PT4 with domain
{1, 2, 4} such that f(1) = 1, f(2) = 3 and f(4) = 2. We will denote the operation
composition of transformations by the symbol · which we will usually omitted.
We will compose transformations from left to right, which means that for a, b ∈
PTn and x ∈ Xn we define (a · b)(x) by the rule (a · b)(x) = b(a(x)). For example
we have 〈2 − 25 − 5〉 · 〈333 − −−〉 = 〈3 − 3 − −−〉 in PT6. The reason is that
we will use a graphic presentation of transformations where points are mapped
from left to right. E.g. the previous equality will be drown in the following way.
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Sometimes we will also use the standard notation of domains and images of
transformations, i.e. for f ∈ PTn we denote Dom(f) = {x ∈ Xn | f(x) is defined }
and Im(f) = {f(x) | x ∈ Xn}. For a set A we denote by |A| the number of ele-
ments of A.



2.3 Known results

We recall useful known results.

Proposition 1 ([4]). If G is a finite group the S-EQN(G) problem is com-
putable in polynomial time if G is commutative and is NP-complete otherwise.

Notice that for a moniod M the S-EQN(M) problem is computable in poly-
nomial time if M is commutative and is the union of its subgroups and is NP-
complete otherwise (see [12, 11]).

The case of a single equation or identity is less complete.

Proposition 2 ([4]). Let G be a finite group. If G is nilpotent then the EQN(G)
problem is decidable in polynomial time. If G is non-solvable then EQN(G) is
coNP-complete.

The analogical result for term equivalence problem is mentioned many times
in literature and the result is attributed to Lawrence. The part of decidability for
nilpotent groups follows from Proposition 2 and Lemma 1. Up to our knowledge
the complete proof of coNP-hardness for non-solvable groups is written only in
the paper [5].

Proposition 3 ([5]). If G is a finite, non-solvable group, then the TERM-EQ(G)
problem is coNP-complete.

Small monoids are inside the significant class of monoids for which a polyno-
mial algorithm for the 2T-EQN(M) problem is known.3 This result is contained
implicitly in [19].

Proposition 4 ([9, 19]). Let M be a finite monoid with at most five elements.
Then the 2T-EQN(M) problem is decidable in polynomial time. In particular,
the EQN(M), TERM-EQ(M) and POL-EQ(M) problems are decidable in poly-
nomial time.

3 The case of transformations of two-element set

For the two-element group S2 all the problems are tractable, because S2 is a
commutative group for which we have Proposition 1. The monoid T2 has four
elements and the tractability follows from Proposition 4. Both these observations
are simple and they can also be proved directly. The case of I2 and PT2 is more
complicated. We start with injective partial transformations.

3 This class is DO ∩GNil.



3.1 The case of the monoid I2

Lemma 3. The 2T-EQN(I2) problem is decidable in polynomial time.

Proof. The monoid I2 has seven elements:

I2 = {〈−−〉, 〈1−〉, 〈2−〉, 〈−1〉, 〈−2〉, 〈12〉, 〈21〉}.

The commutative group S2 = {〈12〉, 〈21〉} is a submonoid of the monoid I2. We
denote I = {〈1−〉, 〈2−〉, 〈−1〉, 〈−2〉} and I0 = I ∪ {〈−−〉}. The set I0 is an ideal
of the monoid I2, i.e. for any s ∈ I2, t ∈ I0 we have st, ts ∈ I0. The empty
transformation 〈−−〉 is a zero element of the monoid I2, i.e. for any s ∈ I2 we
have 〈−−〉 · s = s · 〈−−〉 = 〈−−〉.

We consider the natural ordering on the set I2, namely ordering by the inclu-
sion ⊆ if we interpret transformations as relations, i.e. subsets of the set X2×X2.
Moreover, (I2, ·,⊆) is an ordered monoid; this means that the following condition
is satisfied:

∀a, b, c ∈ I2 : a ⊆ b =⇒ ac ⊆ bc, ca ⊆ cb.

The basic idea of the algorithm is that we are looking for solutions which
are maximal with respect to the ordering ⊆. Such solutions will map almost all
variables into S2. Recall that we are able to solve the S-EQN(S2) problem in
polynomial time.

Let u, v ∈ (X ∪ I2)∗ and m,n ∈ I2 form an instance of the 2T-EQN(I2)
problem. We distinguish certain cases depending on m and n. In any of them we
show that there is a solution of the instance if and only if there is a solution of
a special form which can be computed in polynomial time.

Case 1: m = n = 〈−−〉.
The system is not solvable if and only if u or v is an element from I2 different

from the element 〈−−〉. This can be easily check.
Case 2: m,n ∈ S2.
Then for any solution σ of the instance we have σ(x) ∈ S2 for any variable

x ∈ var(u) ∪ var(v) and con(u) ∪ con(v) ⊆ S2. So, we can find this solution as
a solution of the system of two equations over S2.

Case 3: m ∈ I, n ∈ S2.
Assume that σ : X → I2 is a solution of the instance. Then there is a

variable x ∈ var(u) such that σ(x) ∈ I or there is a constant k ∈ con(u) such
that k ∈ I. We will discuss these two cases separately. Moreover, in the first
case we consider separately all possibilities, i.e pairs consisting from a variable
x ∈ con(u) and a value σ(x) = k ∈ I. For any such possibility we substitute k
for all occurrences of x in u and denote the resulting polynomial u. Altogether
we discuss separately polynomialy many cases and in each of them we solve a
pair of equations {(u,m), (v, n)} where m ∈ I, n ∈ S2 and con(u) ∩ I 6= ∅.

Let we have such instance and still assume that σ is a solution. If we consider
all occurrences of the constants from the set I in the polynomial u we obtain
the following factorization of the polynomial u:

u = u1k1u2k2 . . . kpup+1, where ui ∈ (X − {x} ∪ S2)∗, ki ∈ I.



Claim: there is a substitution σ′ : X → S2 such that σ′(u) = σ(u) and
σ′(v) = σ(v).

It is easy to see that σ(y) 6= 〈−−〉 for any y ∈ var(u). Now if σ(y) ∈ S2 then
we put σ′(y) = σ(y); if σ(y) = 〈1−〉 or σ(y) = 〈−2〉 then we put σ′(y) = 〈12〉;
and if σ(y) = 〈2−〉 or σ(y) = 〈−1〉 then we put σ′(y) = 〈21〉. This means
that σ(y) ⊆ σ′(y) for any y ∈ var(u) and hence σ(ui) ⊆ σ′(ui). It follows that
σ(u) ⊆ σ′(u). Because σ′(u) ∈ I0 we have σ(u) = σ′(u). The second observation
σ′(v) = σ(v) is trivial and we have proved the claim.

If we look on the factorization of u we see that elements ki ∈ I have a one-
element domain and also a one-element image. Hence the valuesmi = σ′(ui) ∈ S2

are determined by u. More precisely mi ∈ S2 is determined by ki−1 ∈ I and
ki ∈ I for i = 2, . . . p; m1 is determined by Dom(m) and k1 and finally mp+1 is
determined by kp and Im(m). This means that we are looking for a substitution
σ′ : X → S2 which is a solution of the system {(ui,mi) | i = 1, 2, . . . , p + 1} ∪
{(v, n)}.

So, we reduce the case m ∈ I, n ∈ S2 to solving linearly many systems of
equations over S2.

Case 4: m = 〈−−〉, n ∈ S2.
At first if there is a variable x ∈ var(u) such that x 6∈ var(v) then the

instance is solvable if and only if the equation (v, n) is solvable in S2. The same
is true if 〈−−〉 ∈ con(u).

So, assume that 〈−−〉 6∈ con(u) and let σ : X → I ∪ S2 be a solution of the
instance.

We denote some factor w of the polynomial u which is the shortest factor of
u with respect to the property σ(w) = 〈−−〉. This means that for any proper
factor w′ of the polynomial w we have σ(w′) 6= 〈−−〉.

Claim: If w = w1w2 . . . wp, where wi ∈ X ∪ I ∪ S2, then σ(w1), σ(wp) ∈ I
and σ(wi) ∈ S2 for any i = 2, . . . , p− 1.

Indeed, we have assumed 〈−−〉 6∈ con(u) and σ(x) 6= 〈−−〉 for all x ∈ var(u).
Now, because σ(w1w2 . . . wp−1) 6= 〈−−〉 and σ(w1w2 . . . wp) = 〈−−〉 we can see
that σ(wp) ∈ I. Analogically σ(w1) ∈ I. We denote s = σ(w2 . . . wp−1) and
we show that Im(s) = X2. Let a ∈ Dom(σ(wp)) then a ∈ Im(s) otherwise
s · σ(wp) = 〈−−〉. Analogically if b ∈ Im(σ(w1)) then b ∈ Dom(s). But s(b) 6= a
because σ(w1) · s · σ(wp) = 〈−−〉. Hence Im(s) = X2, which means s ∈ S2 and
this implies the property σ(wi) ∈ S2 for any i = 2, . . . , p − 1. So, the claim is
proved.

This means that for any factor w = w1w2 . . . wp of u we consider all possible
values a ∈ I, b ∈ S2, c ∈ I, such that abc = 〈−−〉 and put σ(w1) = a, σ(wn) = c
and then we solve the system of the two equations {(w2 . . . wn−1, b), (v, n)} in
the group S2. Clearly, there are polynomialy many factors of u, i.e. we have to
discuss only polynomialy many cases.

Case 5: m = 〈−−〉, n ∈ I.
We have to combine methods from cases 3 and 4. We distinguish polynomialy

many cases for both equations and in any of them we obtain the pair of systems



of equations over S2. At the end we simply put these systems together and solve
in S2.

Case 6: m,n ∈ I.
We use method from case 3 for both equations.
Conclusion
We distinguish polynomial many cases and in any of them we check easy

condition (case 1) or solve certain system of equations in S2. ut

The previous lemma has the following consequence if we apply Lemma 2.

Proposition 5. The POL-EQ(I2) problem, the TERM-EQ(I2) problem and the
EQN(I2) problem are decidable in polynomial time.

3.2 The case of the monoid PT2

We prove that all considered problems are hard in the case of monoid PT2.

Proposition 6. The EQN(PT2) problem is NP-complete and the TERM-EQ(PT2)
problem (and hence also the POL-EQ(PT2) problem) is coNP-complete.

Proof. First of all, we recall the structure of the monoid PT2. The monoid
PT2 has nine elements: PT2 = I2 ∪ {〈11〉, 〈22〉}. The commutative group S2 =
{〈12〉, 〈21〉} is a submonoid of the monoid PT2.

We will show the polynomial reduction from the well-known NP-complete
problem 3-SAT to the coTERM-EQ(T2) problem. As we will see the reduction
from the 3-SAT problem to the EQN(PT2) problem can be made in the same
way. At first we recall the definition of the 3-SAT problem (see [13] for more
details).

An instance of the 3-SAT problem is a conjunction Φ ≡ Φ1 ∧Φ2 ∧ . . .∧Φp of
clauses and each clause Φi, 1 ≤ i ≤ p, is of the form

l1 ∨ l2 ∨ l3

where lj , 1 ≤ j ≤ 3, is a literal (i.e. lj is a variable from the set Var, possibly
negated — we call it positive resp. negative literal). A valuation is a mapping
ν : Var → {T, F}. Every valuation extends naturally to Φ and we say that Φ
is satisfiable if and only if there exists a valuation ν such that ν(Φ) = T . The
question of the 3-SAT problem is whether a given formula Φ is satisfiable.

Let Φ be an instance of the 3-SAT problem. We construct a pair of terms
L,R ∈ X ∗ which are equivalent if and only if the formula Φ is not satisfiable, in
other words the formula Φ will be satisfiable if and only if there is a substitution
σ : X → PT2 such that σ(L) 6= σ(R).

Assume that Var = {x1, . . . , xr} is a set of all boolean variables occurring in
the formula Φ and for any i = 1, . . . , r introduce four variables xi, xi, yi, yi ∈ X .
We take two other variables a, b ∈ X and we will assume that all these variables
are pairwise different. For a positive literal l = x we define l̃ = x and for a
negative literal l = ¬x we define l̃ = x.



Now, for a boolean variable x ∈ Var we define the following terms

vx1 = b(ax2)2b(ax2)2b, vx2 = byyabyyabayybayyb, vx3 = bax2x2b,

vx4 = byx2yabyx2yab and vx = vx1v
x
2v

x
3v

x
4 .

For each clause Φi ≡ l1 ∨ l2 ∨ l3, 1 ≤ i ≤ p, we define term

ui = ba · l̃1
2
l̃2

2
l̃3

2
· b.

Finally, we denote

A = a3b2a3b2, B = a2b2a2b2, V = vx1vx2 . . . vxr · u1u2 . . . up ,

and
L = V A, R = V B.

In the rest of the proof we show that the formula Φ is satisfiable if and only if
there is a substitution σ : X → PT2 such that σ(L) 6= σ(R).

Let ν : Var → {T, F} be a valuation such that ν(Φ) = T . We define σ(a) =
〈21〉, σ(b) = 〈1−〉. Then we can compute σ(A) = 〈−−〉 and σ(B) = 〈1−〉.
Further, for any boolean variable x ∈ Var such that ν(x) = T we define σ(x) =
〈11〉, σ(x) = 〈12〉, σ(y) = 〈12〉 and σ(y) = 〈21〉. Then for such x ∈ Var we
can see that σ(vx1 ) = 〈1−〉, σ(vx2 ) = 〈1−〉, σ(vx3 ) = 〈1−〉, σ(vx4 ) = 〈1−〉 and
hence σ(vx) = 〈1−〉. For any x ∈ Var such that ν(x) = F we define σ(x) =
〈12〉, σ(x) = 〈11〉, σ(y) = 〈21〉 and σ(y) = 〈12〉. Then we can analogically
compute σ(vx1 ) = 〈1−〉, σ(vx2 ) = 〈1−〉, σ(vx3 ) = 〈1−〉, σ(vx4 ) = 〈1−〉 and hence
σ(vx) = 〈1−〉 again. Now, we have to compute values σ(ui). Because for any
clause Φi ≡ l1 ∨ l2 ∨ l3 we have σ(l̃1), σ(l̃2), σ(l̃3) ∈ {〈11〉, 〈12〉} and because at
least one of the literals l1, l2, l3 is valuated by T we know, that at least one of
the values σ(l̃1), σ(l̃2), σ(l̃3) is equal to 〈11〉 hence σ(l̃1

2
l̃2

2
l̃3

2
) = 〈11〉. From that

reason σ(ui) = 〈1−〉 for any i = 1, . . . , p. So, we can finish our computations
with conclusion that σ(V ) = 〈1−〉 and hence σ(L) = 〈−−〉 6= 〈1−〉 = σ(R).

Let us suppose that σ : X → PT2 is an arbitrary substitution which disprove
the equivalence of the terms L, R, i.e. σ(L) 6= σ(R). We find a valuation ν which
satisfies Φ.

At first, σ(L) 6= σ(R) implies σ(A) 6= σ(B) and consequently σ(a)3 6= σ(a)2.
If we check all the elements in the monoid PT2 we observe that there is a unique
element e ∈ PT2 with the property e3 6= e2, namely e = 〈21〉. Hence σ(a) = 〈21〉
and we have

qq qq�@ σ(b)2 qq qq�@ σ(b)2 6= σ(b)2 σ(b)2
.

One can check that this implies σ(b) ∈ {〈1−〉, 〈−2〉}. We will assume that σ(b) =
〈1−〉 because if σ(b) = 〈−2〉 then the following discussion can be done dually.



So, we suppose that σ(a) = 〈21〉, σ(b) = 〈1−〉 and σ(V ) 6= 〈−−〉. Let x be
a boolean variable. Then we have σ(vx) 6= 〈−−〉. Because σ(vx1 ) 6= 〈−−〉 and
(ax2)2b is a factor of vx1 we see

qq qq�@ σ(x)2 qq qq�@ σ(x)2 qq qq 6= qq qq
.

One can check that {e2 | e ∈ PT2} = {〈12〉, 〈1−〉, 〈11〉, 〈−2〉, 〈22〉, 〈−−〉} and
from previous inequality we have σ(x)2 ∈ {〈12〉, 〈11〉}. The same can be proved
for x, i.e σ(x)2 ∈ {〈12〉, 〈11〉}.

Now, we look at the inequality σ(vx2 ) 6= 〈−−〉. For a prefix of σ(vx2 ) we obtain
the inequality qq qq σ(y) σ(y) qq qq�@ qq qq 6= qq qq
It follows that 1 ∈ Dom(σ(y)) and 2 ∈ Im(σ(y)). Analogically, from other factors
of σ(vx2 ) we obtain

qq qq σ(y) σ(y) qq qq�@ qq qq 6= qq qq =⇒ 1 ∈ Dom(σ(y)), 2 ∈ Im(σ(y))
,

qq qq qq qq�@ σ(y) σ(y) qq qq 6= qq qq =⇒ 2 ∈ Dom(σ(y)), 1 ∈ Im(σ(y))
,

qq qq qq qq�@ σ(y) σ(y) qq qq 6= qq qq =⇒ 2 ∈ Dom(σ(y)), 1 ∈ Im(σ(y))
.

Altogether, we deduce Dom(σ(y)) = Dom(σ(y)) = Im(σ(y)) = Im(σ(y)) = X2

and we can conclude σ(y), σ(y) ∈ S2. Moreover, from any mentioned inequality
we see that σ(y)σ(y) = 〈21〉, hence {σ(y), σ(y)} = S2, particularly σ(y) 6= σ(y).

Now, we show σ(x)2 6= σ(x)2. We have already seen that both σ(x)2 and
σ(x)2 belong to the set {〈12〉, 〈11〉}. If σ(x)2 = σ(x)2 = 〈12〉 then σ(vx3 ) = 〈−−〉
which is a contradiction. Assume for a moment that σ(x)2 = σ(x)2 = 〈11〉. Then
from σ(vx4 ) 6= 〈−−〉 we have

qq qq σ(y) qq qq� σ(y) qq qq�@ qq qq σ(y) qq qq� σ(y) qq qq�@ qq qq 6= qq qq
and this implies that both σ(y) and σ(y) are equal to 〈21〉 which is a contradiction
with the previous paragraph. We have proved that {σ(x)2, σ(x)2} = {〈12〉, 〈11〉}.

This means that we can define consistent valuation ν : Var→ {T, F} in the
following way. If σ(x)2 = 〈11〉 (and σ(x)2 = 〈12〉) at the same time, then we
define ν(x) = T and if σ(x)2 = 〈12〉 (and σ(x)2 = 〈11〉) then we put ν(x) = F .

Now, if we take clause Φi ≡ l1 ∨ l2 ∨ l3 then from the fact σ(ui) 6= 〈−−〉 we
can deduce that at least one of the values σ(l̃1)2, σ(l̃2)2, σ(l̃3)2 is equal to 〈11〉.
This implies that at least one of the values ν(l1), ν(l2), ν(l3) is T . Altogether,
our valuation ν satisfies the formula Φ.

We have reduced the 3-SAT problem to the TERM-EQ(PT2) problem and it
is easy to see that the terms L and R can be construct from the formula Φ in the



polynomial time and hence our reduction is polynomial. We can conclude that
the TERM-EQ(PT2) problem (and also the POL-EQ(PT2) problem) is coNP-
complete. The proof of NP-completeness of the EQN(PT2) problem is simpler
because for an instance Φ of the 3-SAT problem we construct equation (V ′, 〈1−〉)
where V ′ is obtained form V by replacing of all occurrences of the variable a by
the element 〈21〉 and all occurrences of the variable b by the element 〈1−〉.

ut

4 Reductions between problems

In this section we show few reductions between our problems. At first for the
equation problem and the polynomial equivalence problem we show reductions
from our monoids of transformations of n-element set to monoids of transforma-
tions of large set. We use standard notation from complexity theory: we write
P ≤P Q if there is a polynomial reduction from the problem P to the problem
Q.

4.1 Reductions for POL-EQ and EQN

Proposition 7. For any n ∈ N we have:

1. POL-EQ(PTn) ≤P POL-EQ(PTn+1),
2. POL-EQ(In) ≤P POL-EQ(In+1),
3. POL-EQ(Tn) ≤P POL-EQ(Tn+1),
4. EQN(PTn) ≤P EQN(PTn+1),
5. EQN(In) ≤P EQN(In+1),
6. EQN(Tn) ≤P EQN(Tn+1).

Proof. We prove the first statement in detail. Let L,R be polynomials over PTn,
i.e. L,R ∈ (PTn ∪ X )∗. We consider the element s = 〈12 . . . n−〉 ∈ PTn+1. This
means, that s(i) = i for all i ∈ Xn and n+ 1 6∈ Dom(s).

We replace any variable x in L and R, by sxs, and we denote the resulting
expression L and R respectively. Because any element of PTn is also an element
of PTn+1, the expressions L and R are polynomials over PTn+1.

Now we show that the polynomials L and R are equivalent over PTn if and
only if the polynomials L and R are equivalent over PTn+1.

Let L and R are not equivalent over PTn. Then there is a substitution σ :
X → PTn such that σ(L) 6= σ(R). Because σ(x) ∈ PTn ⊆ PTn+1 for any x ∈ X ,
the mapping σ is also a substitution σ : X → PTn+1. We have σ(sxs) = σ(x),
hence σ(L) = σ(L) 6= σ(R) = σ(R) and L and R are not equivalent over PTn+1.

Let assume that L and R are not equivalent over PTn+1, i.e. there exists
α : X → PTn+1 such that α(L) 6= α(R). We define substitution σ : X → PTn+1

in the following way: σ(x) = α(sxs) = sα(x)s. Because n + 1 6∈ Dom(s) and
n+1 6∈ Im(s) the element σ(x) belongs to PTn. So, we have defined σ : X → PTn
and it is easy to see that σ(L) = α(L) 6= α(R) = σ(R).



The same construction is also possible for equations, so fourth part of the
statement is clear.

Also the same construction work in the case of the monoids In, hence second
and fifth statements follow.

The case of full transformations is similar. We can do the same construction,
where the element s ∈ Tn+1 is define in the following way: s(i) = i for all i ∈ Xn

and s(n+ 1) = n. Second difference is such that we replace any element t ∈ Tn
from the instance of the problem by the element t′ ∈ Tn+1 where t′(i) = t(i) for
all i ∈ Xn and t′(n + 1) = t(n). In this way one can establish the rest of the
statement. ut

Note that the similar results can be also state for systems of equations and
pairs of equations. On the other side this technique can not be used for the term
equivalence problem.

If we apply the proposition to Proposition 6 we obtain the following.

Corollary 1. For n ≥ 2, the POL-EQ(PTn) problem is coNP-complete and the
EQN(PTn) problem is NP-complete.

The similar result will be obtain for monoids In and Tn, n ≥ 3, in the next
section.

4.2 Reductions for TERM-EQ

We use completely different reduction to show hardness results for term equiva-
lence problems. We start with some technical lemmas.

Form ∈ N we fix Xm = {x1, x2 . . . , xm} ⊂ X and then X ∗m = {x1, x2 . . . , xm}∗ ⊆
X ∗ is the set of all terms in variables x1, x2 . . . , xm.

Lemma 4. Let M be a finite monoid which has k elements and let m ∈ N.
Then there exists a term w ∈ X ∗m of the polynomial length with respect to m
which satisfies the following condition: for any morphism ϕ : X ∗m →M we have:

1. ϕ(w) is an idempotent,
2. (∀u ∈ X ∗m) (∃v0, v1 ∈ X ∗m) ϕ(v0uv1) = ϕ(w).

Proof. We consider all possible words over the set of variables Xm of length k
and we define w0 as the product of all of them (in one fix order). Note that the
length of w0 is kmk. We define w = wk!0 which has a polynomial length with
respect to m and we prove the statement for this word.

Let ϕ : X ∗m →M be an arbitrary morphism.
1. It is well known fact that for any a ∈M the element ak!, where k = |M |,

is an idempotent. Hence ϕ(w) = ϕ(wk!0 ) = ϕ(w0)k! is an idempotent.
2. Let u ∈ X ∗m. We prove the property with respect to the length of the word

u. If |u| ≤ k then u is a factor of w and the statement is trivial. If |u| = l > k
and u = xi1 . . . xil . Then ϕ(u) = ϕ(xi1) . . . ϕ(xil) and we consider the following
sequence of l elements from M

ϕ(xi1), ϕ(xi1)ϕ(xi2), ϕ(xi1)ϕ(xi2)ϕ(xi3), . . . , ϕ(xi1) . . . ϕ(xil).



Because l > k (recall that k is a number of elements of M) there exist indexes
p < q such that ϕ(xi1) . . . ϕ(xip) = ϕ(xi1) . . . ϕ(xiq ). Hence

ϕ(u) = ϕ(xi1) . . . ϕ(xip)ϕ(xiq+1) . . . ϕ(xil) = ϕ(xi1 . . . xipxiq+1 . . . xil).

But the word u′ = xi1 . . . xipxiq+1 . . . xil is shorter then the word u and by
induction assumption there are words v0, v1 such that ϕ(w) = ϕ(v0u′v1) =
ϕ(v0)ϕ(u′)ϕ(v1) = ϕ(v0)ϕ(u)ϕ(v1) = ϕ(v0uv1). ut

For the reader which is familiar with Green relations, we can note that the
previous lemma says that ϕ(w) is J -minimal in the subsemigroup generated by
the image of the morphism ϕ. Hence the H-class of the element ϕ(w) is a group
and in the case of the monoid PTn this group is isomorphic to the subgroup of
Sn.

For the reader which is not familiar with Green relations, we present direct
proof of this statement without using the machinery of structural semigroup
theory.

Lemma 5. Put M = PTn and let m ∈ N. Let w be a term which satisfy
the conditions from the previous lemma and let ϕ : X ∗m → M be an arbitrary
morphism. Then for any variable x ∈ Xm the restriction of the transformation
ϕ(wxw) ∈ PTn to the set Im(ϕ(w)) is a permutation of this set.

Proof. We prove the statement for an arbitrary term u ∈ X ∗m.
At first, we know that ϕ(w) = ϕ(w) ·ϕ(w) = ϕ(ww) from the first statement

of the previous lemma. We denote A = Im(ϕ(w)). Because ϕ(w) is idempotent,
we see that ϕ(w)|A = idA.

Now we consider an element of the form ϕ(wuw) where u ∈ X ∗m. Because
Im(ϕ(wuw)) ⊆ Im(ϕ(w)) = A we can see that ϕ(wuw)|A is a partial transfor-
mation of the set A.

By the second part of the previous lemma we know that there exist v0, v1 ∈
X ∗m such that ϕ(v0wuwv1) = ϕ(w). If we use the equality ϕ(w) = ϕ(ww) we
deduce that ϕ(wv0w)ϕ(wuw)ϕ(wv1w) = ϕ(w). Because Im(ϕ(wuw)) ⊆ A we
deduce ϕ(wv0w)|A · ϕ(wuw)|A · ϕ(wv1w)|A = ϕ(w)|A = idA.

If we denote PϕA = {ϕ(wuw)|A | u ∈ X ∗m} ⊆ PTA then the previous paragraph
has the following interpretation. For any element s ∈ PφA there exist elements
t0, t1 ∈ PφA such that t0st1 = idA. Consequently, s is a permutation of the set A,
which we wanted to prove. ut

Proposition 8. For any n ∈ N we have:

1. TERM-EQ(Sn) ≤P TERM-EQ(PTn),
2. TERM-EQ(Sn) ≤P TERM-EQ(In),
3. TERM-EQ(Sn) ≤P TERM-EQ(Tn),

Proof. We prove the first statement in detail.
Let (u, v) be an instance of the TERM-EQ(Sn) problem. We can assume that

m ∈ N is a such that var(uv) = Xm. Let w be a term satisfying conditions from
Lemma 4 and Lemma 5.



We consider the mapping α : Xm → Xm given by the rule α(x) = wxw for
any x ∈ Xm. We denote u = α(u), v = α(v). We will show that Sn satisfies
the identity u = v if and only if PTn satisfies the identity u = v. This gives
a polynomial reduction of the TERM-EQ(Sn) problem to the TERM-EQ(PTn)
problem because terms u and v have the polynomial size with respect to terms
u and v.

In fact, we will prove that Sn does not satisfy the identity u = v if and only
if PTn does not satisfy the identity u = v.

So, let ϕ : Xm → Sn be such that ϕ(u) 6= ϕ(v). The morphism ϕ can be
also seen as a morphism to PTn. For the term w the lemmas are valid, hence
ϕ(w) ∈ Sn is an idempotent, i.e. ϕ(w) = 1. This implies ϕ(α(s)) = ϕ(s) for any
term s ∈ X ∗m. Because ϕ(u) = ϕ(u) 6= ϕ(v) = ϕ(v), the morphism ϕ : Xm → PTn
disproves the identity u = v in PTn.

Now let ϕ : Xm → PTn be such that ϕ(u) 6= ϕ(v). We denote A = Im(ϕ(w))
and we define a mapping ψ : Xm → SA by the rule ψ(x) = ϕ(wxw)|A for any
x ∈ Xm. This definition is correct by Lemma 5. The same lemma implies the
equality ψ(s) = ϕ(α(s))|A for any s ∈ X ∗m. Now from the inequality

ϕ(w)ϕ(u) = ϕ(u) 6= ϕ(v) = ϕ(w)ϕ(v)

we can see that ϕ(u)|A 6= ϕ(v)|A. Finally, we can deduce that ψ(u) = ϕ(u)|A 6=
ϕ(v)|A = ψ(v) and we see that the morphism ψ disproves the identity u = v in
SA. Because A ⊆ Xn, the group SA is isomorphism to the subgroup of Sn. This
implies that the identity u = v is not satisfied in Sn.

It is easy to see that the proof works in the same way also in the case of the
monoids In and Tn. ut

The TERM-EQ(Sn) problem is coNP-complete for n ≥ 5 by Proposition 3.

Corollary 2. The TERM-EQ(M) problem is coNP-complete for any M = PTn,
for any M = In and for any M = Tn for n ≥ 5.

5 The case of transformations of three-element set

The main goal of this section is to prove coNP-completeness of the TERM-EQ(PT3)
problem and of the TERM-EQ(T3) and TERM-EQ(I3) problems as well. Note
that the proof is uselessly complicated becasue we do all three proofs in the
same manner. The idea is make a reduction of the S-EQN(S3) problem to the
coTERM-EQ(PT3) problem. Basically, we encode a system of equations over S3

to certain identity over PT3 in such a way that solutions of the system corre-
spond to morphisms disproving the identity. The first step is an elimination of
constants from the input system over S3. We explain it in the technical lemmas
bellow. Before these lemmas we recall the inner automorphisms of the group S3

which play an useful role in our construction.

Lemma 6. For an arbitrary element g ∈ S3 the mapping ωg : PT3 → PT3

defined by the rule ωg(x) = gxg5 is an automorphism of the monoid PT3. If we



consider the restriction of ωg to the set S3, which we denote ω′g, then it is an
(inner) automorphism of the group S3. Moreover, for different elements of S3

these automorphisms are different, i.e g 6= h =⇒ ω′g 6= ω′h. In particular, if a, b
are different cycles of the length 2 then there is a unique element g ∈ S3 such
that ωg(a) = 〈213〉 and ωg(b) = 〈132〉.

Proof. The fact that ωg and ω′g are automorphisms is easy to see. Indeed, g6 is the
identity permutation, i.e. g5 = g−1 and ω1 is the identity automorphism, from
which the equalities ωg(xy) = ωg(x)ωg(y), ωg(1) = 1, ωg ◦ωg−1 = ωg−1 ◦ωg = ω1

follow. First two ensured that ωg is a morphism from PT3 to itself and the third
one says that ωg is a bijection. Remark that ω′g is an automorphism of S3 is
trivial.

If for two elements g, h ∈ S3 we have ω′g = ω′h then for any element x ∈ S3

we have gxg−1 = hxh−1, i.e. xg−1h = g−1hx. In other words the element g−1h
commutes with all elements from S3. This implies that g−1h is the identity
permutation and consequently g = h. Hence there are six different inner auto-
morphisms of S3. If we take an arbitrary pair of different cycles of the length 2,
then they form a pair of generators of the group S3. From that reason this pair is
mapped under different inner automorphisms to different pairs of different cycles
of length 2. So, we obtain six different pairs of images. Because there are exactly
six such pairs we see that the pair 〈213〉, 〈132〉 is one of them and possible g is
uniquely determined. ut

Remark 1. The image of an element s ∈ PT3 in a given inner automorphism ωg
can be seen in such a way, that we just renamed the elements in X3 using the
permutation g−1. For example, if we take s = 〈12−〉 then ωg(s) is one of the
transformations 〈12−〉, 〈1− 3〉 or 〈−23〉 depending on the permutation g.

Now we describe some useful property concerning to the monoid PT3.

Lemma 7. For any element s ∈ PT3 at least one of the following conditions is
satisfied.

1. s4 = 〈− − −〉,
2. s4 = s2,
3. s ∈ S3 is a cycle of the length 3.

Note that two conditions in the previous lemma can be true at the same
time, e.g. the element s = 〈− − −〉 satisfies the first two conditions.

Proof. If | Im(s)| = 3 then s ∈ S3 and the second or the third condition is
satisfied.

If | Im(s)| = 1 then there are two possibilities s2 = 〈−−−〉 or s2 = s. Hence
the statement is true for such elements and moreover if we apply this observation
to s2 we obtain the statement for s satisfying | Im(s2)| = 1.

So, the last case which we have to discuss is | Im(s)| = 2 and | Im(s2)| = 2.
Then s maps the two-element set Im(s) to itself. Hence restriction of s2 to the
set Im(s) is an identity and the equality s4 = s2 follows. ut



As a consequence of the previous lemma we obtain the following easy obser-
vation.

Lemma 8. For any element s ∈ PT3 the element s6 is an idempotent.

From Lemma 7 we also derive the following statement.

Lemma 9. Let elements a, b, c ∈ PT3 be such that

(a3b3)2c6(a3b3)4c6 6= (a3b3)4c6(a3b3)2c6.

Then a, b ∈ S3 are different cycles of length 2, c 6∈ S3 and c6 6= 〈− − −〉.

Proof. Let a, b, c ∈ PT3 satisfy the inequality. The statement c6 6= 〈− − −〉 is
trivial. It is easy to see that c ∈ S3 implies c6 = 1 and in this case the inequality
is not possible.

If we denote s = a3b3 then we see that the first and the second case from
Lemma 7 are not possible for s. Hence s ∈ S3 is a cycle of the length 3. This
implies a, b ∈ S3 and we see that both elements a3 and b3 are equal to the
identity permutation or to cycles of the length 2. Because s = a3b3 is a cycle of
the length 3 we see that both a3 and b3 are different cycles of the length 2. ut

The usage of the previous lemma in our reduction is straightforward. An
instance of the TERM-EQ(PT3) problem will have the form

u(x3
ax

3
b)

2x6
c(x

3
ax

3
b)

4x6
cv = u(x3

ax
3
b)

4x6
c(x

3
ax

3
b)

2x6
cv

where xa, xb will be variables corresponding to two different cycles a, b of the
length 2 which generate the group S3 and xc will be special variable. The previous
lemma ensures that if this identity is not satisfied in PT3 then variables xa and
xb take values a and b respectively. The given system over S3 will be encode
in a term v in such a way that all constants from the system will be replaced
by terms in variables xa, xb corresponding to expressions of these constants by
generators a, b.

We will need more technical lemmas concerning terms from which the identity
will be built. We denote the term

v(y, z1, z2, z3, z4, z5) = y6(z1y6z5
1)y6(z2y6z5

2)y6 . . . y6(z5y6z5
5)y6.

Lemma 10. Let ϕ : {y, z1, z2, z3, z4, z5} → PT3 be a mapping which satisfies
ϕ({z1, z2, z3, z4, z5}) = S3 \ {1}. Then for the term v = v(y, z1, z2, z3, z4, z5)
defined above the following is true.

1. If ϕ(y) 6∈ T3 then ϕ(v) = 〈− − −〉.
2. If ϕ(y) ∈ T3 \ S3 then ϕ(v) ∈ {〈111〉, 〈222〉, 〈333〉}.
3. If ϕ(y) ∈ S3 then ϕ(v) = 1.

Proof. Recall that ϕ(y6) = ϕ(y)6 is always an idempotent.
At first, if ϕ(y) ∈ S3 then ϕ(y6) = 〈123〉 is the identity permutation hence

ϕ(v) = ϕ(z6
1z

6
2 . . . z

6
5) = 〈123〉 is also the identity permutation.



If ϕ(y) 6∈ S3 then | Im(ϕ(y))| ≤ 2.
Assume that ϕ(y) 6∈ T3. If | Im(ϕ(y6))| = 0 then the statement is true.

If | Im(ϕ(y6))| = 1 then for p ∈ Im(ϕ(y6)) and q 6∈ Dom(ϕ(y6)) there is a
permutation s ∈ S3 \ {1} such that s(p) = q. Hence ϕ(y6)ϕ(zi)ϕ(y6) = 〈− − −〉
for certain i ∈ {1, . . . , 5}. If | Im(ϕ(y6))| = 2 then ϕ(y6) ∈ {〈12−〉, 〈1−3〉, 〈−23〉}.
From remark 1 we know that ϕ(ziy6z5

i ) = ωϕ(zi)(ϕ(y6)) belongs to the same set
and moreover we have {ϕ(ziy6z5

i ) | i = 1, . . . , 5} = {〈12−〉, 〈1− 3〉, 〈−23〉}. The
equality ϕ(v) = 〈− − −〉 follows.

Now we will discuss the case ϕ(y) ∈ T3 \ S3. If | Im(ϕ(y6))| = 1 then the
statement is clear. If | Im(ϕ(y6))| = 2 then we denote p, q, r such that {p, q, r} =
X3 and ϕ(y6) maps p to p, q to p and r to r. Then there is a (non-identical)
permutation which maps the subset {p, r} to {p, q} hence ϕ(y6ziy

6) is a constant
transformation for some i ∈ {1, . . . , 5}. And because Im(ϕ) ⊆ T3 we see that
also ϕ(v) ∈ T3 is a constant transformation. ut

We construct one more similar term which will be used in our reduction. Put

u(y, z, z1, z2) = y6 z y6 z1zz1 y
6 z2zz2 y

6 z1z2z1zz1z2z1 y
6.

Lemma 11. Let ϕ : {y, z, z1, z2} → PT3 be such that ϕ(z1), ϕ(z2) ∈ S3 are
different cycles of the length 2 and ϕ(y) ∈ T3 \ S3. Then for the term u =
u(y, z, z1, z2) defined above the following is true.

1. If ϕ(z) = 1 then ϕ(u) = ϕ(y)6.
2. If ϕ(z) ∈ S3 \ {1} then ϕ(u) ∈ {〈111〉, 〈222〉, 〈333〉}.

Proof. Let all assumptions be true. As we know ϕ(y6) ∈ T3\S3 is an idempotent.
If ϕ(y6) ∈ {〈111〉, 〈222〉, 〈333〉} then the both statements are valid. If ϕ(z) = 1
then ϕ(z1zz1) = ϕ(z2

1) = 1 and similarly ϕ(z2zz2) = ϕ(z1z2z1zz1z2z1) = 1 hence
the second statement is also valid.

So, assume that | Im(ϕ(y6))| = 2 and ϕ(z) ∈ S3 \ {1}. Now ϕ(z1), ϕ(z2) and
ϕ(z1z2z1) are three different cycles of the length 2. Recall that by Remark 1 the
elements of the form ωg(ϕ(z)) can be viewed as the elements ϕ(z) with renaming
set X3 by permutation g−1. Hence, if ϕ(z) is a cycle of the length 2 then the set

V = {ϕ(z), ϕ(z1zz1), ϕ(z2zz2), ϕ(z1z2z1zz1z2z1)}

consists of all cycles of the length 2. If ϕ(z) is a cycle of the length 3 then the
set V consists of all cycles of the length 3.

We denote p, q, r such that {p, q, r} = X3 and ϕ(y6) maps p to p, q to p
and r to r. Now there is an element s in the set V (the set V is equal to
{〈213〉, 〈321〉, 〈132〉} or to {〈231〉, 〈312〉}) such that s maps q to r, i.e. subset
{p, r} to the subset {p, q}. Hence ϕ(y6)sϕ(y6) = 〈ppp〉 tor some s ∈ V . This
implies that ϕ(u) is a constant transformation. ut

Now we are ready to prove the main result of this section.

Proposition 9. S-EQN(S3) ≤P coTERM-EQ(PT3).



Proof. First of all we note that the instance of the S-EQN(S3) problem can be
written in a special form {L1 = 1, L2 = 1, . . . , Lk = 1} because S3 is a group of
order 6 and any equality s = t is equivalent to the equality st5 = 1.

So, let {L1 = 1, L2 = 1, . . . , Lk = 1} be an instance of the S-EQN(S3)
problem which contains variables Xm = {x1, . . . , xm}. We will consider three
new variables xa, xb, xc.

If we denote a = 〈213〉, b = 〈132〉 then an arbitrary element of S3 can be
written in one of the following way: 1, a, b, ab, ba, aba. For any polynomial s ∈
(Xm ∪ S3)∗ we denote by s the term which we obtain from s by replacing any oc-
currence of a constant 1, a, b, ab, ba, aba by the term 1, xa, xb, xaxb, xbxa, xaxbxa
respectively. This means that u ∈ (Xm ∪ {xa, xb})∗.

We will use terms v and u defined above. We consider the following term:

vc = v(xc, xa, xb, xaxb, xbxa, xaxbxa),

and for i ∈ {1, . . . , k} we consider terms

uLi
= u(xc, Li, xa, xb) and vLi

= v(Li, xa, xb, xaxb, xbxa, xaxbxa).

Futher
w1 = (x3

ax
3
b)

2x6
c(x

3
ax

3
b)

4x6
c , w2 = (x3

ax
3
b)

4x6
c(x

3
ax

3
b)

2x6
c .

Finally, we consider the following pair of terms

L = vcw1uL1vL1 . . . uLk
vLk

, R = vcw2uL1vL1 . . . uLk
vLk

which will form an instance of the TERM-EQ(PT3) problem.
We prove that the original system {L1 = 1, L2 = 1, . . . , Lk = 1} has a

solution in S3 if and only if the identity L = R does not hold in PT3.
Let assume that ϕ : Xm → S3 is a solution of the system {L1 = 1, L2 =

1, . . . , Lk = 1}. We extend the definition of ϕ to the set of variables Xm ∪
{xa, xb, xc} by the rules ϕ(xa) = a = 〈213〉, ϕ(xb) = b = 〈132〉 and ϕ(xc) =
〈223〉.

From the definition of the terms Li follows that ϕ(Li) = ϕ(Li) = 1. Hence
ϕ(vLi

) = 1 and ϕ(uLi
) = ϕ(xc)6 = 〈223〉. From this we can see ϕ(uL1vL1 . . . uLk

vLk
) =

ϕ(xc)6 which is an idempotent. Now we can compute ϕ(x3
ax

3
b) = 〈213〉〈132〉 =

〈312〉, ϕ(x3
ax

3
b)

2 = 〈231〉, ϕ(x3
ax

3
b)

4 = 〈312〉. Hence ϕ(w1) = 〈231〉〈223〉〈312〉〈223〉 =
〈222〉 and ϕ(w2) = 〈312〉〈223〉〈231〉〈223〉 = 〈233〉. The exact computation of
ϕ(vc) is not needed, because by Lemma 10 we see ϕ(vc) ∈ {〈111〉, 〈222〉, 〈333〉}
and because the suffix of the term vc is x6

c we deduce ϕ(vc) ∈ {〈222〉, 〈333〉}.
Hence ϕ(vcw1x

6
c) = 〈222〉 6= 〈333〉 = ϕ(vcw2x

6
c) and this conclude that ϕ dis-

prove the constructed identity in PT3.
Now we assume that the identity L = R is not satisfied in PT3, i.e we

assume that there is a morphism ϕ0 : (Xm ∪ {xa, xb, xc})∗ → PT3 such that
ϕ0(L) 6= ϕ0(R). Note that if we take an arbitrary automorphism ω of the monoid
PT3 then the composition of the morphisms ϕ0 and ω also disproves the identity.

We use Lemma 9 to the inequality ϕ0(L) 6= ϕ0(R). We obtain that ϕ0(xa)
and ϕ0(xb) are different cycles of the length 2. Now we apply Lemma 6 and we



see that there is an morphism ( ϕ0ωg for certain g) which disproves the identity
and which maps the variable xa to the element a = 〈213〉 and the variable xb to
b = 〈132〉. We denote this morphism ϕ and we will work with them from this
moment. Our goal is to prove ϕ(Li) = 1 for any i = 1, . . . , k.

From Lemma 9 we know that ϕ(x6
c) is an idempotent outside S3. Because

ϕ(vc) 6= 〈− − −〉 Lemma 10 implies ϕ(x6
c) ∈ T3 \ S3. Futher ϕ(vLi

) 6= 〈− − −〉
implies that ϕ(Li) ∈ T3 and consequenty ϕ : Xm ∪ {xa, xb, xc}∗ → T3. Now
if ϕ(Li) 6∈ S3 then by Lemma 10 we have ϕ(vLi) ∈ {〈111〉, 〈222〉, 〈333〉}. If
ϕ(Li) ∈ S3 \ {1} then by Lemma 11 we have ϕ(uLi

) ∈ {〈111〉, 〈222〉, 〈333〉}.
So altogether ϕ(Li) 6= 1 implies ϕ(vLi

)ϕ(vLi
) is a constant transformation. Be-

cause ϕ : Xm ∪ {xa, xb, xc}∗ → T3 we see that this is a contradiction as both
sides of ϕ(L) 6= ϕ(R) are equal to the transformation ϕ(uL1vL1 . . . uLk

vLk
) ∈

{〈111〉, 〈222〉, 〈333〉}.
So, we proved that ϕ(Li) = 1 for all i ∈ {1, . . . , k} and because ϕ(xa) = a =

〈213〉 and ϕ(xb) = b = 〈132〉 we see that the restriction of the morphism ϕ to
the set X ∗m is a solution of the given system over S3. ut

If we check the proof carefully we can see that the reduction is, in fact, also
the reduction of the S-EQN(S3) problem to the coTERM-EQ(T3) problem.

Corollary 3. The TERM-EQ(PT3) problem and the TERM-EQ(T3) problem
are coNP-complete.

Also the same construction can be simplified to prove NP-hardnes of the
EQN(T3) problem. If we use Proposition 7 we obtain the following.

Corollary 4. For any n ≥ 3 the EQN(Tn) problem is NP-complete and the
POL-EQ(Tn) problem is coNP-complete.

To prove the same result for I3 we have to slightly modified the previous
reduction. In fact, the reduction is easier as we can not discuss so much cases.
We improve Lemmas 9 and 11 for the case when we consider elements from I3
only.

Lemma 12. Let ϕ : {y, z1, z2, z3, z4, z5} → I3 be a mapping which satisfies
ϕ({z1, z2, z3, z4, z5}) = S3 \ {1}. Then for the term v = v(y, z1, z2, z3, z4, z5)
the following is true.

1. If ϕ(y) 6∈ S3 then ϕ(v) = 〈− − −〉.
2. If ϕ(y) ∈ S3 then ϕ(v) = 1.

Proof. It is just a direct consequence of Lemma 10. ut

In the case of Lemma 11 we redefine the term u to make the proof easier.
Put

u′(y, z, z1, z2) = (y6 z)6(y6 z1zz1)6(y6 z2zz2)6(y6 z1z2z1zz1z2z1)6y6.



Lemma 13. Let ϕ : {y, z, z1, z2} → I3 be such that ϕ(z1), ϕ(z2) ∈ S3 are differ-
ent cycles of the length 2 and ϕ(y) ∈ I3\S3. Then for the term u′ = u′(y, z, z1, z2)
defined above the following is true.

1. If ϕ(z) = 1 then ϕ(u′) = ϕ(y)6.
2. If ϕ(z) ∈ S3 \ {1} then ϕ(u′) = 〈− − −〉.

Proof. The first case is the same as in the proof of Lemma 11. Now let ϕ(z) ∈
S3\{1}. We have an idempotent ϕ(y6) ∈ I3\S3. An element in I3 is an idempotent
iff maps its domain identically. Denote p ∈ X3 such that p 6∈ Dom(ϕ(y6)) and
q, r the rest elements from X3.

Once again

V = {ϕ(z), ϕ(z1zz1), ϕ(z2zz2), ϕ(z1z2z1zz1z2z1)}

consists of all cycles of the length 2 or of both cycles of the length 3. In the
first case if we multiply these elements by ϕ(y6) from left and then consider the
sixth power we obtain the set of three elements which maps identically the sets
{q, r}, {q} and {r} respectively. Their product is 〈− − −〉. In the second case
if we multiply cycle of length 3 by ϕ(y6) from left and then consider the sixth
power we obtain 〈− − −〉 directly. ut

Now we repeat the reduction of the problem. In the prove we will discus only
the changes.

Proposition 10. S-EQN(S3) ≤P coTERM-EQ(I3).

Proof. Let {L1 = 1, L2 = 1, . . . , Lk = 1} be an instance of the S-EQN(S3)
problem. Variables Xm = {x1, . . . , xm} ∪ {xa, xb, xc} and elements a, b are the
same. Also the construction of the terms Li and the terms vLi . The term vc is
not needed any more and u′Li

= u′(xc, Li, xa, xb) is changed a bit. Finally, we
consider the following instance of the TERM-EQ(PT3) problem:

w1u
′
L1
vL1 . . . u

′
Lk
vLk

= w2u
′
L1
vL1 . . . u

′
Lk
vLk

where w1 and w2 are the same as in the proof of Proposition 9. We prove that
the original system {L1 = 1, L2 = 1, . . . , Lk = 1} has a solution in S3 if and only
if this identity does not hold in I3.

For a solution ϕ : Xm → S3 of the system {L1 = 1, L2 = 1, . . . , Lk = 1} we
define once again ϕ(xa) = a, ϕ(xb) = b and we update ϕ(xc) = 〈12−〉.

From the definition of the terms Li follows that ϕ(Li) = ϕ(Li) = 1. Hence
ϕ(vLi

) = 1 and ϕ(u′Li
) = ϕ(xc)6. From this we can see ϕ(uL1vL1 . . . uLk

vLk
) =

ϕ(xc)6 = 〈12−〉. Now we have ϕ(x3
ax

3
b)

2 = 〈231〉, ϕ(x3
ax

3
b)

4 = 〈312〉 again. Hence
ϕ(w1) = 〈231〉〈12−〉〈312〉〈12−〉 = 〈1−−〉 and ϕ(w2) = 〈312〉〈12−〉〈231〉〈12−〉 =
〈−2−〉. Hence ϕ(w1x

6
c) = 〈1−−〉 6= 〈−2−〉 = ϕ(w2x

6
c) and this conclude that ϕ

disprove the constructed identity in I3.
Now we assume that the identity is not satisfied in I3. As before we consider

ϕ disproving identity and satisfying ϕ(xa) = a, ϕ(xb) = b.



From Lemma 9 we know that ϕ(x6
c) is an idempotent different from 1. From

Lemma 12 we know that ϕ(Li) belongs to S3 and from Lemma 13 we see that
ϕ(Li) = 1. These imply that the restriction of the morphism ϕ to the set X ∗m is
a solution of the given system over S3. ut

Corollary 5. The TERM-EQ(I3) problem is coNP-complete.

Again, our construction can be simplified to prove NP-hardnes of the EQN(I3)
problem and Proposition 7 give the following.

Corollary 6. For any n ≥ 3 the EQN(In) problem is NP-complete and the
POL-EQ(In) problem is coNP-complete.

6 Conclusion and Future Work

We summarize the results contained in Proposition 5 and Corollaries 1— 6.

Theorem 1. Let n ∈ N, n ≥ 2. Then
(i) for n = 2: EQN(T2), TERM-EQ(T2), POL-EQ(T2) are in P,
(ii) for n ≥ 3, EQN(Tn) is NP-complete,
(iii) for n ≥ 3, POL-EQ(Tn) is coNP-complete,
(iv) for n = 3 and n ≥ 5, TERM-EQ(Tn) is coNP-complete,
(v) for n = 2: EQN(I2), TERM-EQ(I2), POL-EQ(I2) are in P,
(vi) for n ≥ 3, EQN(In) is NP-complete,
(vii) for n ≥ 3, POL-EQ(In) is coNP-complete,
(viii) for n = 3 and n ≥ 5, TERM-EQ(In) is coNP-complete,
(ix) EQN(PTn) is NP-complete,
(x) POL-EQ(PTn) is coNP-complete,
(xi) for n 6= 4, TERM-EQ(PTn) is coNP-complete.

We strongly believe that for the missing cases, namely TERM-EQ(T4), TERM-EQ(I4)
and TERM-EQ(PT4), one can use an analogical method to one from the previous
section.

Conjecture 1. The problems TERM-EQ(T4), TERM-EQ(I4) and TERM-EQ(PT4)
are coNP-complete.

In the topic there are really interesting open questions. First goal should
be describtion of the complexity of the problems in the case of groups. The
complexity of the TERM-EQ(S4) problem is first which sould be characterize.

Other direction is to discuss wheter the problems POL-EQ(M) and EQN(M)
are of the same complexity. Some partial results are known (see [9]).

For more open problems see [5, 6].
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