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Abstract We study the computational complexity of checking identities in a
fixed finite monoid. We find the smallest monoid for which this problem is coNP-
complete and describe a significant class of finite monoids for which the problem
is tractable.
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1 Introduction

One of the fundamental questions in universal algebra is the verification of iden-
tities in algebras. In this paper we consider the problem of checking identities in
a fixed finite monoid, which we refer to as the CHECK-ID problem. Another well
known name of this problem is the Term Equivalence (TERM-EQ) problem, and
we will consider also its natural generalization, namely the Polynomial Equiva-
lence (POL-EQ) problem. A polynomial over a finite monoid M is a sequence
of variables and elements of M and the POL-EQ problem asks to decide for a
given pair of polynomials whether the products of the two sequences are equal
under each assignment of variables.

Both these problems are in the complexity class coNP. Under the assumption
coNP6=P (which is assumed throughout the paper) one can ask for which monoids
the problems are decidable in polynomial time (tractable) and for which monoids
the problems are coNP-complete. For an introduction to the complexity theory
see [9].

The Polynomial Equivalence problem was studied also in associative ring
theory where a dichotomy theorem was proved by Hunt and Stearns [8] for finite
commutative rings and later by Burris and Lawrence [2] for the general case:
a ring has tractable Polynomial Equivalence problem whenever it is nilpotent,
and has coNP-complete this problem otherwise. Weaker results are known in the
case of groups: the POL-EQ problem is tractable for nilpotent groups [3, 4] and
the POL-EQ problem is coNP-complete for non-solvable groups [7].
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In the case of semigroups and monoids there are some results concerning
completely 0-simple semigroups and matrix semigroups over finite fields [10, 12,
13]. In [14] Szabó and Vértesi have proved hardness of the CHECK-ID problem
for the monoid of 2 × 2 matrices over Z2 and have asked for a smaller example
of such a semigroup. In this paper we describe the smallest monoid with this
property, namely the six-element monoid which is called Brandt monoid in the
literature. The fact that the Brandt monoid has coNP-complete CHECK-ID
problem was independently observed by Seif [11].

2 Preliminaries

The free monoid over an arbitrary alphabet A is denoted A∗. The neutral element
of every monoid is denoted 1.

Let M be a finite monoid and X be a countable set of variables. The ele-
ments from X ∗ and (M ∪ X )∗ are called terms and polynomials, respectively.
A substitution is an arbitrary mapping σ : X → M . For a given substitution
σ we denote by the same symbol σ also the unique extension to the morphism
σ : (M ∪ X )∗ → M which behaves as an identity on elements from M . We say
that two terms (or polynomials) u, v are equivalent in M if σ(u) = σ(v) for every
substitution σ : X → M . An identity u = v is a pair of terms, i.e. u, v ∈ X ∗,
and we say that this identity is valid in the monoid M if the terms u and v are
equivalent in M .

We are interested in the problem of checking the validity of identities in a
fixed finite monoid M and in the generalization of this problem to the case of
polynomials.

CHECK-ID(M)
Instance: An identity, i.e. a pair of terms, u = v, where u, v ∈ X ∗.
Question: Is the identity u = v valid in M?

When we consider polynomials instead of terms, we obtain the following gen-
eralization.

POL-EQ(M)
Instance: A pair of polynomials u, v ∈ (M ∪ X )∗.
Question: Are these polynomials equivalent in M?

We should point out that for every monoid M we have the individual prob-
lem CHECK-ID(M) and the individual problem POL-EQ(M). In other words,
for different monoids we have different problems CHECK-ID (and POL-EQ re-
spectively) for which we can obtain different results concerning their complexity.
Further, the monoid M is not a part of an instance, i.e. its order |M | can be
used as a constant when we calculate time complexity of algorithms solving our
problems. The time complexity function of a considered algorithm is a function
which maps each natural number n to the maximum number of steps which the
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algorithm makes on an input of size n. In our problems CHECK-ID(M) and
POL-EQ(M) the size of an input, i.e. size of an instance, is simply the sum of
the lengths of the given terms and polynomials, respectively.

Note also that each instance of the CHECK-ID(M) problem is an instance
of the POL-EQ(M) problem. This means that there is a trivial polynomial-time
reduction from CHECK-ID(M) to POL-EQ(M).

A basic idea for solving the POL-EQ(M) problem is to consider its comple-
ment, which is trivially in NP; therefore the POL-EQ(M) problem (and hence
also the CHECK-ID(M) problem) is in the complexity class coNP. When deal-
ing with the complement of the POL-EQ(M) problem, we are looking for a
morphism which distinguishes the given pair of polynomials. So we can take
all possible pairs of different elements of the monoid and ask whether there is
a morphism which maps the given pair of polynomials to the pair of elements.
This idea leads us to consider the problem of solving equations in the monoid M .

EQN(M)
Instance: A pair of polynomials u, v ∈ (M ∪ X )∗.
Question: Does there exist a substitution σ : X → M such that σ(u) = σ(v)?

2T-EQN(M)
Instance: A pair of polynomials u, v ∈ (M∪X )∗ and a pair of elements m,n ∈ M .
Question: Does there exist a substitution σ : X → M such that σ(u) = m and
σ(v) = n?

The previous observation can then be formulated in the following way.

Lemma 1. Let M be a finite monoid such that the 2T-EQN(M) problem is
decidable in polynomial time. Then the POL-EQ(M) and EQN(M) problems
are also decidable in polynomial time.

Proof. Let A be a polynomial algorithm solving the 2T-EQN(M) problem. Let
u, v be an instance of the POL-EQ(M) problem. Then for every pair m,n of
different elements of M we use the algorithm A to find whether there is a mor-
phism σ such that σ(u) = m and n = σ(v). If there is such a morphism then
σ(u) 6= σ(v) and polynomials u, v are not equivalent. Conversely, if there is no
such morphism for every choice of m and n then polynomials u, v are equivalent.
Time complexity of our algorithm is bounded by |M |2 times the complexity of
the algorithm A. Since |M | is a constant, we have a polynomial algorithm for
the POL-EQ(M) problem.

For the EQN(M) problem we just consider the instances of the 2T-EQN(M)
problem of the form u, v, m,m, where m is an arbitrary element of M . ut

We adopt some notation from combinatorics on words. We say that a poly-
nomial u ∈ (M∪X )∗ is a factor of a polynomial v ∈ (M∪X )∗ if v = sut for some
polynomials s, t ∈ (M ∪ X )∗. We speak about prefix when s is the empty word
and suffix when t is the empty word. For an arbitrary polynomial u ∈ (M ∪X )∗
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we denote by c(u) the content of u, i.e. the set of all variables from X which
occur in u.

We denote by E(M) the set of all idempotents of a monoid M , i.e. E(M) =
{e ∈ M | e2 = e}. We will use standard notions from semigroup theory like
Green’s relations J , R, L and H (see e.g. chapter 2 in [5]). As usually, for
a ∈ M we denote Ja the set of all elements J -related to a, i.e. Ja = {b |
MbM = MaM}. We will also use the following lemma.

Lemma 2 ([5] Proposition 2.3.3). Let M be a finite monoid. If e, f ∈ E(M),
e L f then ef = e.

A central role in the paper is played by the following two monoids which are
well-known from the literature. They are important because they are minimal
ones outside some natural classes of monoids.

We define the Brandt monoid B1
2 and the monoid A1

2 by their presentations:

B1
2 = 〈a, b | a2 = b2 = 0, aba = a, bab = b〉 and

A1
2 = 〈a, b | a2 = a, b2 = 0, aba = a, bab = b〉.

Both B1
2 and A1

2 have six elements 1, a, b, ab, ba and 0 and they have the same
Green’s relations. The structure of the monoids can be viewed in Figure 1 where

0

a

ba

ab

b

1

Fig. 1. The structure of the monoids B1
2 and A1

2.

we use egg-boxes to visualize relations between elements. (Each row represents
an R-class, each column an L-class and each cell an H-class. Each egg-box is a
J -class and egg-boxes are ordered by ≤J in the usual way.) The property which
distinguishes the monoids B1

2 and A1
2 is that the set of all idempotents in B1

2, i.e.
E(B1

2) = {0, ab, ba, 1}, forms a submonoid of B1
2 but the set of all idempotents

of A1
2, i.e. E(A1

2) = {0, a, ab, ba, 1}, does not. On the other hand, a common
property of B1

2 and A1
2 is that s3 = s2 for each element s, and hence s2 is an

idempotent for each s. Altogether, we can distinguish these two monoids by an
identity (x2y2)2 = x2y2 which is satisfied in B1

2 but it is not satisfied in A1
2.

Any set of identities naturally corresponds to the class of all monoids which
satisfy these identities. We call these classes varieties and these are exactly the
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classes of monoids closed under taking submonoids, morphic images and prod-
ucts. For a monoid M we denote by 〈M〉 the smallest variety which contains
the monoid M . From this point of view, the CHECK-ID(M) problem is just the
so-called identity problem for the variety 〈M〉.

Other natural classes of finite monoids, so-called pseudovarieties, are closed
under taking submonoids, morphic images and finite products. In this paper we
will work just with the pseudovariety DO ∩GNIL which is given by the following
property: M ∈ DO ∩GNIL if and only if every subgroup of M is nilpotent and
for every e, f ∈ E(M) such that e J f we have ef ∈ E(M) ∩ Je.

3 The Smallest Monoid with Hard CHECK-ID Problem

We modify the methods from [1] which were used for solving of equations. First
of all, we improve the original proof of NP-hardness of the EQN(B1

2) problem to
the case of the CHECK-ID(B1

2) problem.

Proposition 3. The CHECK-ID(B1
2) problem is coNP-complete.

Proof. Recall that the set of all idempotents {0, ab, ba, 1} forms a submonoid of
B1

2 and s3 = s2 is an idempotent for each element s ∈ B1
2.

We show a polynomial reduction from the NP-complete problem 1-in-3-SAT
(called the exactly-one-in-three satisfiability problem in the literature — see [9])
into the coTERM-EQ(B1

2) problem. An instance of the 1-in-3-SAT problem is a
conjunction Φ = Φ1 ∧ Φ2 ∧ · · · ∧ Φk of clauses and each clause Φr, 1 ≤ r ≤ k,
is of the form l1 ∨ l2 ∨ l3, where lj , 1 ≤ j ≤ 3, is a literal (i.e. lj is a Boolean
variable X from the set V ar or its negation ¬X). A valuation is a mapping
ν : V ar → {true, false}. The question in the 1-in-3-SAT problem is whether
there exists a valuation ν such that exactly one of ν(l1), ν(l2) and ν(l3) is true
for every clause Φr = l1∨ l2∨ l3. We say that Φ is 1-satisfiable if such a valuation
ν exists.

Let Φ = Φ1 ∧ Φ2 ∧ · · · ∧ Φk be an instance of the 1-in-3-SAT problem. Let
{X1, X2, . . . , Xn} be a set of all variables occurring in the formula Φ.

For each Boolean variable Xi, 1 ≤ i ≤ n, we introduce variables xi and xi. For
a literal l we denote by l̃ the corresponding variable: l̃ = xi if the literal l is the
Boolean variable Xi and l̃ = xi if the literal l is a negation of the Boolean variable
Xi. We also introduce a new variable y and put Σ = {y, x1, x1, . . . , xn, xn} ⊂ X .

Now, for each Boolean variable Xi with the corresponding variable xi we
define the following term

w(Xi) = (yxixiyxixi)2

and for each clause Φr = l1 ∨ l2 ∨ l3 we define the term

u(Φr) = (yl̃1 l̃2 l̃3)2.

Finally, we define

t = w(X1) . . . w(Xn)u(Φ1) . . . u(Φk)y.
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The result will follow from the next:
Claim: The instance Φ is 1-satisfiable if and only if there is a substitution σ :
Σ → B1

2 such that σ(t) is not an idempotent, i.e. terms t2 and t are not equivalent
in the monoid B1

2.
Proof of the claim: Let σ : Σ → B1

2 be such that σ(t) is not an idempotent, i.e.
σ(t) = a or σ(t) = b. We will discuss only the first case, the second one is obtained
by interchanging a and b. It is easy to see that σ(y) = a, because w’s and u’s are
squares, and thus σ(w(Xi)) and σ(u(Φr)) are idempotents. Since σ(y) = a and y
is contained in each w(Xi) and u(Φr), we see that σ(w(Xi)) and σ(u(Φr)) cannot
be equal to 1 and we can deduce that σ(w(Xi)) = σ(u(Φr)) = ab. For every i
we have σ(xi), σ(xi) ∈ {1, b} and σ(xi) 6= σ(xi) — otherwise σ(w(Xi)) = 0. So,
we can define a valuation: ν(Xi) = true if σ(xi) = b (and σ(xi) = 1 at the same
time) and ν(Xi) = false if σ(xi) = 1 (and σ(xi) = b at the same time). Now,
for each clause Φr = l1 ∨ l2 ∨ l3 exactly one of ν(l1), ν(l2) and ν(l3) is equal to
true, because otherwise σ(u(Φr)) = 0. Hence, the formula Φ is 1-satisfiable.

If we assume that there is a valuation ν which 1-satisfies the formula Φ, then
we can define the substitution σ : Σ → B1

2 in the following way. If ν(Xi) = true
then we put σ(xi) = b and σ(xi) = 1; if ν(Xi) = false then we put σ(xi) = 1
and σ(xi) = b; and finally we put σ(y) = a. So, for each Boolean variable Xi we
have σ(xixi) = σ(xixi) = b, hence σ(w(Xi)) = ab. Analogically, σ(u(Φr)) = ab,
hence σ(t) = a is not an idempotent. ut

Remark 4. If we consider an equation t = a instead of the identity t = t2 in
the previous proof, then we obtain the proof of NP-completeness of EQN(B1

2)
similar to original proof from [1].

We use a result given by P. Tesson in his PhD Thesis [15] — the tractability
of the Program Satisfiability problem for all monoids from the class DO ∩GNIL.
We can deduce the following statement from his proofs, specially from the proofs
of Lemmas 5.1. and 5.15.

Proposition 5 ([15]). The 2T-EQN(M) problem is decidable in polynomial
time for every monoid M ∈ DO ∩GNIL.

We obtain the following statement as a direct consequence of Lemma 1.

Proposition 6. The POL-EQ(M) problem is decidable in polynomial time for
every monoid M ∈ DO ∩GNIL.

Note that the class DO ∩GNIL contains many important classes of monoids,
e.g. all commutative monoids and all idempotent monoids. As a side result we
can also obtain the observation that the monoid B1

2 is the smallest one with the
hard CHECK-ID problem, moreover it is the smallest among the monoids with
the hard POL-EQ problem.

Proposition 7. Let M be an arbitrary monoid with at most five elements. Then
the POL-EQ(M) problem is decidable in polynomial time.
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Proof. We show that each monoid of this size is inside the class DO ∩GNIL and
hence the statement is a consequence of Proposition 6. Let a monoid M have at
most five elements. Then M has only nilpotent subgroups because every non-
nilpotent group has at least six elements. Assume for a moment that there are
J -related idempotents e, f ∈ E(M) such that ef 6∈ E(M) ∩ Je. Clearly, 1 6∈ Je

because the J -class of 1 is a subgroup in every finite monoid. If e L f then by
Lemma 2 we have ef = e ∈ E(M) ∩ Je a contradiction. So, e is not L-related
to f and dually Re 6= Rf . Hence Je contains at least two L-classes and two
R-classes, i.e. Je contains at least four elements. Since 1 6∈ Je and M has at
most five elements, we see that M consists of the element 1 and the four-element
class Je. Hence ef ∈ Je and (ef)2 ∈ Je. Finally, (ef)2 L (ef), (ef)2 R (ef) and
(ef)2 = ef follows. This is a contradiction with ef 6∈ E(M) ∩ Je. ut

Note that the proof of the previous proposition can be used to characterize all
monoids outside DO ∩GNIL which have six elements. Indeed, there is a unique
six-element non-nilpotent group, namely S3 (the permutation group over a three-
element set). Further, if we consider a six-element monoid with idempotents e, f
as in the proof, then there are exactly two possibilities: in the first case the
class Je contains only two idempotents (namely e, f) and then the monoid is
isomorphic to B1

2 and in the second case the class Je contains three idempotents
and then the monoid is isomorphic to A1

2.
So, there are exactly three monoids outside the class DO ∩GNIL which have

at most six elements, namely B1
2, A1

2 and S3. We show the tractability of the
POL-EQ(A1

2) problem in Lemma 8. Recently in [3, 6], it was proved that the
POL-EQ(S3) problem is decidable in polynomial time. Hence B1

2 is the only
monoid with at most six elements and hard CHECK-ID and POL-EQ problems.

Lemma 8. The POL-EQ(A1
2) problem is decidable in polynomial time.

Proof. Let u, v ∈ (A1
2 ∪X )∗ be an instance of the POL-EQ(A1

2) problem. We
construct a certain set Tu,v of test morphisms which proves or disproves the
equivalence of the polynomials u and v. A test morphism

τL : (A1
2 ∪X )∗ → A1

2

for any 5-tuple L = (Y, x, y, c, d) where Y ⊂ X , x, y ∈ X \Y , c, d ∈ A1
2 is defined

in the following way:

τL(z) =


1, z ∈ Y
c, z = x
d, z = y
a, z 6∈ Y ∪ {x, y}.

Of course, there are too many such morphisms. However, it is clear that for
every τL we can compute the values τL(u) and τL(v) in polynomial time. In the
rest of the proof we show how, given polynomials u and v, to select some test
morphisms τL such that the set Tu,v of the selected morphisms is of polynomial
size with respect to the size of u and v and has the following property: there is
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a morphism σ such that σ(u) 6= σ(v) if and only if there is such a morphism in
the set Tu,v. Clearly, this will imply that the problem POL-EQ(A1

2) is solvable
in polynomial time.

Assume that there is a morphism σ such that σ(u) 6= σ(v). We consider
several cases and for each of them we put polynomially many test morphisms
into the set Tu,v.

1. Assume that σ(u) = 1 and σ(v) 6= 1. There are two possibilities: the
polynomial v contains some of the elements 0, a, ab, ba, b or the polynomial v
contains some variable xv which does not occur in u and such that σ(xv) 6= 1.
In the first case we can consider the morphism τL where L = (Y, x, y, c, d),
Y = c(uv), x, y ∈ X \Y arbitrary variables, c = d = 0. This means that τL maps
all variables used in u and v to the element 1. Hence τL(u) = 1 6= τL(v). We put
this morphism to Tu,v.

In the second case we can consider the morphism τL where L = (Y, x, y, c, d),
Y = c(uv) \ {xv}, x = xv, and y an arbitrary variable, c = d = 0. Then
τL(u) = 1 6= τL(v) = 0. This means that we need to put one test morphism to
Tu,v for each choice of x ∈ c(v) \ c(u). Surely, we need only polynomially many
morphisms.

2. Assume that σ(u), σ(v) ∈ Ja but these elements are not R-related (the
case when they are not L-related is dual2), i.e. we can assume σ(u) R a and
σ(v) R b. Let p be the longest prefix of u such that σ(p) = 1, i.e. u = pku′

where p, u′ ∈ (A1
2 ∪X )∗, k ∈ {a, ab} ∪ X , σ(p) = 1, σ(k) ∈ {a, ab}), and let

q be the longest prefix of v such that σ(q) = 1, i.e. v = q`v′ where q, v′ ∈
(A1

2 ∪X )∗, ` ∈ {b, ba}∪X , σ(q) = 1, σ(`) ∈ {b, ba}). If k ∈ {a, ab} and ` ∈ {b, ba}
then we consider the morphism τL where L = (c(pq), x, y, 0, 0), x, y 6∈ c(uv)
arbitrary variables. Then τL(u) R a and τL(v) R b. Analogically, if k = xu ∈ X ,
σ(xu) ∈ {a, ab} and ` ∈ {b, ba} then we consider the morphism τL where L =
(c(pq), xu, y, a, 0), y 6∈ c(uv) an arbitrary variable, and we have τL(u) R a and
τL(v) R b again. The situations when ` ∈ X are similar. This means that we
need to put one test morphism to Tu,v for each pair of prefixes p of u and q of
v. We use polynomially many morphisms.

3. The last case which we have to discuss is that σ(u) J a but σ(v) = 0
(the case σ(v) J a but σ(u) = 0 is analogical). If σ(xv) = 0 for some variable
xv ∈ c(v), then xv does not occur in u and we can use the test morphism from
case 1. We also use the test morphism from case 1 in the situation when v
contains 0.

So, we assume that σ(x) 6= 0 for all variables and that u and v do not
contain 0. Now, v has a factor αwβ where α, β ∈ A1

2 ∪X , w ∈ (X ∪ {1})∗ and
σ(α) ∈ {b, ab}, σ(w) = 1, σ(β) ∈ {b, ba}. If α, β ∈ X then we consider the
morphism τL where L = (c(w), α, β, σ(α), σ(β)); if α ∈ X and β ∈ {b, ba} then
we consider τL where L = (c(w), α, y, σ(α), 0) and y ∈ X \ c(uv); (and similarly
if α ∈ {b, ab}, β ∈ X ); and finally if α ∈ {b, ab} and β ∈ {b, ba} then we use
the test morphism from case 1. In all situations τL(u) ∈ Ja and τL(v) = 0. This
means that we need to put one test morphism to Tu,v for each factor w of v.

2 We just switch from prefixes to suffixes in the following argument.
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There are only polynomially many factors of v, hence we put polynomially many
morphisms to Tu,v. ut

Note that arguments similar to those used in the previous proof lead also to
the observation that the 2T-EQN(A1

2) problem is decidable in polynomial time,
in particular the EQN(A1

2) problem is decidable in polynomial time too. This
result is contained in [1].

We also note that the tractability of the CHECK-ID(A1
2) problem has been

proved by Szabó and Seif [13] who used different techniques.

4 Final Remarks

We recall a well-known fact.

Lemma 9. B1
2 ∈ 〈A1

2〉.

Proof. Let A1
2 = {1, c, d, cd, dc, 0}, where c2 = c, d2 = 0, cdc = c, dcd = d.

We denote M the submonoid of the monoid A1
2×A1

2 generated by the elements
a = (c, d) and b = (d, c). The monoid M contains the elements 1A1

2 ×A1
2

= (1, 1),
a, b, ab = (cd, dc), ba = (dc, cd) and a certain subset I of elements with 0 on one
of the coordinates. We also have aba = a, bab = b, and a2, b2 ∈ I. Moreover, the
set I is an ideal of M . Now, one can check that the mapping ϕ : M → B1

2 given
by the images of generators ϕ(a) = a, ϕ(b) = b is a surjective morphism, where
ϕ(x) = 0 for each x ∈ I. In other words B1

2 is the Rees quotient of M by the
ideal I. ut

This lemma has interesting consequences. First, it shows that the class of all
finite monoids with the tractable identity checking problem is not a pseudovari-
ety.

Although methods and results concerning the CHECK-ID problems and the
POL-EQ problems are very close, the complexity of the problems is not always
the same.

Proposition 10. The CHECK-ID(B1
2×A1

2) problem is decidable in polynomial
time and the POL-EQ(B1

2×A1
2) problem is coNP-complete.

Proof. From Lemma 9 we have 〈A1
2〉 = 〈B1

2×A1
2〉, hence the CHECK-ID(B1

2×A1
2)

problem is decidable in polynomial time by Lemma 8. On the other hand we
show that the POL-EQ(B1

2) problem can be reduced to the POL-EQ(B1
2×A1

2)
problem. Then the statement follows from Proposition 3.

First, we consider a morphism α : B1
2 → B1

2×A1
2 given by the rule α(m) =

(m, 0) for every m ∈ B1
2. This morphism can be extended to the morphism

α : (B1
2 ∪X )∗ → (B1

2×A1
2 ∪X )∗. Now, if we have an instance of the POL-EQ(B1

2)
problem u, v ∈ (B1

2 ∪X )∗ then we consider the instance s = α(u)·(1, 0), t = α(v)·
(1, 0) of the POL-EQ(B1

2×A1
2) problem. It is easy to see that the polynomials

s and t are equivalent in B1
2×A1

2 if and only if the polynomials u and v are
equivalent in B1

2. It is also clear that this is a polynomial reduction. ut
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Note that the EQN(B1
2×A1

2) problem is NP-complete, because we can reduce
the EQN(B1

2) problem (see Remark 4) to the EQN(B1
2×A1

2) problem using the
same idea as in the previous proof.

The relationship between the problems CHECK-ID, POL-EQ and EQN could
be a task for a future research on this field.

Historical remark

Before the paper was finished, its preliminary version had been available on the
author’s web page for a long time. For that reason some papers (e.g. [6]) refer
to the preprint which had contained a few additional results, namely examples
of monoids with different complexity of the studied problems.

Also a note in the paper [11] mentioned the preprint version.
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6. Horváth, G., Szabó, Cs.: The complexity of checking identities over finite groups.

Int. J. Algebra and Computation 16/5, 931–939 (2006)
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