
Biautomata for k-Piecewise Testable Languages

Ondřej Kĺıma and Libor Polák⋆

Department of Mathematics and Statistics, Masaryk University
Kotlářská 2, 611 37 Brno, Czech Republic

{klima,polak}@math.muni.cz

http://www.math.muni.cz

Abstract. An effective characterization of piecewise testable languages
was given by Simon in 1972. A difficult part of the proof is to show
that if L has a J -trivial syntactic monoid M(L) then L is k-piecewise
testable for a suitable k. By Simon’s original proof, an appropriate k

could be taken as two times the maximal length of a chain of ideals in
M(L). In this paper we improve this estimate of k using the concept
of biautomaton: a kind of finite automaton which arbitrarily alternates
between reading the input word from the left and from the right. We
prove that an appropriate k could be taken as the length of the longest
simple path in the canonical biautomaton of L. We also show that this
bound is better than the known bounds which use the syntactic monoid
of L.

Key words: biautomata, k-piecewise testable languages, J -trivial monoids

1 Introduction

A language L over a non-empty finite alphabet A is called piecewise testable if
it is a Boolean combination of languages of the form

A∗a1A
∗a2A

∗ . . . A∗aℓA
∗, where a1, . . . , aℓ ∈ A, ℓ ≥ 0 . (∗)

Simon’s celebrated theorem [12] states that a regular language L is piecewise
testable if and only if the syntactic monoid M(L) of L is J -trivial. Here we are
interested in a finer question, namely to decide, for a given non-negative integer
k, the k-piecewise testability, i.e. whether L can be written as a Boolean com-
bination of languages of the form (∗) with ℓ ≤ k. Although there exist several
proofs of Simon’s result based on various methods from algebraic and combina-
torial theory of regular languages (e.g. proofs due to Almeida [1], Straubing and
Thérien [13], Higgins [4], Kĺıma [5]; see the survey paper by Pin [9] for more
information), little attention has been paid to this problem.

⋆ The authors were supported by the Institute for Theoretical Computer Science
(GAP202/12/G061), Czech Science Foundation.

2 Ondřej Kĺıma and Libor Polák

The least k such that a given piecewise testable language L is k-piecewise
testable, can be found by brute-force algorithms. The first one uses the fact
that for each fixed k and a fixed alphabet A, there are only finitely many k-
piecewise testable languages over A. A more sophisticated algorithm can apply
Eilenberg’s correspondence; it tests whether the syntactic monoid of L belongs
to the pseudovariety Jk of finite monoids corresponding to the variety of all
k-piecewise testable languages. But both methods are unrealistic in practice.

A natural question, considering Jk, is the existence of a finite basis of iden-
tities for this class of monoids; in the positive case one can test those identities
in the syntactic monoids. Such a finite basis exists for k = 1 since J1 is formed
by semilattices. Furthermore, Simon [11] and Blanchet-Sadri [2, 3] found finite
sets of identities for J2 and J3. Unfortunately, it was proved in [2, 3] that a finite
basis of identities for Jk does not exist for k ≥ 4.

Our ambition, in this paper, is not to decide the k-piecewise testability in
a reasonable computational time. Instead of that, for a given piecewise testable
language L, we would like to find a good estimate, i.e. a (possibly small) number
k, such that L is k-piecewise testable. Such a bound is implicitly contained in the
original Simon’s proof [12]. Namely, it is shown that k could be taken to be equal
to 2n− 1 where n is the maximal length of a J -chain, i.e. the maximal length
of a chain of ideals, in the syntactic monoid of L (see the proof of Corollary 1.7
in [10]). Note that a similar estimate was also established in the first author’s
combinatorial proof of Simon’s result [5]: k could be taken as ℓ+ r − 2 where ℓ
and r are the maximal lengths of chains for the orderings ≤L and ≤R.

In this paper we consider a different proof of Simon’s result using a new notion
of biautomaton introduced recently by the authors in [7]. The biautomaton is,
simply speaking, a finite automaton which arbitrarily alternates between reading
the input word from the left and from the right. In the formal definition of a
biautomaton there are some compatibility assumptions which ensure that the
acceptance of an input does not depend on the way how the input is read. One
application of biautomata in [7] gives a characterization of prefix-suffix testable
languages. Other result in [7] was an alternative characterization of piecewise
testable languages: L is piecewise testable if and only if its canonical biautomaton
C(L) is acyclic. The core of the proof was to show that if C(L) has m states then
L is 2m-piecewise testable. Here we improve this result in two directions, namely,
we eliminate the coefficient 2 and we replace the size of C(L) by the length of
the longest simple path in this acyclic biautomaton, which is called the depth of
the biautomaton. The main result of this paper can be phrased as follows.

Theorem 1. Let L be a piecewise testable language with an (acyclic) canonical
biautomaton of depth k. Then L is k-piecewise testable.

A quite delicate and technical proof of this result is not fully presented here
(see appendix in [8]), Section 3 contains only a sketch of this proof. Instead of
presenting a complete proof we prefer to add some examples and some additional
results. First of all, for each k, we present an easy example of a piecewise testable
language which has the canonical biautomaton of depth k and which is not (k−

Biautomata for k-Piecewise Testable Languages 3

1)-piecewise testable. This shows that the estimate given by Theorem 1 cannot
be improved in terms of the depth of the biautomaton. Furthermore, in Section 4
we compare our new estimate with those using the syntactic monoid. We show
that the depth of the canonical biautomaton is never larger than the mentioned
characteristics 2n − 1 and ℓ + r − 2 for the syntactic monoid of the language.
Moreover, we show that there are languages for which these characteristics are
arbitrarily larger than the depth of the canonical biautomaton. In the last section
of the paper we also establish a lower bound on k using another characteristic
of C(L), namely the length of the shortest simple path from the initial state to
an absorbing state.

2 Preliminaries

2.1 Piecewise Testable Languages and Syntactic Monoids

Let A∗ be the free monoid over a non-empty finite alphabet A with the neu-
tral element λ; its elements are called words. For u, v ∈ A∗, we write u ⊳ v
if u is a subword of v, i.e. u = a1 . . . aℓ, a1, . . . , aℓ ∈ A and there are words
v0, v1, . . . , vℓ ∈ A∗ such that v = v0a1v1 . . . aℓvℓ. Furthermore, for a given word
u ∈ A∗, we denote by Lu the language of all words which contain u as a sub-
word, i.e. Lu = { v ∈ A∗ | u ⊳ v }. Alternatively, for u = a1 . . . an, we can write
Lu = A∗a1A

∗ . . . A∗anA
∗. For such u we call n the length of the word u, in no-

tation |u|, and {a1, . . . , an} the content of u, in notation c(u). The complement
of a language L ⊆ A∗ is denoted by Lc.

Definition 1. A regular language is k-piecewise testable if it is a Boolean com-
bination of languages of the form Lu where all u’s satisfy |u| ≤ k. A regular
language is piecewise testable if it is k-piecewise testable for some k.

We will use further notation. For v ∈ A∗, we let Subk(v) = { u ∈ A+ |
u ⊳ v, |u| ≤ k }. We define the equivalence relation ∼k on A∗ by the rule: u ∼k v
if and only if Subk(u) = Subk(v). Note that Sub1(u) = c(u). An easy consequence
of the definition of piecewise testable languages is the following lemma. A proof
can be found e.g. in [11], [6]. Note that the usual formulation concerns the class
of all piecewise testable languages.

Lemma 1. A language L is k-piecewise testable if and only if L is a union of
classes in the partition A∗/∼k.

Example 1. Let A = {a, b}. Then Laba∪Lbab = Lab∩Lba is a 2-piecewise testable
language. The language Laba is not 2-piecewise testable because Sub2(abab) =
Sub2(baab) = A2, i.e. abab ∼2 baab but abab ∈ Laba and baab 6∈ Laba.

Example 2. For each k, we can consider the word u = ak over an arbitrary
alphabet containing the letter a. Then the language Lu is k-piecewise testable
but it is not (k − 1)-piecewise testable. Indeed, u = ak ∼k−1 ak−1, u ∈ Lu

and ak−1 6∈ Lu. Among others, this easy example shows that the classes of
k-piecewise testable languages are different for different k’s.

4 Ondřej Kĺıma and Libor Polák

In an arbitrary monoid M , we define Green’s relationsR, L and J as follows:
for a, b ∈ M , we have aRb if and only if aM = bM , aLb if and only if Ma = Mb,
aJ b if and only if MaM = MbM . Furthermore, a ≤R b if and only if aM ⊆ bM ,
a <R b if and only if aM ⊂ bM . Similarly for L and J . The monoid M is
J -trivial if, for each a, b ∈ M , aJ b implies a = b. If, for a ∈ M , we have
MaM = {a}, then a is called a zero and it is denoted by 0.

An R-chain is a sequence a0 <R a1 <R · · · <R ar. Its length is the number
r+1. The monoid M is of R-height r if r+1 is the maximal length of an R-chain
in M ; we write R-height(M) = r. Similarly for L and J .

For a language L ⊆ A∗, we define the relation ≡L on A∗ as follows: for
u, v ∈ A∗ we have

u ≡L v if and only if (∀ p, r ∈ A∗) (pur ∈ L ⇐⇒ pvr ∈ L) .

The relation ≡L is a congruence on A∗; it is called the syntactic congruence
of L and the quotient structure M(L) = A∗/≡L = { [u]≡L

| u ∈ A∗ } is the
syntactic monoid of L. Moreover, the monoid M(L) is finite whenever L is a
regular language. The natural mapping ηL : A∗ → M(L) given by ηL(u) = [u]≡L

,
for u ∈ A∗, is called the syntactic homomorphism. The language L is a union of
certain classes of the partition A∗/≡L. If we denote F = ηL(L) the set of these
classes, then L = { u ∈ A∗ | ηL(u) ∈ F }. When L is fixed, we will write simply
M , [u] and η instead of M(L), [u]≡L

and ηL.

The result by Simon follows.

Theorem 2 (Simon [11, 12]). A regular language L is piecewise testable if
and only if its syntactic monoid M(L) is J -trivial.

We also mention two results which are proved in Corollary 1.7 in [10] and in
the second author’s paper [5] respectively.

Proposition 1 ([10],[5]). Let L be a piecewise testable language with syntactic
monoid M(L). Then L is k-piecewise testable for k = 2 · J -height(M(L))+1 and
also for k = R-height(M(L)) + L-height(M(L)).

Note that the relationR-height(M(L))+L-height(M(L)) ≤ 2·J -height(M(L))
is obvious.

2.2 Biautomata for Piecewise Testable Languages

The authors’ paper [7] initialized the study of biautomata. We recall now the
basic notions and results which we will need here.

Definition 2. A biautomaton over a non-empty finite alphabet A is a six-tuple
B = (Q,A, ·, ◦, i, T) where

– Q is a non-empty set of states,
– · : Q×A → Q, extended to · : Q×A∗ → Q by q · λ = q, q · (ua) = (q · u) · a,

where q ∈ Q, u ∈ A∗, a ∈ A,

Biautomata for k-Piecewise Testable Languages 5

– ◦ : Q×A → Q, extended to ◦ : Q×A∗ → Q by q◦λ = q, q◦(av) = (q◦v)◦a,
where q ∈ Q, v ∈ A∗, a ∈ A (such actions are marked by dotted lines in
diagrams),

– i ∈ Q is the initial state,
– T ⊆ Q is the set of terminal states,
– for each q ∈ Q, a, b ∈ A, we have (q · a) ◦ b = (q ◦ b) · a,
– for each q ∈ Q, a ∈ A, we have q · a ∈ T if and only if q ◦ a ∈ T .

The language recognized by B is the regular language LB = { u ∈ A∗ | i ·u ∈ T }.

The following two properties, which generalize the last conditions in the
definition, follow immediately (see [7], Lemma 2.2).

– For each q ∈ Q, u, v ∈ A∗, we have (q · u) ◦ v = (q ◦ v) · u.
– For each q ∈ Q, u ∈ A∗, we have q · u ∈ T if and only if q ◦ u ∈ T .

A crucial property is the following lemma which says that to decide whether
u ∈ LB it is possible to consider an arbitrary reading of u in B.

Lemma 2 ([7], Lemma 2.3). Having a biautomaton B = (Q,A, ·, ◦, i, T), p ∈
Q and u ∈ A+, dividing u = u1 . . . ukvk . . . v1 arbitrarily, u1, . . . , uk, vk, . . . , v1 ∈
A∗, when reading from p, the words u1 first, then v1, then u2, and so on, i.e. we
move from p to the state q = ((. . . ((((p · u1) ◦ v1) · u2) ◦ v2) . . .) · uk) ◦ vk , then
q ∈ T if and only if p · u ∈ T .

For our propose, we recall the basic construction from [7].

Definition 3. For a regular language L ⊆ A∗ and u, v ∈ A∗, we put u−1Lv−1 =
{w ∈ A∗ | uwv ∈ L } and C = { u−1Lv−1 | u, v ∈ A∗ } . We define C(L) =
(C,A, ·, ◦, L, T), where q · a = a−1q, q ◦ a = qa−1 and T = { u−1Lv−1 | λ ∈
u−1Lv−1 }.

The structure C(L) is a biautomaton recognizing L and it is called the canon-
ical biautomaton of the language L. A useful property of C(L) is that all states
are reachable (from the initial state). More formally, we say that a state q ∈ Q
of a biautomaton B = (Q,A, ·, ◦, i, T) is reachable if there is a pair of words
u, v ∈ A∗ such that (i · u) ◦ v = q. For an arbitrary state p ∈ Q, we denote
Qp = { (p · u) ◦ v | u, v ∈ A∗} and we put Bp = (Qp, A, ·, ◦, p, T). This definition
is correct because, for u, v ∈ A∗ and a ∈ A, we have ((p·u)◦v)◦a = (p·u)◦av ∈ Qp

and ((p ·u)◦ v) ·a = ((p ·u) ·a)◦ v = (p ·ua)◦ v ∈ Qp. Hence Bp is a biautomaton
with all states reachable.

Example 3. [Continuation of Example 1] The canonical biautomaton of Laba ∪
Lbab is depicted in Figure 1 and the canonical biautomaton of Laba is depicted
in Figure 2. We are using the construction described in Definition 3. Note that
both biautomata are very similar; in fact, the only difference is how the letters
act on the initial state. But as we saw in Example 1, the first is 2-piecewise
testable and the second one is not.

6 Ondřej Kĺıma and Libor Polák

L

Lba La

Lab Lb

A∗

a

b

b
a

a

b
a

b

b

a

a

b

ab b b

ba a a

a, b

a, b

Fig. 1. The canonical biautomaton of the language L = Laba ∪ Lbab.

Let B = (Q,A, ·, ◦, i, T) be a biautomaton. A sequence (q0, q1, . . . , qn) of
states is called a path in B if for each j ∈ {1, . . . , n} there is aj ∈ A such that
qj = qj−1 ∗j aj where ∗j is · or ◦. A path (q0, q1, . . . , qn) is simple if the states
q0, . . . , qn are pairwise different and it is a cycle if n ≥ 2 and qn = q0 6= q1.
The biautomaton B is called acyclic if there is no cycle in B. Note that “loops”
are not cycles and for the acyclic biautomaton B, each biautomaton Bp is also
acyclic.

The first major application of biautomata was the following statement.

Theorem 3 ([7]). Let L ⊆ A∗ be a regular language. Then L is piecewise
testable if and only if the canonical biautomaton of L is acyclic.

We say that the state q of a biautomaton B = (Q,A, ·, ◦, i, T) is absorbing
if, for every a ∈ A, we have q · a = q ◦ a = q. It is clear that in each acyclic
biautomaton there is some absorbing state and every simple path can be pro-
longed to such a state. Furthermore, each simple path in a biautomaton with all
states reachable can be prolonged in such a way that it starts in i. We define
the following two characteristics of an acyclic biautomaton B = (Q,A, ·, ◦, i, T)
with all states reachable. The depth of B, depth(B) in notation, is the maximal
number n such that there is a simple path (i, q1, . . . , qn) in B where qn is an ab-
sorbing state. Similarly, diam(B) is the minimal number n for which such simple
path exists. We call this characteristic the diameter of B.

Example 4 (Continuation of Examples 1 and 3). For both biautomata in Fig-
ure 1 and 2 we have depth(B) = diam(B) = 3.

Example 5 (Continuation of Example 2). If u = ak, then it is not hard to see
that states in C(Lu) are exactly Laℓ where ℓ ≤ k. In particular, there is the
unique terminal state La0 = Lλ = A∗ which is also the unique absorbing state.

Biautomata for k-Piecewise Testable Languages 7

L

Lba La

Lab Lb

A∗

a

b
a

a

a

b

b
a

a

b

ab b b

ba a a

a, b

a, b

b

b

Fig. 2. The canonical biautomaton of the language L = Laba.

For each 0 < ℓ ≤ k, we have Laℓ · a = Laℓ ◦ a = Laℓ−1 and Laℓ · b = Laℓ ◦ b = Laℓ

for each letter b 6= a. Hence depth(C(Lu)) = k.

The previous example shows that the estimate given by Theorem 1 is in some
sense optimal (at least in terms of the depth of the biautomaton).

3 Proof of the theorem

Due to the space limitation, a complete proof is situated in Appendix. Here
we just try to explain the main idea and techniques of the proof, which are,
in fact, the same as in the original proof of Theorem 3. But the proof is more
delicate here since it is built from weaker assumptions. Basically, the statement
of Theorem 1 is a consequence of the following proposition and Lemma 1.

Proposition 2. Let B = (Q,A, ·, ◦, i, T) be an acyclic biautomaton with all
states reachable and with depth(B) = ℓ. Then, for every u, v ∈ A∗, such that
Subℓ(u) = Subℓ(v), we have

u ∈ LB if and only if v ∈ LB .

Proof (Sketch.). We prove the statement by induction with respect to ℓ in such
a way that the induction assumption will be applied on subbiautomata Bp’s of
the biautomaton B which have smaller depth whenever p 6= i. One can find a
complete discussion of cases ℓ = 0 and ℓ = 1 in Appendix.

Assume that ℓ ≥ 2 and that the statement holds for all ℓ′ < ℓ, and assume
that it is not true for ℓ. Then there is a pair of words u, v ∈ A∗ such that

Subℓ(u) = Subℓ(v) and i · u ∈ T and i · v 6∈ T . (1)

We will show that these assumptions lead to a contradiction.

8 Ondřej Kĺıma and Libor Polák

Our complete proof consists of numerous steps. At each stage we have certain
set of assumptions and we are adding a new one to them. After a detailed
analysis we show that this new additional assumption leads to a contradiction.
This means we could add the negation of the last assumption to our actual
family of assumptions and consider this new family in the next stage. At the
end of the process we will have enough strong assumptions which will lead to a
final contradiction. This process is demonstrated here by the beginning of the
detailed proof together with one (quite significant and typical) step.

In the state i, we read from the left both words u and v, and we are in-
terested in the positions in the words u and v where we leave the initial state
i. First assume that i · u = i, i.e. we do not leave the state i. Recall that the
assumption Subℓ(u) = Subℓ(v) implies c(u) = c(v). Thus we have i · v = i ∈ T –
a contradiction. From this moment we may assume that

i · u 6= i and also i · v 6= i, and moreover dually, i ◦ u 6= i and i ◦ v 6= i . (2)

So we really leave the state i and there are u′, u′′ ∈ A∗, a ∈ A such that

u = u′au′′, for each x ∈ c(u′) we have i · x = i, and i · a 6= i, a 6∈ c(u′) . (3)

Similarly, let v′, v′′ ∈ A∗, b ∈ A be such that

v = v′bv′′, for each x ∈ c(v′) we have i · x = i, and i · b 6= i, b 6∈ c(v′) . (4)

The assumption a = b leads to a contradiction (see the full version for the
argument) and therefore we may assume that

a 6= b . (5)

Let us assume, for a moment, that i · a = i · b = p. We will consider the
first occurrence of b in u. Since in the biautomaton B, when we read u from
the left we move from the initial state by a, it is clear that the first occurrence
of b in u is behind the first occurrence of a in u. More formally, u = u′au′′

0bu
′′
1

where a 6∈ c(u′) and b 6∈ c(u′au′′
0). Similarly, v = v′bv′′0av

′′
1 where b 6∈ c(v′) and

a 6∈ c(v′bv′′0).
Now from the assumption (1), i.e. Subℓ(u) = Subℓ(v), and since mentioned

occurrences of a and b are the first occurrences of these letters in u and v we
get Subℓ−1(u

′′
0bu

′′
1) = Subℓ−1(v

′′
1). Indeed, if w ∈ Subℓ−1(u

′′
0bu

′′
1) then aw ∈

Subℓ(u) = Subℓ(v) from which we obtain w ∈ Subℓ−1(v
′′
1). One proves the oppo-

site inclusion similarly. Thus we can deduce that Subℓ−1(u
′′
0bu

′′
1) = Subℓ−1(v

′′
1) ⊆

Subℓ−1(v
′′
0av

′′
1) = Subℓ−1(u

′′
1) ⊆ Subℓ−1(u

′′
0bu

′′
1). Therefore Subℓ−1(u

′′
0bu

′′
1) =

Subℓ−1(v
′′
0av

′′
1). We have i · u = p · u′′

0bu
′′
1 ∈ T and i · v = p · v′′0av

′′
1 6∈ T . This is a

contradiction to the induction assumption applying to the biautomaton Bp and
the pair of words u′′

0bu
′
1 and v′′0av

′′
1 . Altogether we have that i · a 6= i · b and we

can add this formula to the actual set of assumptions.
Then we continue in the way described above. Note that in other steps we

need to discuss more complicated situations. For example, we consider also the

Biautomata for k-Piecewise Testable Languages 9

positions in the words, where we leave the initial state i when we read both words
u and v from the right. This leads (in one case) to factorizations of words u and
v of the form u = u1au2bu3du4cu5 and v = v1bv2av3cv4dv5, where mentioned
occurrences of a and b are the first occurrences of these letters and the mentioned
occurrences of c and d are the last occurrences of these letters. Then one uses
the real power of the notion of biautomata because we read u in such a way
that we read u1a from the left first and then cu5 from the right. This means we
move to a certain state p for which Bp has depth at most ℓ− 2 (which is ensured
by certain additional assumptions added during the proof). Then the induction
assumption is applied on this p (and, in fact, to certain other states which must
be considered in this case). ⊓⊔

4 Estimates using J -trivial monoids

We compare the estimates form Theorem 1 with those from Proposition 1.

Proposition 3. Let L be a piecewise testable language and let M(L) be its (J -
trivial) syntactic monoid and C(L) be its (acyclic) canonical biautomaton. Then

depth(C(L)) ≤ R-height(M(L)) + L-height(M(L)) ≤ 2 · J -height(M(L)) .

Proof. The second inequality is trivially satisfied in every monoid. We use the
construction of a biautomaton from a monoid described in Remark 2.10 in [7].
Let M = M(L) be a syntactic (J -trivial) monoid of a piecewise testable language
L and η : A∗ → M, u 7→ [u] be the syntactic homomorphism and let F = η(L).
Then the biautomaton Bη = (Bη, A, ·, ◦, i, T), where

– Bη = M ×M ,

– for every a ∈ A and p, r ∈ M , we set (p, r) · a = (p[a], r),

– for every a ∈ A and p, r ∈ M , we set (p, r) ◦ a = (p, [a]r),

– i = ([λ], [λ]) = (1, 1),

– T = { (p, r) | pr ∈ F },

recognizes L. Since M is J -trivial the biautomaton Bη is acyclic. Moreover, C(L)
has minimum depth among all biautomata recognizing L (see [7], Section 2.4),
so it is enough to prove that depth(Bη) ≤ R-height(M) + L-height(M). Now,
assume that depth(Bη) = k. Thus there is a simple path (q0 = i, q1, q2, . . . , qk) in
Bη. In particular, for each j ∈ {1, . . . , n} we have qj−1 6= qj and there is aj ∈ A
such that qj−1 ∗j aj = qj , where ∗j is · or ◦. Let qj = (mj , nj) for j = 0, . . . , k.

Now we have 1 ≥R m1 ≥R m2 ≥R · · · ≥R mk and 1 ≥L n1 ≥L n2 ≥L

· · · ≥L nk. For each j, there are two possibilities: 1) mj−1 = mj and nj−1 6= nj ,
i.e. nj−1 >L ni or 2) nj−1 = nj and mj−1 6= mj . So, if we omit repeated oc-
currences of elements of M in the sequences (1,m1, . . . ,mk) (and (1, n1, . . . , nk)
respectively) we obtain the chains of >R (and >L respectively) related elements.
Thus k ≤ R-height(M) + L-height(M) and the statement follows. ⊓⊔

10 Ondřej Kĺıma and Libor Polák

In the following example we demonstrate that the described inequalities are
strict for some languages. Namely, for each integer n, we find a language L (over
the alphabet having 3n letters) such that its canonical biautomaton has depth
4 but J -height(M(L)) is at least n.

Example 6. For an arbitrary n, we denote A = {a1, . . . , an}, B = {b1, . . . , bn}
and C = {c1, . . . , cn} (altogether 3n pairwise different letters). Let K be the
language of all words which does not contain neither two letters from the sub-
alphabet A nor two letters from the subalphabet C. More formally, K is a
2-piecewise testable language given by the following expression

K =

n⋂

i,j=1

Lc

aiaj
∩

n⋂

i,j=1

Lc

cicj
.

For each i = 1, . . . , n, we put Li = Laibici ∩K and we define L =
⋃n

i=1
Li.

Deciding, for a given u ∈ A∗, whether u ∈ L using biautomaton C(L), we
can ignore b’s from the left and from the right (i.e. no non-trivial moves in
C(L), in fact we are staying in the initial state L) until we read some ai form
the left or some ci from the right. Then the index i is fixed and u ∈ L if and
only if u ∈ Li. The last condition is checked in C(Li). To illustrate further
computation, we assume that i = 1 and we describe the biautomaton C(L1). Its
part is depicted in Figure 3. First, all letters from B act identically on all states,
with the exception of the states pa, pc and pac where only letters from B different
from b1 act identically, and b1 acts as depicted. Secondly, all actions by letters
from A∪C which are not shown in the figure move from a state to the unique non-
terminal absorbing state ∅ which is not on the image. We get a decision whether
u ∈ L1 using at most three non-trivial moves. The canonical biautomaton of the
language L can be seen as the union of n copies of the biautomata for Li’s where
the initial states are merged to the initial state L and all non-terminal absorbing
states are also merged. We see that depth(C(L)) = depth(C(Li)) = 4.

On the other hand, in the syntactic monoid of L, there is a J -chain:

1 >R [b1] >R · · · >R [b1 . . . bn] >R [b1 . . . bnc1] >L [a1b1 . . . bnc1] >R 0.

Indeed, let vi = b1 . . . bi for i = 0, . . . , n. Then ai+1 · vi · ci+1 6∈ L and ai+1 · vi+1 ·
ci+1 ∈ L. Therefore [vi] 6= [vi+1] and [vi] >R [vi+1] follows from the J -triviality
of M(L). The last three relations are obtained similarly.

Hence J -height(M(L)) ≥ n+3. In fact, one can show that J -height(M(L)) =
n+ 3.

5 Concluding Remarks

The goal of this paper was to give, for a piecewise testable language L, a good
estimate of the minimum number k such that L is k-piecewise testable. The
estimate from Theorem 1 is a tight upper bound in terms of the depth of the

Biautomata for k-Piecewise Testable Languages 11

L1
pa pab

pc pac

pbc pabc

c1 c1

c1 c1

b1 b1

b1

a1

a1

a1

a1

b1

Fig. 3. A part of C(L1) where L1 = La1b1c1 ∩
⋂

i,j
Lc

aiaj
∩

⋂
i,j

Lc

cicj
.

canonical biautomaton of the language L as we saw in Examples 2 and 5. We
also saw in Section 4 that the estimate from Theorem 1 is better than those from
Proposition 1. But we should say that we are still far from the optimal value of
k because there are languages for which depth of the canonical biautomaton is
larger then the optimal k as we demonstrate in the following example.

Example 7. Let A = {a1, a2, . . . , an} and let ℓ be an integer. We consider L =
{aℓ1a

ℓ
2 . . . a

ℓ
n} consisting of a single word. One can easily check that this language

is given by the expression

L =
n⋂

i=1

Laℓ
i
∩

n⋂

i=1

Lc

a
ℓ+1

i

∩
⋂

i<j

Lc

ajai
.

In particular, L is a (ℓ+ 1)-piecewise testable language. It is clear that L is not
ℓ-piecewise testable, because u = aℓ1a

ℓ
2 . . . a

ℓ
n ∈ L, v = aℓ+1

1 aℓ2 . . . a
ℓ
n 6∈ L and

u ∼ℓ v.
If we consider the canonical biautomaton of L, then each state, as a language,

is u−1Lv−1, where u, v ∈ A∗, and it consists of at most one word. Thus one can
see that depth(B(L)) = ℓ · n+ 1.

The existence of languages like in the previous example requests the need of
some lower bounds for k-piecewise testability. The first attempt is the content
of the following result.

12 Ondřej Kĺıma and Libor Polák

Proposition 4. Let L be a piecewise testable language over the n-element al-
phabet. If kn < diam(C(L)), then L is not k-piecewise testable.

Proof. Let A = {a1, . . . , an}. We prove the statement by induction with respect
to diam(C(L)). For diam(C(L)) = 0 there is nothing to prove and therefore assume
that 1 ≤ diam(C(L)) ≤ n and kn < diam(C(L)). Then k = 0 and it is clear that
0-piecewise testable languages over the alphabet A are just A∗ and ∅ which both
have trivial canonical biautomata, i.e. diam(C(L)) = 0 – a contradiction. Thus
we have proved the statement for each L such that diam(C(L)) ≤ n.

Let s = diam(C(L)) > n and let k be an arbitrary number such that kn < s.
We can look at q = i·a1a2 . . . an. Let Bq be the subbiautomaton of C(L) consisting
from all states reachable from the state q. Then diam(Bq) ≥ s − n and by the
induction assumption the language L′ recognized by the biautomaton Bq is not
(k−1)-piecewise testable language. This means that there is a pair of words u′, v′

such that u′ ∈ L′, v′ 6∈ L′ and u′ ∼k−1 v′. Now we consider u = a1a2 . . . anu
′ and

v = a1a2 . . . anv
′ for which we claim that u ∼k v. Indeed, since the prefix a1 . . . an

of u contains all letters, we see that each word w, satisfying w ∈ Subk(u), can
be factorized in two parts w = w0w1 in such a way that w0 ∈ Subk(a1 . . . an)
and w1 ∈ Subk−1(u

′). Thus w1 ∈ Subk−1(v
′) and we can conclude w ∈ Subk(v).

Hence we have a pair of words u, v such that u ∼k v, u ∈ L and v 6∈ L, which
implies that L is not k-piecewise testable by Lemma 1. ⊓⊔

References

1. Almeida, J.: Implicit operations on finite J -trivial semigroups and a conjecture of
I. Simon. J. Pure Appl. Algebra 69 (1990), 205–218

2. Blanchet-Sadri, F.: Games, equations and the dot-depth hierarchy. Comput. Math.
Appl. 18 (1989), 809–822

3. Blanchet-Sadri, F.: Equations and monoids varieties of dot-depth one and two.
Theoret. Comput. Sci. 123 (1994), 239–258

4. Higgins, P.: A proof of Simon’s Theorem on piecewise testable languages. Theoret.
Comput. Sci. 178 (1997), 257–264

5. Kĺıma, O.: Piecewise testable languages via combinatorics on words. Discrete
Mathematics 311 (2011), 2124–2127

6. Kĺıma, O., Polák, L.: Hierarchies of piecewise testable languages. International
Journal of Foundations of Computer Science 21 (2010), 517–533

7. Kĺıma, O., Polák, L.: On biautomata. To appear in RAIRO, available at
http://math.muni.cz/∼klima/Math/publications.html (previous version: Non-
Classical Models for Automata and Applications, NCMA 2011, 153–164)

8. Kĺıma, O., Polák, L.: present paper with appendix, available at
http://math.muni.cz/∼klima/Math/publications.html

9. Pin, J.-E.: Syntactic semigroups, Chapter 10 in Handbook of Formal Languages,
G. Rozenberg and A. Salomaa eds, Springer, 1997

10. Pin, J.-E.: Varieties of Formal Languages, North Oxford Academic, Plenum, 1986
11. Simon, I.: Hierarchies of events of dot-depth one. Ph.D. thesis. U. Waterloo, (1972)
12. Simon, I.: Piecewise testable events. In Proc. ICALP 1975 LNCS 33 (1975), 214–

222
13. Straubing H., Thérien, D.: Partially ordered finite monoids and a theorem of I. Si-

mon, J. Algebra 119 (1988), 393–399

Biautomata for k-Piecewise Testable Languages 13

Appendix

Here we present a complete and detailed proof of Proposition 2. We prove a few
technical lemmas first.

Lemma 3. Let ℓ ≥ 1 and let u, v ∈ A∗ be such that Subℓ(u) = Subℓ(v). Let a
be a letter from c(u). Then there are uniquely determined words u′, u′′ and v′, v′′

such that u = u′au′′ and v = v′av′′ and a 6∈ c(u′), a 6∈ c(v′). Moreover, for u′′

and v′′ we have Subℓ−1(u
′′) = Subℓ−1(v

′′).

Proof. Note that the equality c(u) = c(v) follows from the assumption Subℓ(u) =
Subℓ(v). We consider the first occurrence of the letter a in u and in v respectively
and hence u′ and v′ respectively must be a factor before this first occurrence of
a. Thus we have u = u′au′′ and v = v′av′′ satisfying a 6∈ c(u′) and a 6∈ c(v′). Now
if w ∈ Subℓ−1(u

′′), then aw ∈ Subℓ(u) = Subℓ(v) from which w ∈ Subℓ−1(v
′′)

follows. This means that Subℓ−1(u
′′) ⊆ Subℓ−1(v

′′) and the opposite inclusion
can be proved in the same way. ⊓⊔

We will also use the dual version of the previous lemma where instead of the
first occurrences of a letter in words u and v we consider the last occurrences.
Furthermore, in the same way, one can prove the following two-sided version of
Lemma 3.

Lemma 4. Let ℓ ≥ 2 and u, v ∈ A∗ be such that Subℓ(u) = Subℓ(v). Let a, d ∈ A
be letters such that ad ∈ Subℓ(u). Then there are words u1, u2, u3, v1, v2, v3 ∈ A∗

satisfying u = u1au2du3 and v = v1av2dv3 where a 6∈ c(u1), a 6∈ c(v1), d 6∈ c(u3)
and d 6∈ c(v3). Moreover, we have Subℓ−2(u2) = Subℓ−2(v2). ⊓⊔

Recall the formulation of Proposition 2.

Proposition 2. Let B = (Q,A, ·, ◦, i, T) be an acyclic biautomaton with all
states reachable and with depth(B) = ℓ. Then, for every u, v ∈ A∗, such that
Subℓ(u) = Subℓ(v), we have

u ∈ LB ⇐⇒ v ∈ LB .

Proof. At the beginning of the proof we recall that the condition u ∈ LB means
that i · u ∈ T , but we can also consider other possible reading of u in B and we
must again finish in a terminal state. This property is used often in what follows
without special references.

We prove the statement by induction with respect to the depth of the biau-
tomaton.

For ℓ = 0, there is nothing to prove, because the assumption depth(B) = 0
means that B is a trivial biautomaton, i.e. Q = {i}, and hence LB = A∗ or
LB = ∅, depending on the fact whether i ∈ T or not.

Now let depth(B) = ℓ = 1. Since each state is reachable from i by a simple
path of length at most 1 we have that, for each q ∈ Q\{i}, that q = i·a or q = i◦a
for some a ∈ A. Moreover, every state q ∈ Q \ {i} is absorbing. If, for a, b ∈ A,

14 Ondřej Kĺıma and Libor Polák

p = i ·a 6= i and q = i◦b 6= i then p = p◦b = (i ·a)◦b = (i◦b) ·a = q ·a = q. Thus
there are only two possible cases: there is only one state in Q \ {i} or there are
more than two states in Q \ {i}, but then all actions leading to different states
contained in Q\ {i} are all given by · or by ◦. The second possibility means that
either, for all a ∈ A, we have i ◦ a = i or, for all a ∈ A, we have i · a = i. In
this case we have LB = A∗ or LB = ∅, depending on the fact whether i ∈ T or
not. Let us consider the first case when Q = {i, q}, with q being an absorbing
state. If T = Q or T = ∅ then again LB = A∗ or LB = ∅. Thus we can assume
that i 6∈ T and q ∈ T , because the other possibility describes the complementary
language. We denote C = { a ∈ A | i · a = q } and we see that LB =

⋃
a∈C La .

Since this language is 1-piecewise testable, Lemma 1 completes the proof.

Assume for the rest of the proof that ℓ ≥ 2 and that the statement holds for
all ℓ′ < ℓ. And furthermore, assume that the statement is not true for ℓ. We will
reach a contradiction by strengthening our assumptions. Let there be a pair of
words u, v ∈ A∗ such that

Subℓ(u) = Subℓ(v) and i · u ∈ T and i · v 6∈ T . (1)

In the state i, we read from the left both words u and v, and we are interested
in the positions in the words, where we leave the initial state i. First assume that
i·u = i ∈ T , i.e. we do not leave the state i. Recall that the assumption Subℓ(u) =
Subℓ(v) implies c(u) = c(v). Thus we have i · v = i ∈ T – a contradiction. From
this moment we may assume that

i · u 6= i and also i · v 6= i, and moreover dually, i ◦ u 6= i and i ◦ v 6= i . (2)

So we really leave the state i and there are u′, u′′ ∈ A∗, a ∈ A such that

u = u′au′′, for each x ∈ c(u′) we have i · x = i, and i · a 6= i, a 6∈ c(u′) . (3)

Similarly, let v′, v′′ ∈ A∗, b ∈ A be such that

v = v′bv′′, for each x ∈ c(v′), we have i · x = i and i · b 6= i, b 6∈ c(v′) . (4)

Assume for a moment that a = b. We denote p = i · a = i · u′a = i · v′a and
we consider the biautomaton Bp. It is clear that the depth of Bp is at most ℓ−1.
By our assumptions i · u = p · u′′ ∈ T and i · v = p · v′′ 6∈ T . By Lemma 3 we
have Subℓ−1(u

′′) = Subℓ−1(v
′′). Now we obtain a contradiction to the induction

assumption applied on the biautomaton Bp and the pair of words u′′ and v′′.
Therefore we may assume that

a 6= b . (5)

We will consider the first occurrence of b in u. When we read u (in the
biautomaton B) from the left, we move from the initial state only when we reach
the letter a for the first time. Therefore the first occurrence of b in u is after the
first occurrence of a in u. More formally,

u = u′au′′
0bu

′′
1 where a 6∈ c(u′) and b 6∈ c(u′au′′

0) . (6)

Biautomata for k-Piecewise Testable Languages 15

Similarly,
v = v′bv′′0av

′′
1 where b 6∈ c(v′) and a 6∈ c(v′bv′′0) . (7)

Now, by Lemma 3, we have Subℓ−1(u
′′
0bu

′′
1) = Subℓ−1(v

′′
1) ⊆ Subℓ−1(v

′′
0av

′′
1) =

Subℓ−1(u
′′
1) ⊆ Subℓ−1(u

′′
0bu

′′
1), hence Subℓ−1(u

′′
0bu

′′
1) = Subℓ−1(v

′′
0av

′′
1).

Assume, for a moment, that i · a = i · b = p. We have i · u = p · u′′
0bu

′′
1 ∈

T and i · v = p · v′′0av
′′
1 6∈ T . Again this is a contradiction to the induction

assumption applying to the biautomaton Bp and the pair of words u′′
0bu

′
1 and

v′′0av
′′
1 . Altogether we have that

i · a 6= i · b . (8)

Now we will change our strategy a bit: in the state i we read both u and v
from the right and we are interested in the position in the words, where we leave
the state i.

Recall our assumption (2). Let w′, w′′ ∈ A∗, c ∈ A be such that

u = w′cw′′, for every x ∈ c(w′′) we have i ◦ x = i, and i ◦ c 6= i . (9)

Similarly, let z′, z′′ ∈ A∗, d ∈ A be such that

v = z′dz′′, for every x ∈ c(z′′), we have i ◦ x = i, and i ◦ d 6= i . (10)

With respect to the previous paragraph, we can further assume that

i ◦ c 6= i ◦ d (11)

and we know that the last occurrence of d in u is before the last occurrence of c
in u and vice verse for v.

Now we are interested in the relative positions of the considered occurrences
of letters a and d in words u and v . Since the mentioned occurrence of a is the
first occurrence of this letter in u and the occurrence d is the last occurrence of
the letter d in u, we see that the occurrence of a is before the occurrence of d if
and only if ad ∈ Sub2(u).

First assume that ad 6∈ Sub2(u) = Sub2(v). We distinguish two possibilities:
a = d and a 6= d.

Case a = d: From the assumption ad 6∈ Sub2(u) = Sub2(v) we know that a
has exactly one occurrence in u and exactly one occurrence in v. By Lemma 3
and its dual, we have Subℓ−1(u

′′) = Subℓ−1(z
′′) and Subℓ−1(u

′) = Subℓ−1(z
′), in

particular c(u′′) = c(z′′) and c(u′) = c(z′). Thus from our assumptions (10) and
(3), we have i ◦ u′′ = i ◦ z′′ = i and i · z′ = i · u′ = i. Since i · u ∈ T we have also
(i ·u′)◦au′′ ∈ T , i.e. (i ·u′)◦au′′ = i◦au′′ = (i◦u′′)◦a = i◦a ∈ T . Similarly, for
v, we get (i ◦ z′′) · z′a 6∈ T and thus (i ◦ z′′) · z′a = i · z′a = (i · z′) · a = i · a 6∈ T .
We obtained a contradiction since i ◦ a ∈ T and i · a 6∈ T cannot be true at the
same moment in a biautomaton.

Case a 6= d: Now the first occurrence of a in u is after the last occurrence of
d in u and the same is true for v. We use Lemma 3 again. The first occurrence of
a in v is somewhere (see (10)) in the suffix z′′ of v and hence z′′ = z′′0az

′′
1 where

16 Ondřej Kĺıma and Libor Polák

a 6∈ c(z′dz′′0). Then Subℓ−1(z
′′
1) = Subℓ−1(u

′′) and it follows that Subℓ−1(u
′′) ⊆

Subℓ−1(z
′′), in particular c(u′′) ⊆ c(z′′). Thus for each x ∈ c(u′′) we have i◦x = i

and since a occurs in z′′ we have also i ◦ a = i. In the same way we obtain that
c(z′) ⊆ c(u′) and for each x ∈ c(z′) we have i ·x = i and also i ·d = i. This means
that both u and v can be read without leaving the state i. Indeed, (i ·u′)◦au′′ =
i◦au′′ = i and (i ·z′d)◦z′′ = i◦z′′ = i. This is a contradiction to the assumption
that u ∈ LB and v 6∈ LB, because the state i cannot be terminal and non-terminal
at the same moment. We have finished the case ad 6∈ Sub2(u) = Sub2(v). Note
that if we interchange u with v the previous part of the proof can be used for
the situation when bc 6∈ Sub2(u) = Sub2(v).

For the rest of the proof we can assume

ad ∈ Sub2(u) = Sub2(v) and bc ∈ Sub2(u) = Sub2(v) . (12)

Now we will discuss the case when i · a 6= i ◦ d. Denote p1 = i · a 6= i and
p2 = i ◦ d 6= i for which we have p1 6= p2 and consider p3 = p1 ◦ d = (i · a) ◦ d =
(i ◦ d) · a = p2 · a. The state p3 need not be different from p1 and p2, but is it
important that there is a simple path of length two from i to p3. Hence both
biautomata Bp1

and Bp2
has depth at most ℓ− 1 and the biautomaton Bp3

has
depth at most ℓ− 2.

Since ad ∈ Sub2(u) = Sub2(v) we can consider the following factorizations
of u and v: u = u1au2du3, v = v1av2dv3, where u1, u2, u3, v1, v2, v3 ∈ A∗ are
such that a 6∈ c(u1), a 6∈ c(v1), d 6∈ c(u3), d 6∈ c(v3). Recall that here u1 = u′

satisfying conditions from assumption (3), and v3 = z′′ from (10). By Lemmas 3
and 4 we have Subℓ−1(u2du3) = Subℓ−1(v2dv3), Subℓ−1(u1au2) = Subℓ−1(v1av2)
and Subℓ−2(u2) = Subℓ−2(v2).

The following part of the proof is illustrated in Figure 4.
By the induction assumption applied on Bp1

and the pair of words u2du3 and
v2dv3 we have p1 · u2du3 ∈ T if and only if p1 · v2dv3 ∈ T . The first condition
is satisfied because p1 · u2du3 = i · u1au2bu3 = i · u. Hence p1 · v2dv3 ∈ T and
consequently (p1 ◦ dv3) · v2 ∈ T . Now p1 ◦ v3 = (i · a) ◦ v3 = (i ◦ v3) · a = i · a = p1
which explains why in Figure 4 there is a loop labeled by v3 in the state p1. Thus
for the terminal state (p1 ◦ dv3) · v2 we get (p1 ◦ dv3) · v2 = ((p1 ◦ v3) ◦ d) · v2 =
(p1 ◦ d) · v2 = p3 · v2. Therefore p3 · v2 ∈ T .

Analogously, we have p2 ◦ v1av2 = i ◦ v 6∈ T and hence p2 ◦ u1au2 6∈ T follows
from the induction assumption applied on the biautomaton Bp2

and the pair of
words v1av2 and u1au2. We deduce that p2 ·u1au2 = (p2 ·u1a) ·u2 6∈ T . Now we
can see that p2 · u1a = ((i ◦ d) · u1) · a = ((i · u1) ◦ d) · a = (i ◦ d) · a = p2 · a = p3
from which p2 · u1au2 = p3 · u2 6∈ T follows. We have observed p3 · v2 ∈ T in the
previous paragraph and p3 ·u2 6∈ T here. This is a contradiction to the induction
assumptions that Bp3

is a acyclic biautomaton of depth at most ℓ − 2 and the
equality Subℓ−2(u2) = Subℓ−2(v2). We have finished the case when i · a 6= i ◦ d.

Finally assume that i · a = i ◦ d. Since the previous argument can be done
dually, we assume that

i · a = i ◦ d, and i · b = i ◦ c . (13)

Biautomata for k-Piecewise Testable Languages 17

i

p1 p2∈ T

∈ T

p3

6∈ T

6∈ T

∈ T 6∈ T

a

u1 v3

u1v3

d

u2du3

v2dv3

d
a

u1au2

v1av2

v2

u2

Fig. 4. States in the case ad ∈ Sub2(u), i · a 6= i ◦ d.

During the proof we collected assumptions (1) – (13). We recall some of them
now. By (6) and (7) the first occurrence of a in u is before the first occur-
rence of b and vise verse in v. Also from assumptions (9) and (10) we get that
the last occurrence of d in u is before the last occurrence of c in u and vise
verse in v. Furthermore, we assumed in (12) that ad ∈ Sub2(u) = Sub2(v) and
bc ∈ Sub2(u) = Sub2(v). Since the first occurrence of b in v is before the first
occurrence of a in v and ad ∈ Sub2(v), we have bd ∈ Sub2(v). Hence bd ∈ Sub2(u)
and the first occurrence of b in u is before the last occurrence of d in u. Similarly
we can get ac ∈ Sub2(v). Therefore we deduce the following factorizations of
words u and v:

u = u1au2bu3du4cu5, v = v1bv2av3cv4dv5 ,

where mentioned occurrences of a and b are the first ones and the occurrences
of c and d are the last ones in the words u and v. By Lemma 4 we get

Subℓ−2(u2bu3du4) = Subℓ−2(v3) ⊆

⊆ Subℓ−2(v2av3cv4) = Subℓ−2(u3) ⊆ Subℓ−2(u2bu3du4) .

Thus all inclusions hold as equalities and we can deduce

Subℓ−2(u3) = Subℓ−2(bu3) = Subℓ−2(u2bu3du4) =

= Subℓ−2(v3) = Subℓ−2(v3c) = Subℓ−2(v2av3cv4) .

Now we return our attention to the biautomaton B. Recall that we have assumed
in (13) and (8) that i ◦ d = i · a 6= i · b = i ◦ c. Denote p1 = i ◦ d = i · a,

18 Ondřej Kĺıma and Libor Polák

p2 = i · b = i ◦ c and further q1 = p1 ◦ c, q2 = p2 ◦ d and q3 = q1 · b. From the
equalities among states we also get q1 = p1 ◦ c = (i · a) ◦ c = (i ◦ c) · a = p2 · a,
q2 = p2◦d = (i·b)◦d = (i◦d)·b = p1·b and q3 = q1·b = (p1◦c)·b = (p1·b)◦c = q2◦c.
The following part of the proof is illustrated in Figure 5. We know that p1, p2

i

q1 q2∈ T

∈ T

q3

6∈ T

6∈ T

p1 p2
a

d

u1, v1 u5, v5

b

a

c

b

u2bu3du4

bu3

b
c

v3c

v2av3cv4

u3

v3

c d

Fig. 5. States in the case i · a = i ◦ d.

and i are three distinct states. Hence there is a simple path of length at least 2
from i to each of q1, q2 and q3. Thus the biautomata Bq1 , Bq2 and Bq3 have all
depth at most ℓ−2. We have i·u ∈ T and hence ((((i·u1)◦u5)·a)◦c)·u2bu3du4 =
((i · a) ◦ c) · u2bu3du4 = q1 · u2bu3du4 ∈ T . If we apply the induction assumption
on the biautomaton Bq1 and the pair of words u2bu3du4 and bu3, we obtain
q1 · bu3 ∈ T . Thus we have q1 · bu3 = (q1 · b) · u3 = q3 · u3 ∈ T . In a similar
way we get i ◦ v 6∈ T from which we conclude that q2 ◦ v2av3cv4 6∈ T . By
induction assumption for Bq2 and the pair of words v2av3cv4 and v3c we obtain
q2 ◦ v3c = q3 ◦ v3 6∈ T . Now this is a contradiction to the induction assumption
for Bq3 and the pair of words u3 and v3.

The proof of Proposition 2 is now complete. ⊓⊔

