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RELATIONS BETWEEN LINEAR CONNECTIONS ON THE
TANGENT BUNDLE AND CONNECTIONS ON THE JET
BUNDLE OF A FIBRED MANIFOLD

JOSEF JANYSKA AND MARCO MODUGNO

For Ivan Koldr, on the occasion of his 60th birthday.

ABSTRACT. All natural operations transforming linear connections on the
tangent bundle of a fibred manifold to connections on the 1-jet bundle are
classified. It is proved that such operators form a 2-parameter family (with
real coefficients).

Introduction

This paper is motivated by the bijective relation between time-preserving linear
connections on space-time with absolute time and affine connections on 1-jet bun-
dle of space-time, [1], [2], [3]. We would like to know if similar relation holds also
for a general fibred manifold and so we study all natural operations transforming
linear connections on the tangent bundle of a fibred manifold to connections on
the 1-jet bundle. We prove that such operators form a 2-parameter family (with
real coefficients) and we give its coordinate and geometric expressions.

Our operator are natural in the sense of [4] and [5].

All manifolds and mappings are assumed to be smooth.

1. Linear connections

Let p : Y — X be a fibred manifold with a local fibred coordinate chart
(2}, 2)) = (z), A = 1,...,dimX =n,i =1,...,dimY —dimX = m, 4 =
1,...,dimY =n+m.

A linear connection A on the bundle 7x : TX — X and a linear connection
K on the bundle my : TY — Y can be expressed, respectively, by tangent valued
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forms

ATX 5T°X @ TTX,
TX

K:TY -TY @ TTY
TY

with coordinate expressions, respectively,
(11) A:d(p®(6¢+A¢)\¢r¢3>\)a ALPAw ECOO(X)J
(1.2) K =d*®(8a + Kap250c),  KafpeC®(Y),
where (z%,2%) and (24, %) are the induced coordinate charts on TX and TY,
respectively. The connections A and K are also characterised by the vertical
projections vp : TTX — TX and vk : TTY — TY, respectively, or equivalently
by the forms vy : TX = T*"TX®@rxTX and vg : TY = T*TY @pyTY with
coordinate expressions, respectively,
(1.3) va = (d* = A 2V d?) @0y
(14) VK = (ClA — I(BAcideB)(@aA .

Let us denote by K ®y A* the tensor product of the connection K and the
pullback of the dual connection A* with respect to p, i.e.

Koy A" T"XQTY ->TY @ T(T'XgTY)
Y T*XQTY Y
Y

with coordinate expression, in the induced fibred coordinate chart (:EA,:Bf) on

qg:T"XeyTY =Y,
(1.5) K®y A" =d*®(0a + (Ka®B6Y —65A4" )2 02)

where we put A;#y = 0. The connection K ®y A* can be defined by the vertical
projection vgg,ar @ T(T*X@yTY) = T*X @yTY. We have the coordinate
expression

(16) VK@yA*r = (dﬁ — (KBAC(SZ — (EéABHH)IEdB)(@aﬁ .

A linear connection K on TY is said to be projectable on a linear connection A
on T'X if the following diagram commutes

TTY LS TY
TTp J JT P
TTX YA TX

A pair of linear connections (K, A) is said to be fibre preserving if the covariant
derivative of dp with respect to K @y A* vanishes, i.e. Vg, a+(dp) = 0.
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Lemma 1.1. Let K be a linear connection on 7Y and A a linear connection
on T'X. The following three conditions are equivalent

i) K is projectable on A.

ii) The pair (K, A) is fibre preserving.

i17) In a fibred coordinate chart Kat = Kj)‘B =0 and KN)‘U = AN)‘U.

PrRoOF. Tt can be proved by using (1.3), (1.4) and (1.6). o

2. Contact mappings

We deal with the natural complementary contact maps

ALY xTX 5TY, 9:5Y xTY VY,
Y Y

or equivalently

n: Y =TXTY, 9: 1Y =>TYRVY,
Y Y
which split the natural exact sequence

(2.1) 05 VY 5TY L T7X 0,

through the exact sequence over J;Y

(2.2) 0 1Y xTX & 1Y xTY L 1Y x VY - 0.
X 4 Y

Y

We have the coordinate expressions
(23) n =d*@n, =d*@(0 +250;), V=000 = (d —z\d)20;,
where (z*,2%; z}) is the induced coordinate chart on J;Y.

We recall the canonical isomorphism

VLY ~J1Y x (T*X ® VY)
Y Y

given by
2w d ®0; .

3. Induced connection

A connection T on the affine bundle 7} : J1Y — Y can be expressed by a
tangent valued form

r: Ly -7T%Y ® TLHY
LY

with coordinate expression

(3.1) [ =d*®(0a +Ta%0)), Tal €C®(NY).
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Using the identification of V1Y and T* X ® y VY, the connection ' can be
characterised by the vertical projection vr : T1Y — T* X®y, vy VY, or equivalently
by the form vr : 1Y = T* X @y T* 1Y ® 5,¥ VY. In coordinates we have

(32) vr = d)\®(dl>\ — I‘Af\dA)@)& .
The connection T is affine if and only if its coordinate expression is of the type
Tal =Tailed +T4% L4438, Tay € C2(Y).

Theorem 3.1. Let A be a linear connection on 7X and K a linear connection
on TY . The map

vr = 9 o y(ggpr) o T'o
given by the following diagram
THY ——Z V)Y —= = )Y x (T*XQVY)
Yy

(T1v,Tx) ](idhy x (idps x®9))

(id]ly XVK@A*)

LY x T(T*X@TY) LY x (T*X@TY)
Y Y

turns out to be a connection on the bundle 7} : J1Y — Y. Moreover, we have the
coordinate expression
(3.3) Tal = Ka'jel + Ka's — 2 (Ka"j2) + Katy),

i.e. the connection T is independent of A.
Thus, we have obtained a natural operator

x:K—T
transforming linear connections on 7Y into connections on .J1Y".
PrRoOF. Tt can be proved in coordinates by using (2.3), (1.6) and (3.2). o
Lemma 3.1. If (K, A) are fibre preserving, then the induced connection x(K)
on J1Y is affine.

ProOF. From the coordinate expression (3.3), for a pair of fibre preserving
connections K and A, we get

(3.4) Tl = (0§ K4’y — i Ka"a)z) + Ka'x,

where we put Kx#y = 0 and K, #) = A #». O
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Remark 3.1. In Galilei relativistic theory [1], [2], [3], the base manifold (time)
1s assumed to be 1-dimensional and affine. A linear connection on space—time 1is
said to be time—preserving if it is projectable on the canonical flat connection
on the base. (3.4) then implies that the relation between time—preserving linear
connections on space—-time and affine connections on its 1-jet bundle 1s bijective.
But for dimX > 1 and the flat connection on an affine base manifold this relation
1s not one-to-one.

4. Curvature

The curvatures of a linear connection K on 7Y and of a connection I' on J;Y
are, respectively, the 2—forms

1
Rk = 5[K, K|:TY = A*T*Y @ TY
Y

1
Rr = 5[r, T]: 1Y = A*T*Y ® (T*X ® VY),
with coordinate expressions
(41) Rig = (RK)ABCDi‘DdA/\dB(@aC' =
OKg®© .
= (% + I(AEDI(BCE)IDdA A dB®6c
and
(42) Rr = (RF)ABi)\dA A dB®d’\®6i =
OT B . 0T’ A B
= Iy, —=)d* Ad°®d ;i
(6IA+A”8:B£) A E@d @,
respectively.

Theorem 4.1. If T is the connection on J1Y induced by a linear connection
K on TY, then we have

Rr =9YoRgom,

according to the following commutative diagram
id]ly X(idT*X®RK)

LY xT*X @TY LY x (T*X @ A’ T*Y @ TY)
Y Y Y Y Y

(idhy)ﬂ)[ J'L?

LY NT*Y ® (T*X ® VY)

1.e. In coordinates
(Rr)ap'y = (RK)ABijiEj + (Ri)aB'> — éL‘Z((RK)AB”jCEj + (Rk)aB"») .

PRrRoOOF. Tt can be proved by using (3.3), (4.1) and (4.2). O
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5. Main theorem

Let us denote by Gé‘n m)’ k > 0, the group of k-order jets of diffeomorphisms of
R™™ which preserve the origin and the fibration R?*™ — R™ i.e. Gé“n m) is the
k

n+m

group homomorphism 71'5« DGl - G , 1 >k, and we denote by K((i’kri) its

(n,m) (n,m)

subgroup in G given by af‘AlmAr =0,7=0,...,k— 1. We have the canonical

kernel.
Let us denote by Q = RM@R™ x R @R +7)* the G(2 m)-Space with

n7
coordinates (2}, Kp#¢) and the left action of the group G%n,m) given by
;I*Ld; + azéﬁ ,
N, AxL
c tapape -

;i’z)\ =a
Kpic =al Kyt yaMa

Let us denote by Q = R @R™ x R @ AZRC+7)* the G(ln m)-Space with
coordinates (‘Ié\, TBAC) and the tensor action of the group G(ln m)* We denote by
tor : QQ — Q the G(zn m)—equivariant mapping given by the antisymmetrisation of

subindices K¢, i.c.
i i A 5 A - A
:L‘Z)\::L‘Z)\, TB C:l/Z(I\B C_[\C B)~

Let us consider the space S = R(*+m)*@R7*@R™ with coordinates (ua’y) and
the action of the group G(ln m) given by

ﬂAiA = aéquudgﬁﬁ .
Lemma 5.1. All G%n’m)—equivariant mappings from @ to S are of the form
ua'y = k1(TAijI‘§\ + Taty — IZTAH]'&Z'& - IZTANA)
(5.1) + ko (84 TpP 2 + 84 TpP 5 — 23,645 Tp P ja — 21,64 Tp" ),

where TBAC = 1/2([{3}&0 — I(CAB).
ProoOF. The proof uses the standard techniques of computation of G%nym)—equi—
variant mappings, [4], and we can divide it into three steps. We omit technical

computations.
Step 1. Let f: Q — SbeaG? . -equivariant mapping. From the equivariancy

(n,m)

of f with respect to K((Z’}_,z) we get that f is of the form f = fotor, where f : Q -5
is a Gln m)-equivariant mapping, so it is sufficient to classify all mappings f

Step 2. Let us denote by h,, the homotheties of R™. From the equivariancy
of f with respect to (h, x idgm) and (idg~ X hp,) we get that f is polynomial and
any monomial is linear in T4 ¢ and of maximum degree 3 in z%. Coeflicients are
absolute invariant tensors and we have a polynomial with 33 coefficients.

Step 3. Finally, using equivariancy with respect to diffeomorphisms (z*, 21)
(2}, 2t + aj,z"), we find relations between coefficients of f and we get (5.1). o
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Theorem 5.1. All natural operations transforming a linear connection K on
TY into connections on J1Y form the following 2-parameter family

(5.2) X(K) + (idoa* @9) (ki T + koI 0Tk )

where k1, ko € R, Tk 1s the torsion tensor of K,  denotes the contraction and I is
the identity tensor on TY .

PRrROOF. Any natural connection on J1Y is of the form x(K) + ®(K), where @
is an operator (over J1Y') transforming K into a section of T*Y @y T*X®y VY. So
it is sufficient to classify all operators ®. The generalized Peetre theorem implies
that any operator @ is of finite order, [4], [8].

Using homogeneity conditions, [4, Proposition 25.2], we get that all finite order
operators @ are of order 0 (®(K) depends only on coefficients of K and not on
their derivatives).

All 0-order operators @ are in a bijective correspondence with G%ﬂ)m -equivariant
mappings from @ to S and it 1s easy to see that the operator corresponding to the
mapping of Lemma 5.1 is (idon*®@v) (k1T + k2[®TK>. |

Corollary 5.1. For a torsion free connection K the connection y(K) is the
unique natural connection on J1Y given by K. ]

Another geometrical description of Theorem 5.1 is based on the following the-
orem, [4, Proposition 25.2].

Theorem 5.2. All natural operations transforming a linear connection K on
TY into linear connections on TY form the following 3—parameter family

K+ Tk + koI @Tx + ksTr @1
where kq, ko, k3 € R. =

Theorem 5.1 now can be interpreted by applying the operator y on the family
of connections from Theorem 5.2. Then the resulting connection on J;Y does not
depend on k3 and it is easy to see that

X(K + k1T + ko I@ Tk + ksTx @1) = x(K) + (idoa*@0) (ki Tk + koI 2Tk) .
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