On the existence and uniqueness of a slowly growing solution of singular linear functional differential systems

V. Pylypenko and A. Rontó

Kiev, Ukraine, Brno, Czech Republic

This note deals with a class of linear functional differential equations which may involve singularities with respect to the independent variable. More precisely, we consider the system of linear functional differential equations

$$
\begin{equation*}
x_{i}^{\prime}(t)=\sum_{k=1}^{n} p_{i k}(t) x_{k}\left(\omega_{i k}(t)\right)+q_{i}(t), \quad t \in[a, b), i=1,2, \ldots, n, \tag{1}
\end{equation*}
$$

subjected to the initial conditions

$$
\begin{equation*}
x_{i}(a)=\lambda_{i}, \quad i=1,2, \ldots, n \tag{2}
\end{equation*}
$$

where $-\infty<a<b<\infty$ and $\left\{p_{i k}, q_{i} \mid i, k=1,2, \ldots, n\right\} \subset L_{1 ; \operatorname{loc}}([a, b), \mathbb{R})$. The argument deviations $\omega_{k}, k=1,2, \ldots, n$, in (1) are arbitrary Lebesgue measurable functions that are supposed to transform the interval $[a, b)$ to itself. Similarly to [1,2], our aim here is to find conditions sufficient for the existence and uniqueness of a slowly growing solution of the initial value problem (1), (2). The "slow growth" of a solution $x=\left(x_{i}\right)_{i=1}^{n}:[a, b) \rightarrow \mathbb{R}^{n}$ is understood in the sense that its components satisfy the conditions

$$
\begin{equation*}
\sup _{t \in[a, b)} h_{i}(t)\left|x_{i}(t)\right|<+\infty, \quad i=1,2, \ldots, n \tag{3}
\end{equation*}
$$

where $h_{i}:[a, b) \rightarrow[0,+\infty), i=1,2, \ldots, n$, are certain given continuous functions possessing the properties $\lim _{t \rightarrow b-} h_{i}(t)=0, i=1,2, \ldots, n$. In addition, we assume that the functions $h_{i}:[a, b) \rightarrow[0,+\infty), i=1,2, \ldots, n$ are non-increasing.

By a solution of the functional differential system (1), we mean a locally absolutely continuous vector function $x=\left(x_{i}\right)_{i=1}^{n}:[a, b) \rightarrow \mathbb{R}^{n}$ with components possessing the properties $h_{i} x_{i}^{\prime} \in L_{1}([a, b), \mathbb{R}), i=1,2 \ldots, n$, and satisfying equalities (1) almost everywhere on the interval $[a, b)$.

Theorem 1. Assume that the functions $p_{i k}, i, k=1,2, \ldots, n$, are non-negative almost everywhere on $[a, b)$. Moreover, assume that, for all $i, k=1,2, \ldots, n$,

$$
\begin{gather*}
\int_{a}^{b} \frac{h_{k}(t) p_{i k}(t)}{h_{k}\left(\omega_{i k}(t)\right)} d t<+\infty, \tag{4}\\
\underset{t \in[a, b)}{\operatorname{ess} \sup } h_{k}\left(\omega_{i k}(t)\right) \sum_{j=1}^{n} \int_{a}^{\omega_{i k}(t)} \frac{p_{k j}(s)}{h_{j}\left(\omega_{k j}(s)\right)} d s<1 . \tag{5}
\end{gather*}
$$

Then problem (1), (2), (3) has a unique solution for arbitrary locally integrable functions $q_{i}:[a, b) \rightarrow \mathbb{R}, i=1,2, \ldots, n$, possessing the property

$$
\begin{equation*}
\left\{h_{i} q_{i} \mid i=1,2, \ldots, n\right\} \subset L_{1}([a, b), \mathbb{R}) . \tag{6}
\end{equation*}
$$

and any $\left\{\lambda_{i} \mid i=1,2, \ldots, n\right\}$. Furthermore, if q_{i} and $\lambda_{i}, i=1,2, \ldots, n$, for almost every $t \in[a, b)$ satisfy the condition

$$
\begin{equation*}
-\sum_{k=1}^{n} \lambda_{k} p_{i k}(t) \leq q_{i}(t), \quad i=1,2, \ldots, n \tag{7}
\end{equation*}
$$

then the unique solution of problem (1), (2), (3) has non-negative components.
Note that condition (5) of Theorem 1 is unimprovable in the sense that it cannot be replaced by the corresponding non-strict inequality

$$
\begin{equation*}
\underset{t \in[a, b)}{\operatorname{ess} \sup _{k}} h_{k}\left(\omega_{i k}(t)\right) \sum_{j=1}^{n} \int_{a}^{\omega_{i k}(t)} \frac{p_{k j}(s)}{h_{j}\left(\omega_{k j}(s)\right)} d s \leq 1 \tag{8}
\end{equation*}
$$

even for a single pair of indices i and k, because after such a replacement the assertion of Theorem 1 is not true any more.

Theorem 2. Let $p_{i k}, i, k=1,2, \ldots, n$, satisfy relations (4) and the condition

$$
\begin{equation*}
\underset{t \in[a, b)}{\operatorname{ess} \sup _{k}} h_{k}\left(\omega_{i k}(t)\right) \sum_{j=1}^{n} \int_{a}^{\omega_{i k}(t)} \frac{\left|p_{k j}(s)\right|}{h_{j}\left(\omega_{k j}(s)\right)} d s<1 \tag{9}
\end{equation*}
$$

for all $i, k=1,2, \ldots, n$.
Then, for any locally integrable functions $q_{i}:[a, b) \rightarrow \mathbb{R}, i=1,2, \ldots, n$, possessing property (6) and arbitrary real $\lambda_{i}, i=1,2, \ldots, n$, the initial value problem (1), (2) has a unique solution possessing property (3).

It should be mentioned that, under the assumptions of the last theorem, the unique solution of problem (1), (2), (3) may not be non-negative even under condition (7). Note also that a remark similar to that on the non-strict inequality (8) is also true for the non-strict version of condition (9).

Acknowledgement

The research was supported in part by the Academy of Sciences of the Czech Republic through the Institutional Research Plan No. AV0Z10190503.

References

[1] V. Pylypenko and A. Ronto, On singular solutions of linear functional differential equations with negative coefficients, J. Inequalities Appl., Volume 2008, Article ID 384910, 16 pages, doi:10.1155/2008/384910.
[2] V. Pylypenko and A. Ronto, On a singular Cauchy problem for functional differential equations with non-increasing non-linearities, Funkcialaj Ekvacioj 53 (2010), 277-289.

