ON THE CLASSIFICATION OF ORIENTED VECTOR BUNDLES
OVER 5-COMPLEXES

MARTIN ADEK, JI VANURA

ABSTRACT. Necessary and sufficient conditions on a CW-complex X of dimension
< 5 which allow to classify 5-dimensional oriented vector bundles over X in terms of
characteristic classes are presented. As a consequence, some results on the span of
such vector bundles and on the existence of 2-distributions and 4-distributions with
a complex structure are derived.

1. Introduction. The effort to classify vector bundles over a fixed CW-complex
has a long history. The first result in this direction is the assertion that every
two-dimensional oriented vector bundle is uniquely determined by its Euler class.
Complete characterization of oriented vector bundles over a 4-dimensional CW-
complex was given in [D-W] using the difference cocycles. In [T2] E. Thomas
found conditions for a mapping f € [X,Y] to be uniquely determined by its co-
homology homomorphism f* € Hom (H*(Y), H*(X)) under the assumptions that
X is a suspension or Y is an H-space. He also applied the result to Y = BO, the
classifying space for the group O, and so he obtained conditions on H*(X) under
which stable vector bundles over X are determined by their Stiefel-Whitney and
Pontrjagin classes. A further progress was made in [J-T| where the question how
many n-dimensional vector bundles over a CW-complex of the same dimension are
determined by a stable vector bundle £. The results are given in terms of £ and
they allow successful application for n = 3 and 7. Previous results concerning
characterization of oriented vector bundles over low dimensional complexes were
summarized and completed in [W]. Using elementary homotopy theoretic methods
and relations among characteristic classes L. M. Woodward has given the classifi-
cation of stable oriented vector bundles over CW-complexes of dimension < 8 and
the classification of n-dimensional oriented vector bundles over CW-complexes of
dimension n for n = 3,4,6,7,8, both in terms of characteristic classes. A typical
condition on a CW-complex X to admit such a classification is: H*(X,Z) has no
element of order 4.

In dimension 5 the situation is much more complicated as it can be seen on
the example of the sphere S°. Both trivial and tangent bundle over S° has all
characteristic classes equal to zero. Moreover, all conditions of Woodward’s type
are satisfied. The aim of our paper is to derive necessary and sufficient conditions
on a 5-dimensional CW-complex X which make the classification of 5-dimensional
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oriented vector bundles over X in terms of characteristic classes possible. This is
carried out in Section 3 using a combination of the method of Postnikov tower and
the Woodward method (see [T3] and [W]).

The maximal number of linearly independent sections in a vector bundle £ is
defined to be a span of £. As a consequence of the classification described above we
compute the span of 5-dimensional oriented vector bundles over CW-complexes of
the same dimension. These results complete computations of Thomas for tangent
bundles over 5-dimensional manifolds given in [T6] and also our results for the
dimension 6 and 7 obtained in [-V]. Together with results on the existence of a 2-
distribution and a 4-distribution with a complex structure they form the contents
of Section 4.

2. Preliminaries. All vector bundles will be considered over a connected CW-
complex X and will be oriented. The letter € will stand for trivial one-dimensional
vector bundle. The mapping G : H*(X,Zy) — H*(X,Z) is the Bockstein ho-
momorphism associated with the exact sequence 0 — Z — Z — Zy — 0. The
mappings i : H*(X,Zs) — H*(X,Z4) and py, : H*(X,Z) — H*(X,Zy) are in-
duced from the inclusion Zy — Z4 and reduction mod k, respectively.

An important role in our considerations plays the Pontrjagin square 3, a coho-
mology operation from H2*(X,Zs) into H**(X,Z,) satisfying the following rela-
tions

(1) Ppox = pya’

(2) Plu+v) = Pu+Po+in(u-v)

for x € H?*(X,Z) and u,v € H?*(X,Zs). See [M-T], chapter 2.

We will use w;(§) for the j-th Stiefel-Whitney class of the vector bundle &,
p1(€) for the first Pontrjagin class, and e(§) for the Euler class. For a complex
vector bundle ¢;(¢) denotes the j-th Chern class. The letters wj, p1,e will stand
for characteristic classes of the universal oriented n-dimensional vector bundle over
the classifying space BSO(n). Our results given below are based on the following
relations among the characteristic classes

3) pap1(§) = Pwa(§) + ixwa(§)

(4) we(€) = SqPwa(€) + w2 (§)wa(€)

the former being proved in [M] and [T1] and the latter being a special case of the
Wu formula.

The Eilenberg-MacLane space with n-th homotopy group G will be denoted
K(G,n) and ¢, will stand for the fundamental class in H"(K(G,n),G). Writing
the fundamental class it will be always clear which group G we have in mind.

In the proof of Theorem 1 we will need suspension. Being defined for every

fibration F' 2 E L B, it is a natural mapping from a subgroup of H**!(B) into
H*(F)/im j* which commutes with the Steenrod squares and i, (see [M-T]).

We say that x € H*(X,Z) is an element of order k (k = 2,3,4,...) if and only
if x # 0 and k is the least positive integer such that kx = 0 (if it exists). Some
results will involve the following hypotheses:
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Condition (A). H*(X,Z) has no element of order 4.
Condition (B). S¢?H3(X,Z,) = H%(X, Zs).

Remark. An important example of CW-complex which satisfies Condition (B) is a
5-dimensional oriented smooth manifold M with wq(M) # 0. The Poincar duality
and the fact that the second Wu class is equal to wq (M) yields

SqPH? (M, Zy) = wa(M)H?*(M, Zy) = H*(M, Zs) .

3. Classification theorem. Let X be a connected CW-complex of dimension < 5.
Our problem consists in finding conditions on X such that for every a € H?(X, Zs),
b € HYX,Zs), c € H*(X,Z) there is at most one oriented 5-dimensional vector
bundle £ with ws(&) = a, wa(§) = b, p1(§) = ¢. A necessary and sufficient condition
on a, b, ¢ for the existence of such a vector bundle derived in [W] is given by
the relation psc = Pa + i.b (see (3)). Up to homotopy there is just one mapping
f:X — K(Z9,2)x K(Z2,4)x K(Z,4) such that f*(12o®1®1) = a, f*(1814®1) = b,
ff1®1® ) = ¢ Similarly, wa, wg, p1, the cohomology classes of BSO(5),
determine a mapping « : BSO(5) — K(Za,2) x K(Za,4) x K(Z,4) which can be
considered to be a fibration. Now the problem desribed above can be formulated as
a problem of lifting: when every mapping f : X — K(Z2,2) X K(Z2,4) x K(Z,4)
has at most one lifting £ : X — BSO(5) in the fibration .
BSO(5)
oo O
e % e v
X WK (Zs,2) x K (Zo,4) x K(Z,4)

To solve this problem we will construct a Postnikov tower for the fibration « :
BSO(5) — K(Zs,2) x K(Zy,4) x K(Z,4). Put K = K (Zs,2) x K (Zs,4) x K(Z,4)
and denote the fibre of « by V. Let us recall that m,(BSO(5)) £ 0 for k = 1,3,
T (BSO(5)) = Zy for k = 2,5 and m4(BSO(5)) = Z. Considering the characteristic
classes as mappings from BSO(5) into appropriate Eilenberg—MacLane spaces, we
get wa, = id : m(BSO(5)) — Zao, wae = pa : m(BSO(B)) — Zo and pi. :
m4(BSO(5)) — Z is a multiplication by 2. See [W]. From the long exact homotopy
sequence we compute: w1 (V) = mo(V) 20, w3(V) & Zy, m4(V) 20, and 75(V) =
Zs. The first invariant in the Postnikov tower is the transgression of a fundamental
class in H3(V,Z4). It is a generator of ker o* C H*(K,Z,). Hence it is equal to

p4(1®1®L4)—€BL2®1®1—1®i*b4®1.

Let F4 be the first stage of the Postnikov tower and let the new mappings be
denoted according to the diagram.

Fl W 61 \A{((Zéla 3)
| i
1 6 1
P WBSO(5) ———y
; "
1 ! ‘
K———K p1(1801804) —P2@1R1-1Qi. 431 VSK(Z474)
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Consider 81 : BSO(5) — Ej as a fibration with a fibre Fy. This fibre is homotopy
equivalent to the homotopy fibre F of the mapping (3 (see [T3]). Hence comput-
ing the homotopy groups of Fy we get that F} is 4-connected and m5(F)) =2 Zs.
Consequently, f; is a 5-equivalence.

The next invariant ¢ € HS(Ej,Zs) is the transgression of the generator of
H?(Fy,7Zs>) in the Serre exact sequence for the fibration 3;. Fj is also the first stage
in the Postnikov tower for the fibration & : BSO(6) — K determined by wa, wy
and p;. The mapping Bl : BSO(6) — Ej in this Postnikov tower is a 6-equivalence
(since 75(BSO(6)) = 0). Using the Serre exact sequence for the fibration 3;, we get
that 3 is an isomorphism between HS(Ey,Z;) and H(BSO(6),Z,). The latter
group has generators w3, w3, wow, and Sq?w4(= we +wowy). Hence the generators
of HS(Ey,Zs) are 5 (13®@1®1), 75 ((Sql12)?@1®1), 75 (12@14@1), 75 (10 5¢%*14®1).
The mapping 3; : HS(E1,Zs) — HS(BSO(5),Z2) maps them into w3, w3, wowy
and Sq?w, = wowy, respectively. Consequently, using the Serre exact sequence for
the fibration 31 we get ¢ = 7} (12 ® 14 ® 1 + 1 ® Sq¢%14 ® 1). So we can build the
second stage F5 of our Postnikov tower.

Fg W 62 VI{(Z% 5)

| e

1 /6 1
F W3SO0(5) — 22—,

7 e

1 1

T (t2®e 2
R B 71 (L2®La®14+105¢%La®1) VSK(ZQ, 6)

Let the denotation of new mappings accords with the diagram. We can consider (35
to be a fibration with a fibre F5. Similarly as for the first stage, we can compute the
homotopy groups of F». So we get that Fy is 5-connected and (s is a 6-equivalence.

Let C = K(Z4,4) X K(Z2,6). Up to homotopy there is just one mapping k =
(k1,ke2) : K — C given by

kT(L4):1®1®p4L4—mL2®1®1+1®i*L4®1

k3(t6) =12 ®@u®1+1®S¢%, @ 1.

Due to Lemma 8.1 in [T4], there is a homeomorphism g : Fs — F where 7 : E — K
is a principal fibration with the classifying map k : K — C. Moreover, m;0mg = mog
and the fibration f = go 82 : BSO(5) — E is a 6-equivalence. Hence, we can
consider the following situation

BSO(5) L= 0eauv
o Lﬂ
K g =0k

which allows us to prove our main result.
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Theorem 1. Let X be a connected CW-complex of dimension < 5 and suppose
v:[X,BSO(5)] — H*(X,Zs) ® H*(X,Zs) ® H*(X,7Z)

is defined by v(§) = (w2(£), wa(§), p1(§)). Then

(i) imy = {((L,b, ¢) | pac =Pa+ib }
(ii) ~ is injective if and only if Conditions (A) and (B) are satisfied.

Proof. (i) follows immediately from the fact that a mapping f : X — K can be lifted
in the fibration « into BSO(5) if and only if f*(101®p4t4—Po®@1R1—1Ri,4R1) =
0. (See similar proofs in [C-V].)

(ii) Since the space E is a homotopy fibre of the mapping &k : K — C, the Puppe
sequence

Qk q n k
OK —QC - F —-K —C

yields the exact sequence

X, K] 1x 00 I 1x )  [X K] 2 X )

Moreover, § being a 6-equivalence, B. : [X, BSO(5)] — [X, E] is a bijection for
every CW-complex of dimension < 5. The following statements are equivalent:

(1) v =, =m0 B, : [X,BSO(5)] — [X, K] is injective.
(2) 7 : [X, E] — [X, K] is injective.
(3) ¢.=0

(4) (k). : [X, QK] — [X,QC] is surjective.
Hence we need to compute (Qky)* : H3(K (Z4,3),Z4) — H?*(QK,7Z4) and (Qks)*
H%(K(Z2,5),Zs) — H°(QK, Zs).

First, let us consider k.

OK ——— K(Zs,1) x K(Z2,3) x K(Z,3) 2y W (Z4,3)

Ll I‘l I‘l

PK PK(Z,2) x PK(Zs,4) x PK(Z,4) =28 P (24, 4)

L h h

K ——— K(Zy,2) x K(Zs,4) x K(Z,4) il WK (Z4,4)

Every element in H*(K,Z,) is suspensive. If we denote all suspensions by o, we
get

(Qk1)*(13) = (Qk1)"(0ra) = o(kjta) = 0(1 @ 1® para) —o(Pra @1 ® 1)
—0(1®i,4®1) =101 0(pats) —c(P2) @1 R1 - 1R 0 (istq) @1

the last equality being a consequence of the definition of suspension and coboundary
operator. In the fibration K(Z,3) — PK(Z,4) — K(Z,4) we get

o(pata) = pa(oLs) = pats.
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In the fibration K(Z2,3) — PK(Z2,4) — K(Z2,4) we have
0 (isty) = ix(0lg) = Qst3
and finally, in the fibration K(Zs,1) — PK(Z2,2) — K(Z2,2) we obtain

(5) U(mbg) = i*L:%.

Since this fact is not generally known, we will prove it at the end of this section.
As a result of these computations we get

(Qk1)x : [X, QK] — [X, K(Z4,3)] : (a,b,¢) — pac — ia® — i,b.
Hence (Qk1). is surjective if and only if
(6) HY(X, %) = paHY(X, Z) + 1, HY(X, Z),

We show that (6) is equivalent to the condition (A).

(A) = (6). Let x € H3(X,Zy4), then 48,2 = 0. (A) implies that 2842 = 0.
Consequently, there is a y € H?(X, Zs) such that S42 = B2y = Baisy. That is why
Ba(x — ivy) = 0, which implies © = i,y + psz for some z € H*(X,Z).

(6) = (A). Let v € H*(X,Z) satisfy 4v = 0. Then v = 42 where z = pyz+i.y €
H3(X,7Z4) so that v = Bypaz + Baixy = Baisy = B2y. Hence 2v = 0 and v is not an
element of order 4.

Now consider the mapping ks. The computation of (Qks)* : H?(K (Z2,5),Z2) —
H?(QK,Zs) gives

(Qk2)*(15) = (Qk2)*(016) = ok (16) = 1R 0(S¢Ps) @1+ 0(t2 ®14) @1
=1®85¢F01+0(la @)1

We are going to prove that o(ta ® t4) = 0. Consider the fibration

OB — PB - B
where B = K(Z2,2) x K(Z2,4). Let p* : HS(B,Zs) — H%(PB,QB;Zs) be deter-
mined by the mapping p. It is sufficient to show p*(12 ® t4) = 0. Using the Serre
spectral sequence with coefficients Zs for the above fibration, we have

P HY(B,Zy) = ES® — ES° < HS(PB,QB;Zy).

We compute dy : Ey' — ES°. Since Ey' = Ey° @ ES', for the generators of Ey'
we obtain

do(12 @ 1)) = da(13) - 11 + 13 -do(t1) = 13 - 10 =13
da(ta ®t1) =da(ta) - t1+ta-dat1 =g t2.

Hence v4 - 19 vanishes in Eg’o and p* (12 ® 14) = 0.
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So we conclude that
(QUk2)+[X, QK] — [X, K(Z3,5)] : (a,b,c) — Sq?b

and its surjectivity is given directly by Condition (B).
It remains to prove the relation (5). Consider the Serre spectral sequence for the
fibration K(Zs,1) — PK(Z2,2) — K(Za,2) with coeflicients Z4. For shortening

we will again denote this fibration QB — PB L B. It is not difficult to show
that H*(B,Z,) = 7, with the generator Pio and H?*(QB,Z,) = Z, with the
generator i,.5. The coboundary operator in the long exact sequence for the couple
(PB,QB) is an isomorphism, hence it is sufficient to prove that p*(Pia) # 0,
p* : HY(B,Z4) — H*(PB,)B;Z,) being induced by p. Since

B} = HY(B, Z4) /ker " ,
it is sufficient to show that Ei’o # 0. We have

E3' = H*(B,H' (OB, Z4)) = 7 = E3° ® By
Ey' = HYB,H (OB, 7)) = Zy .

2,1 40 o .. .
Moreover, dy : B3~ — E5° is injective because

do(ixte ® ixt1) = do(ista) - Gxt1 + ixta - da(ixtr) =

=ity - T(ixt1) = m%

. . 4,0 1,2 7,—2

where 7 is a transgression. Hence F3;™ = Zjy. Further, £y = 0, By = 0 and
4,0

consequently, E,"” = Z.

4. Span and the existence of distributions. In this section we compute the
span of oriented 5-dimensional vector bundles over a 5-dimensional CW-complex
satisfying Conditions (A) and (B) of Theorem 1. Under the same conditions we
find all oriented 5-dimensional vector bundles which admit a 2-distribution, i. e. an
oriented 2-dimensional subbundle, and all oriented 5-dimensional vector bundles
which admit a 4-distribution endowed with a complex structure, i. e. a complex
2-dimensional subbundle. For these purposes we need

Theorem 2. Let X be a connected CW-complex of dimension < 5 and let W €
H?*(X,Zy), P € H*(X,Z). Then there exists an oriented 3-dimensional vector
bundle £ over X with

if and only if
paP = PW.

Proof is very similar to the proof of the first part of Theorem 1. See also [W].
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Corollary 1. Let X be a connected CW-complex of dimension < 5 satisfying
Conditions (A) and (B). Then an oriented 5-dimensional vector bundle ¢ has a
2-distribution with Euler class U if and only if

(7) paU? + w(€)palU + wa(€) = 0.

Proof. (=) Let £ = ( & 7 where 7 is an oriented 2-dimensional vector bundle over
X with the Euler class U and ( is an oriented 3-dimensional vector bundle over X.
Then

g
[\v]
=
™
o

I

w2 () + wa(T) = wa(C) + p2U
wa(§) = wa(C) - w2 (1) = w2(C) - p2U

Substituting from here into the expression paU? + wa (&) + w4 (€), we get (7).
(<) Let U € H?(X,Z) satisfy (7). There is an oriented 2-dimensional vector
bundle 7 over X with the Euler class U. Put

W=w(&) +pU | P=p()-U>.

Then

paP — PW = psp1(&) — paU? — B(wa (&) + p2U) =
= pap1(€) — paU” — Puwa (&) — PpaU — i (wa(€)p2U) =
= iu(p2U? + w (&) paU + wa(§)) = 0.

According to Theorem 2, there is an oriented 3-dimensional vector bundle { over
X with wa(¢) = W and p1(¢) = P. We compute the characteristic classes of the
vector bundle ¢ & 7.

w2 (( B 1) = wa(C) + wa(r) = W + poU = wo(§)
wi(( B T) = wa(C) - wa(7) = W+ poU = wa(£)paU + poU? =
= wy(§)

p(C@7)=pi(Q) +pi(r) = P+ U> = pi(§).

(See [W] for the aditivity of p; in this case.) Theorem 1 now implies that & = (&,
which completes the proof.

Remark. As far as it is known to the authors there are only two general results
concerning 2-distributions in 5 or 4k + 1-dimensional vector bundles. See [T5],
Theorems 1.3 and 4.1. The former deals with spin manifolds (i.e. w1 (X) = we(X) =
0) and tangent bundles and the latter requires span > 2. Both examine the existence
of 2-distributions with the Euler class 2U € H?*(X,Z).
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Corollary 2. Let X be a connected CW-complex of dimension < 5 and let £ be
an oriented 5-dimensional vector bundle over X .

(1) span & > 1 if and only ife(¢) = 0.
If Conditions (A) and (B) are satisfied then
(2) span & > 2 if and only if wy(€) = 0.
(3) span & > 3 if and only if wy(¢) = 0 and there is a U € H?(X,Z) such that
wa (&) = p2U, p1(§) = U2
(4) span & =5 if and only if we(§) =0, wa(§) =0, p1(§) = 0.

Proof. (1) is well known and is included only for comleteness.

(2) is the immediate consequence of Corollary 1 for U = 0.

(3)(=) Let £ = ( @ 3¢ where ( is an oriented 2-dimensional vector bundle over
X. Then wa(§) = wa(¢) = 0 and for U = e(¢) we get wa(§) = wa(C) = p2U,
p1(€) = p1(¢) = U

(<) For U € H%(X,Z) there is an oriented 2-dimensional vector bundle ¢ over
X such that e({) = U. Then wa(¢ @ 3e) = wa() = p2U = wa(§), wa(¢ P 3e) =
wa(¢) = 0 = wy (&) and p1(¢ @ 3¢) = p1(¢) = U% = p1(€). Theorem 1 implies that
¢ @ 3e = £ since the characteristic classes of both vector bundles are the same.

(4) follows immediately from Theorem 1.

Remark. Statements (3) and (4) of Corollary 2 under a little bit different conditions
were already known to E. Thomas [T6]. Statement (2) under Conditions (A) and
(B) is new. It deals with the cases which are not covered in [T6]. The condition
wq(§) = 0 coincides with the condition for the stable span of 4k + 1-dimensional
vector bundles over a CW-comlex of the same dimension to be > 2. See [Ng],
Theorem 2.1.1.

Now we will investigate the existence of distributions with complex structure.
The case of 2-distributions is treated in Corollary 1. Here we will deal with 4-
distributions. For this purpose we need the following

Theorem 3. Let X be a connected CW-complex of dimension < 5 and let C; €
H?(X,Z),Cy € H*(X,Z). Then there exists a 2-dimensional complex vector bundle
¢ over X with the Chern classes

cl(() =0 s CQ(C) =C5.

Proof of this theorem follows the same lines as in [W].

Corollary 3. Let X be a connected CW-complex of dimension < 5 satisfying the
conditions (A) and (B). Then an oriented 5-dimensional vector bundle & over X
has a 4-distribution with a complex structure if and only if

(i) e(§) =0
(i) Baw2(§) =0

Proof. (=) Let n be a 4-distribution in ¢ with complex structure. Then obviously
e(§) = 0 and fawz(§) = Bawz(n @ €) = Bawz(n) = Papzci(n) = 0.
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(<) We have Bawz(€) = 0 and Bow4(€) = e(§) = 0. Consequently, we can find
a; € H*(X,7Z) and ay € H*(X,7Z) such that psa; = wz(£) and paas = wy(€). Then

pa(ai = 2a2) = Ppoar + ixpoaz = Puwz(€) + ivwa(€) = pap1(€) -
Hence there is a b € H*(X,Z) such that a? — 2as — 4b = p1(£). Put C; = a; and
Cy = aa + 2b. According to Theorem 3 there exists a complex vector bundle 7 over
X of complex dimension 2 with

c1(n) =C1 and co(n) = Cs.
Let us consider now the 5-dimensional real vector bundle n & . We get
wa(n @ €) = wa(n) = paci(n) = p2C1 = w2(§),
wy(n @ e) = wa(n) = paca(n) = p2Cs = wa(§),
pi(n®e) =pi(n) = c1(n)® - 2¢2(n) = C — 2C2 = p1(§).
Theorem 1 implies that £ = n @ €. This finishes the proof.

Remark. Let us recall that an f-structure on a vector bundle £ is an endomorphism
f: & — & satisfying the polynomial equation f2 + f = 0 with dim ker f constant.
It can be easily seen that if f is an f-structure then & = ( ®n where ( = ker f and
n = ker (f?+id). This means that on a vector bundle ¢ there exists an f-structure
if and only if there exists a distribution n C £ endowed with a complex structure.
If £ is an oriented 5-dimensional vector bundle over a connected CW-complex X of
dimension 5, we can distinquish two cases. In the first case dim n = 2 the existence
problem for an f-structure is covered by Corollary 1. The second case dim n = 4
is treated in Corollary 3.
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