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Abstract. Necessary and sufficient conditions on a CW-complex X of dimension
≤ 5 which allow to classify 5-dimensional oriented vector bundles over X in terms of
characteristic classes are presented. As a consequence, some results on the span of
such vector bundles and on the existence of 2-distributions and 4-distributions with
a complex structure are derived.

1. Introduction. The effort to classify vector bundles over a fixed CW-complex
has a long history. The first result in this direction is the assertion that every
two-dimensional oriented vector bundle is uniquely determined by its Euler class.
Complete characterization of oriented vector bundles over a 4-dimensional CW-
complex was given in [D–W] using the difference cocycles. In [T2] E. Thomas
found conditions for a mapping f ∈ [X, Y ] to be uniquely determined by its co-
homology homomorphism f∗ ∈ Hom (H∗(Y ), H∗(X)) under the assumptions that
X is a suspension or Y is an H-space. He also applied the result to Y = BO, the
classifying space for the group O, and so he obtained conditions on H∗(X) under
which stable vector bundles over X are determined by their Stiefel–Whitney and
Pontrjagin classes. A further progress was made in [J–T] where the question how
many n-dimensional vector bundles over a CW-complex of the same dimension are
determined by a stable vector bundle ξ. The results are given in terms of ξ and
they allow successful application for n = 3 and 7. Previous results concerning
characterization of oriented vector bundles over low dimensional complexes were
summarized and completed in [W]. Using elementary homotopy theoretic methods
and relations among characteristic classes L. M. Woodward has given the classifi-
cation of stable oriented vector bundles over CW-complexes of dimension ≤ 8 and
the classification of n-dimensional oriented vector bundles over CW-complexes of
dimension n for n = 3, 4, 6, 7, 8, both in terms of characteristic classes. A typical
condition on a CW-complex X to admit such a classification is: H4(X, Z) has no
element of order 4.

In dimension 5 the situation is much more complicated as it can be seen on
the example of the sphere S5. Both trivial and tangent bundle over S5 has all
characteristic classes equal to zero. Moreover, all conditions of Woodward’s type
are satisfied. The aim of our paper is to derive necessary and sufficient conditions
on a 5-dimensional CW-complex X which make the classification of 5-dimensional
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oriented vector bundles over X in terms of characteristic classes possible. This is
carried out in Section 3 using a combination of the method of Postnikov tower and
the Woodward method (see [T3] and [W]).

The maximal number of linearly independent sections in a vector bundle ξ is
defined to be a span of ξ. As a consequence of the classification described above we
compute the span of 5-dimensional oriented vector bundles over CW-complexes of
the same dimension. These results complete computations of Thomas for tangent
bundles over 5-dimensional manifolds given in [T6] and also our results for the
dimension 6 and 7 obtained in [–V]. Together with results on the existence of a 2-
distribution and a 4-distribution with a complex structure they form the contents
of Section 4.

2. Preliminaries. All vector bundles will be considered over a connected CW-
complex X and will be oriented. The letter ε will stand for trivial one-dimensional
vector bundle. The mapping βk : H∗(X, Zk) → H∗(X, Z) is the Bockstein ho-
momorphism associated with the exact sequence 0 → Z → Z → Zk → 0. The
mappings i∗ : H∗(X, Z2) → H∗(X, Z4) and ρk : H∗(X, Z) → H∗(X, Zk) are in-
duced from the inclusion Z2 → Z4 and reduction mod k, respectively.

An important role in our considerations plays the Pontrjagin square P, a coho-
mology operation from H2k(X, Z2) into H4k(X, Z4) satisfying the following rela-
tions

(1) Pρ2x = ρ4x
2

(2) P(u + v) = Pu + Pv + i∗(u · v)

for x ∈ H2k(X, Z) and u, v ∈ H2k(X, Z2). See [M–T], chapter 2.
We will use wj(ξ) for the j-th Stiefel–Whitney class of the vector bundle ξ,

p1(ξ) for the first Pontrjagin class, and e(ξ) for the Euler class. For a complex
vector bundle cj(ζ) denotes the j-th Chern class. The letters wj , p1, e will stand
for characteristic classes of the universal oriented n-dimensional vector bundle over
the classifying space BSO(n). Our results given below are based on the following
relations among the characteristic classes

(3) ρ4p1(ξ) = Pw2(ξ) + i∗w4(ξ)

(4) w6(ξ) = Sq2w4(ξ) + w2(ξ)w4(ξ)

the former being proved in [M] and [T1] and the latter being a special case of the
Wu formula.

The Eilenberg–MacLane space with n-th homotopy group G will be denoted
K(G, n) and ιn will stand for the fundamental class in Hn(K(G, n), G). Writing
the fundamental class it will be always clear which group G we have in mind.

In the proof of Theorem 1 we will need suspension. Being defined for every

fibration F
j

−→ E
p

−→ B, it is a natural mapping from a subgroup of Hk+1(B) into
Hk(F )/im j∗ which commutes with the Steenrod squares and i∗ (see [M–T]).

We say that x ∈ H∗(X, Z) is an element of order k (k = 2, 3, 4, . . . ) if and only
if x 6= 0 and k is the least positive integer such that kx = 0 (if it exists). Some
results will involve the following hypotheses:
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Condition (A). H4(X, Z) has no element of order 4.

Condition (B). Sq2H3(X, Z2) = H5(X, Z2).

Remark. An important example of CW-complex which satisfies Condition (B) is a
5-dimensional oriented smooth manifold M with w2(M) 6= 0. The Poincar duality
and the fact that the second Wu class is equal to w2(M) yields

Sq2H3(M, Z2) = w2(M)H3(M, Z2) = H5(M, Z2) .

3. Classification theorem. Let X be a connected CW-complex of dimension ≤ 5.
Our problem consists in finding conditions on X such that for every a ∈ H2(X, Z2),
b ∈ H4(X, Z2), c ∈ H4(X, Z) there is at most one oriented 5-dimensional vector
bundle ξ with w2(ξ) = a, w4(ξ) = b, p1(ξ) = c. A necessary and sufficient condition
on a, b, c for the existence of such a vector bundle derived in [W] is given by
the relation ρ4c = Pa + i∗b (see (3)). Up to homotopy there is just one mapping
f : X → K(Z2, 2)×K(Z2, 4)×K(Z, 4) such that f∗(ι2⊗1⊗1) = a, f∗(1⊗ι4⊗1) = b,
f∗(1 ⊗ 1 ⊗ ι4) = c. Similarly, w2, w4, p1, the cohomology classes of BSO(5),
determine a mapping α : BSO(5) → K(Z2, 2) × K(Z2, 4) × K(Z, 4) which can be
considered to be a fibration. Now the problem desribed above can be formulated as
a problem of lifting: when every mapping f : X → K(Z2, 2) × K(Z2, 4) × K(Z, 4)
has at most one lifting ξ : X → BSO(5) in the fibration α.

BSO(5)uα
X wf����������

K(Z2, 2) × K(Z2, 4) × K(Z, 4)

To solve this problem we will construct a Postnikov tower for the fibration α :
BSO(5) → K(Z2, 2)×K(Z2, 4)×K(Z, 4). Put K = K(Z2, 2)×K(Z2, 4)×K(Z, 4)
and denote the fibre of α by V . Let us recall that πk(BSO(5)) ∼= 0 for k = 1, 3,
πk(BSO(5)) ∼= Z2 for k = 2, 5 and π4(BSO(5)) ∼= Z. Considering the characteristic
classes as mappings from BSO(5) into appropriate Eilenberg–MacLane spaces, we
get w2∗ = id : π2(BSO(5)) → Z2, w4∗ = ρ2 : π4(BSO(5)) → Z2 and p1∗ :
π4(BSO(5)) → Z is a multiplication by 2. See [W]. From the long exact homotopy
sequence we compute: π1(V ) ∼= π2(V ) ∼= 0, π3(V ) ∼= Z4, π4(V ) ∼= 0, and π5(V ) =
Z2. The first invariant in the Postnikov tower is the transgression of a fundamental
class in H3(V, Z4). It is a generator of ker α∗ ⊂ H4(K, Z4). Hence it is equal to

ρ4(1 ⊗ 1 ⊗ ι4) − Pι2 ⊗ 1 ⊗ 1 − 1 ⊗ i∗ι4 ⊗ 1.

Let E1 be the first stage of the Postnikov tower and let the new mappings be
denoted according to the diagram.

F̄1 wV wβ̄1u K(Z4, 3)ui1
F1 wBSO(5) wβ1uα E1uπ1

K K wρ4(1⊗1⊗ι4)−Pι2⊗1⊗1−1⊗i∗ι4⊗1
K(Z4, 4)
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Consider β1 : BSO(5) → E1 as a fibration with a fibre F1. This fibre is homotopy
equivalent to the homotopy fibre F̄1 of the mapping β̄1 (see [T3]). Hence comput-
ing the homotopy groups of F̄1 we get that F1 is 4-connected and π5(F1) ∼= Z2.
Consequently, β1 is a 5-equivalence.

The next invariant ϕ ∈ H6(E1, Z2) is the transgression of the generator of
H5(F1, Z2) in the Serre exact sequence for the fibration β1. E1 is also the first stage
in the Postnikov tower for the fibration α̂ : BSO(6) → K determined by w2, w4

and p1. The mapping β̂1 : BSO(6) → E1 in this Postnikov tower is a 6-equivalence

(since π5(BSO(6)) ∼= 0). Using the Serre exact sequence for the fibration β̂1, we get

that β̂∗
1 is an isomorphism between H6(E1, Z2) and H6(BSO(6), Z2). The latter

group has generators w3
2 , w2

3 , w2w4 and Sq2w4(= w6+w2w4). Hence the generators
of H6(E1, Z2) are π∗

1(ι32⊗1⊗1), π∗
1((Sq1ι2)

2⊗1⊗1), π∗
1(ι2⊗ι4⊗1), π∗

1(1⊗Sq2ι4⊗1).
The mapping β∗

1 : H6(E1, Z2) → H6(BSO(5), Z2) maps them into w3
2 , w2

3, w2w4

and Sq2w4 = w2w4, respectively. Consequently, using the Serre exact sequence for
the fibration β1 we get ϕ = π∗

1(ι2 ⊗ ι4 ⊗ 1 + 1 ⊗ Sq2ι4 ⊗ 1). So we can build the
second stage E2 of our Postnikov tower.

F̄2 wF1 wβ̄2u K(Z2, 5)ui2
F2 wBSO(5) wβ2uβ1

E2uπ2

E1 E1 wπ∗

1
(ι2⊗ι4⊗1+1⊗Sq2ι4⊗1)

K(Z2, 6)

Let the denotation of new mappings accords with the diagram. We can consider β2

to be a fibration with a fibre F2. Similarly as for the first stage, we can compute the
homotopy groups of F2. So we get that F2 is 5-connected and β2 is a 6-equivalence.

Let C = K(Z4, 4) × K(Z2, 6). Up to homotopy there is just one mapping k =
(k1, k2) : K → C given by

k∗

1(ι4) = 1 ⊗ 1 ⊗ ρ4ι4 − Pι2 ⊗ 1 ⊗ 1 + 1 ⊗ i∗ι4 ⊗ 1

k∗

2(ι6) = ι2 ⊗ ι4 ⊗ 1 + 1 ⊗ Sq2ι4 ⊗ 1.

Due to Lemma 8.1 in [T4], there is a homeomorphism g : E2 → E where π : E → K
is a principal fibration with the classifying map k : K → C. Moreover, π1◦π2 = π◦g
and the fibration β = g ◦ β2 : BSO(5) → E is a 6-equivalence. Hence, we can
consider the following situation

BSO(5) wβ = 6-equivuα Euπ
K K wk = (k1, k2)

C

which allows us to prove our main result.
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Theorem 1. Let X be a connected CW-complex of dimension ≤ 5 and suppose

γ : [X, BSO(5)] → H2(X, Z2) ⊕ H4(X, Z2) ⊕ H4(X, Z)

is defined by γ(ξ) = (w2(ξ), w4(ξ), p1(ξ)). Then

(i) im γ = {(a, b, c) | ρ4c = Pa + i∗b }
(ii) γ is injective if and only if Conditions (A) and (B) are satisfied.

Proof. (i) follows immediately from the fact that a mapping f : X → K can be lifted
in the fibration α into BSO(5) if and only if f∗(1⊗1⊗ρ4ι4−Pι2⊗1⊗1−1⊗i∗ι4⊗1) =
0. (See similar proofs in [C-V].)

(ii) Since the space E is a homotopy fibre of the mapping k : K → C, the Puppe
sequence

ΩK
Ωk
−−→ ΩC

q

−→ E
π
−→ K

k
−→ C

yields the exact sequence

−→ [X, ΩK]
(Ωk)∗
−−−→ [X, ΩC]

q∗
−→ [X, E]

π∗

−→ [X, K]
k∗

−→ [X, C].

Moreover, β being a 6-equivalence, β∗ : [X, BSO(5)] → [X, E] is a bijection for
every CW-complex of dimension ≤ 5. The following statements are equivalent:

(1) γ = α∗ = π∗ ◦ β∗ : [X, BSO(5)] → [X, K] is injective.
(2) π∗ : [X, E] → [X, K] is injective.
(3) q∗ = 0
(4) (Ωk)∗ : [X, ΩK] → [X, ΩC] is surjective.

Hence we need to compute (Ωk1)
∗ : H3(K(Z4, 3), Z4) → H3(ΩK, Z4) and (Ωk2)

∗ :
H5(K(Z2, 5), Z2) → H5(ΩK, Z2).

First, let us consider k1.

ΩKu K(Z2, 1) × K(Z2, 3) × K(Z, 3) wΩk1u K(Z4, 3)u
PKu PK(Z2, 2) × PK(Z2, 4) × PK(Z, 4) wPk1u PK(Z4, 4)u
K K(Z2, 2) × K(Z2, 4) × K(Z, 4) wk1 K(Z4, 4)

Every element in H∗(K, Z4) is suspensive. If we denote all suspensions by σ, we
get

(Ωk1)
∗(ι3) = (Ωk1)

∗(σι4) = σ(k∗

1 ι4) = σ(1 ⊗ 1 ⊗ ρ4ι4) − σ(Pι2 ⊗ 1 ⊗ 1)

− σ(1 ⊗ i∗ι4 ⊗ 1) = 1 ⊗ 1 ⊗ σ(ρ4ι4) − σ(Pι2) ⊗ 1 ⊗ 1 − 1 ⊗ σ(i∗ι4) ⊗ 1

the last equality being a consequence of the definition of suspension and coboundary
operator. In the fibration K(Z, 3) → PK(Z, 4) → K(Z, 4) we get

σ(ρ4ι4) = ρ4(σι4) = ρ4ι3.
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In the fibration K(Z2, 3) → PK(Z2, 4) → K(Z2, 4) we have

σ(i∗ι4) = i∗(σι4) = i∗ι3

and finally, in the fibration K(Z2, 1) → PK(Z2, 2) → K(Z2, 2) we obtain

(5) σ(Pι2) = i∗ι
3
1.

Since this fact is not generally known, we will prove it at the end of this section.
As a result of these computations we get

(Ωk1)∗ : [X, ΩK] → [X, K(Z4, 3)] : (a, b, c) 7→ ρ4c − i∗a
3 − i∗b.

Hence (Ωk1)∗ is surjective if and only if

(6) H3(X, Z4) = ρ4H
3(X, Z) + i∗H

3(X, Z2).

We show that (6) is equivalent to the condition (A).
(A) ⇒ (6). Let x ∈ H3(X, Z4), then 4β4x = 0. (A) implies that 2β4x = 0.

Consequently, there is a y ∈ H3(X, Z2) such that β4x = β2y = β4i∗y. That is why
β4(x − i∗y) = 0, which implies x = i∗y + ρ4z for some z ∈ H3(X, Z).

(6) ⇒ (A). Let v ∈ H4(X, Z) satisfy 4v = 0. Then v = β4x where x = ρ4z+i∗y ∈
H3(X, Z4) so that v = β4ρ4z + β4i∗y = β4i∗y = β2y. Hence 2v = 0 and v is not an
element of order 4.

Now consider the mapping k2. The computation of (Ωk2)
∗ : H5(K(Z2, 5), Z2) →

H5(ΩK, Z2) gives

(Ωk2)
∗(ι5) = (Ωk2)

∗(σι6) = σk∗

2(ι6) = 1 ⊗ σ(Sq2ι4) ⊗ 1 + σ(ι2 ⊗ ι4) ⊗ 1

= 1 ⊗ Sq2ι3 ⊗ 1 + σ(ι2 ⊗ ι4) ⊗ 1

We are going to prove that σ(ι2 ⊗ ι4) = 0. Consider the fibration

ΩB −→ PB
p

−→ B

where B = K(Z2, 2) × K(Z2, 4). Let p̂∗ : H6(B, Z2) → H6(PB, ΩB; Z2) be deter-
mined by the mapping p. It is sufficient to show p̂∗(ι2 ⊗ ι4) = 0. Using the Serre
spectral sequence with coefficients Z2 for the above fibration, we have

p̂∗ : H6(B, Z2) ∼= E6,0
2 → E6,0

6 →֒ H6(PB, ΩB; Z2).

We compute d2 : E4,1
2 → E6,0

2 . Since E4,1
2

∼= E4,0
2 ⊗E0,1

2 , for the generators of E4,1
2

we obtain

d2(ι
2
2 ⊗ ι1) = d2(ι

2
2) · ι1 + ι22 · d2(ι1) = ι22 · ι2 = ι32

d2(ι4 ⊗ ι1) = d2(ι4) · ι1 + ι4 · d2ι1 = ι4 · ι2 .

Hence ι4 · ι2 vanishes in E6,0
3 and p̂∗(ι2 ⊗ ι4) = 0.
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So we conclude that

(Ωk2)∗[X, ΩK] → [X, K(Z2, 5)] : (a, b, c) 7→ Sq2b

and its surjectivity is given directly by Condition (B).
It remains to prove the relation (5). Consider the Serre spectral sequence for the

fibration K(Z2, 1) → PK(Z2, 2) → K(Z2, 2) with coefficients Z4. For shortening

we will again denote this fibration ΩB −→ PB
p

−→ B. It is not difficult to show
that H4(B, Z4) ∼= Z4 with the generator Pι2 and H3(ΩB, Z4) ∼= Z2 with the
generator i∗ι

3
1. The coboundary operator in the long exact sequence for the couple

(PB, ΩB) is an isomorphism, hence it is sufficient to prove that p̂∗(Pι2) 6= 0,
p̂∗ : H4(B, Z4) → H4(PB, ΩB; Z4) being induced by p. Since

E4,0
4

∼= H4(B, Z4)/ker p̂∗ ,

it is sufficient to show that E4,0
4 6= 0. We have

E2,1
2

∼= H2(B, H1(ΩB, Z4)) ∼= Z2
∼= E2,0

2 ⊗ E0,1
2

E4,0
2

∼= H4(B, H0(ΩB, Z4)) ∼= Z4 .

Moreover, d2 : E2,1
2 → E4,0

2 is injective because

d2(i∗ι2 ⊗ i∗ι1) = d2(i∗ι2) · i∗ι1 + i∗ι2 · d2(i∗ι1) =

= i∗ι2 · τ(i∗ι1) = i∗ι
2
2

where τ is a transgression. Hence E4,0
3

∼= Z2. Further, E1,2
3

∼= 0, E7,−2
3

∼= 0 and

consequently, E4,0
4

∼= Z2.

4. Span and the existence of distributions. In this section we compute the
span of oriented 5-dimensional vector bundles over a 5-dimensional CW-complex
satisfying Conditions (A) and (B) of Theorem 1. Under the same conditions we
find all oriented 5-dimensional vector bundles which admit a 2-distribution, i. e. an
oriented 2-dimensional subbundle, and all oriented 5-dimensional vector bundles
which admit a 4-distribution endowed with a complex structure, i. e. a complex
2-dimensional subbundle. For these purposes we need

Theorem 2. Let X be a connected CW-complex of dimension ≤ 5 and let W ∈
H2(X, Z2), P ∈ H4(X, Z). Then there exists an oriented 3-dimensional vector
bundle ξ over X with

w2(ξ) = W , p1(ξ) = P

if and only if
ρ4P = PW .

Proof is very similar to the proof of the first part of Theorem 1. See also [W].
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Corollary 1. Let X be a connected CW-complex of dimension ≤ 5 satisfying
Conditions (A) and (B). Then an oriented 5-dimensional vector bundle ξ has a
2-distribution with Euler class U if and only if

(7) ρ2U
2 + w2(ξ)ρ2U + w4(ξ) = 0 .

Proof. (⇒) Let ξ = ζ ⊕ τ where τ is an oriented 2-dimensional vector bundle over
X with the Euler class U and ζ is an oriented 3-dimensional vector bundle over X .
Then

w2(ξ) = w2(ζ) + w2(τ) = w2(ζ) + ρ2U

w4(ξ) = w2(ζ) · w2(τ) = w2(ζ) · ρ2U

Substituting from here into the expression ρ2U
2 + w2(ξ) + w4(ξ), we get (7).

(⇐) Let U ∈ H2(X, Z) satisfy (7). There is an oriented 2-dimensional vector
bundle τ over X with the Euler class U . Put

W = w2(ξ) + ρ2U , P = p1(ξ) − U2 .

Then

ρ4P − PW = ρ4p1(ξ) − ρ4U
2 − P(w2(ξ) + ρ2U) =

= ρ4p1(ξ) − ρ4U
2 − Pw2(ξ) − Pρ2U − i∗(w2(ξ)ρ2U) =

= i∗(ρ2U
2 + w2(ξ)ρ2U + w4(ξ)) = 0 .

According to Theorem 2, there is an oriented 3-dimensional vector bundle ζ over
X with w2(ζ) = W and p1(ζ) = P . We compute the characteristic classes of the
vector bundle ζ ⊕ τ .

w2(ζ ⊕ τ) = w2(ζ) + w2(τ) = W + ρ2U = w2(ξ)

w4(ζ ⊕ τ) = w2(ζ) · w2(τ) = W · ρ2U = w2(ξ)ρ2U + ρ2U
2 =

= w4(ξ)

p1(ζ ⊕ τ) = p1(ζ) + p1(τ) = P + U2 = p1(ξ) .

(See [W] for the aditivity of p1 in this case.) Theorem 1 now implies that ξ = ζ⊕τ ,
which completes the proof.

Remark. As far as it is known to the authors there are only two general results
concerning 2-distributions in 5 or 4k + 1-dimensional vector bundles. See [T5],
Theorems 1.3 and 4.1. The former deals with spin manifolds (i.e. w1(X) = w2(X) =
0) and tangent bundles and the latter requires span ≥ 2. Both examine the existence
of 2-distributions with the Euler class 2U ∈ H2(X, Z).
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Corollary 2. Let X be a connected CW-complex of dimension ≤ 5 and let ξ be
an oriented 5-dimensional vector bundle over X .

(1) span ξ ≥ 1 if and only if e(ξ) = 0.

If Conditions (A) and (B) are satisfied then

(2) span ξ ≥ 2 if and only if w4(ξ) = 0.
(3) span ξ ≥ 3 if and only if w4(ξ) = 0 and there is a U ∈ H2(X, Z) such that

w2(ξ) = ρ2U , p1(ξ) = U2.
(4) span ξ = 5 if and only if w2(ξ) = 0, w4(ξ) = 0, p1(ξ) = 0.

Proof. (1) is well known and is included only for comleteness.
(2) is the immediate consequence of Corollary 1 for U = 0.
(3)(⇒) Let ξ = ζ ⊕ 3ε where ζ is an oriented 2-dimensional vector bundle over

X . Then w4(ξ) = w4(ζ) = 0 and for U = e(ζ) we get w2(ξ) = w2(ζ) = ρ2U ,
p1(ξ) = p1(ζ) = U2.

(⇐) For U ∈ H2(X, Z) there is an oriented 2-dimensional vector bundle ζ over
X such that e(ζ) = U . Then w2(ζ ⊕ 3ε) = w2(ζ) = ρ2U = w2(ξ), w4(ζ ⊕ 3ε) =
w4(ζ) = 0 = w4(ξ) and p1(ζ ⊕ 3ε) = p1(ζ) = U2 = p1(ξ). Theorem 1 implies that
ζ ⊕ 3ε = ξ since the characteristic classes of both vector bundles are the same.

(4) follows immediately from Theorem 1.

Remark. Statements (3) and (4) of Corollary 2 under a little bit different conditions
were already known to E. Thomas [T6]. Statement (2) under Conditions (A) and
(B) is new. It deals with the cases which are not covered in [T6]. The condition
w4(ξ) = 0 coincides with the condition for the stable span of 4k + 1-dimensional
vector bundles over a CW-comlex of the same dimension to be ≥ 2. See [Ng],
Theorem 2.1.1.

Now we will investigate the existence of distributions with complex structure.
The case of 2-distributions is treated in Corollary 1. Here we will deal with 4-
distributions. For this purpose we need the following

Theorem 3. Let X be a connected CW-complex of dimension ≤ 5 and let C1 ∈
H2(X, Z), C2 ∈ H4(X, Z). Then there exists a 2-dimensional complex vector bundle
ζ over X with the Chern classes

c1(ζ) = C1 , c2(ζ) = C2 .

Proof of this theorem follows the same lines as in [W].

Corollary 3. Let X be a connected CW-complex of dimension ≤ 5 satisfying the
conditions (A) and (B). Then an oriented 5-dimensional vector bundle ξ over X
has a 4-distribution with a complex structure if and only if

(i) e(ξ) = 0
(ii) β2w2(ξ) = 0

Proof. (⇒) Let η be a 4-distribution in ξ with complex structure. Then obviously
e(ξ) = 0 and β2w2(ξ) = β2w2(η ⊕ ε) = β2w2(η) = β2ρ2c1(η) = 0.
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(⇐) We have β2w2(ξ) = 0 and β2w4(ξ) = e(ξ) = 0. Consequently, we can find
a1 ∈ H2(X, Z) and a2 ∈ H4(X, Z) such that ρ2a1 = w2(ξ) and ρ2a2 = w4(ξ). Then

ρ4(a
2
1 − 2a2) = Pρ2a1 + i∗ρ2a2 = Pw2(ξ) + i∗w4(ξ) = ρ4p1(ξ) .

Hence there is a b ∈ H4(X, Z) such that a2
1 − 2a2 − 4b = p1(ξ). Put C1 = a1 and

C2 = a2 + 2b. According to Theorem 3 there exists a complex vector bundle η over
X of complex dimension 2 with

c1(η) = C1 and c2(η) = C2.

Let us consider now the 5-dimensional real vector bundle η ⊕ ε. We get

w2(η ⊕ ε) = w2(η) = ρ2c1(η) = ρ2C1 = w2(ξ),

w4(η ⊕ ε) = w4(η) = ρ2c2(η) = ρ2C2 = w4(ξ),

p1(η ⊕ ε) = p1(η) = c1(η)2 − 2c2(η) = C2
1 − 2C2 = p1(ξ).

Theorem 1 implies that ξ = η ⊕ ε. This finishes the proof.

Remark. Let us recall that an f -structure on a vector bundle ξ is an endomorphism
f : ξ → ξ satisfying the polynomial equation f3 + f = 0 with dim ker f constant.
It can be easily seen that if f is an f -structure then ξ = ζ ⊕ η where ζ = ker f and
η = ker (f2 +id). This means that on a vector bundle ξ there exists an f -structure
if and only if there exists a distribution η ⊂ ξ endowed with a complex structure.
If ξ is an oriented 5-dimensional vector bundle over a connected CW-complex X of
dimension 5, we can distinquish two cases. In the first case dim η = 2 the existence
problem for an f -structure is covered by Corollary 1. The second case dim η = 4
is treated in Corollary 3.
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