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Abstract. This paper gives a uniform, self-contained, and fairly direct approach
to a variety of obstruction-theoretic problems on 8-manifolds. We give necessary
and sufficient cohomological criteria for the existence of complex and quaternionic
structures on 8-dimensional vector bundles and for the reduction of the structure
group of such bundles to U(3) by the homomorphism U(3) → O(8) given by the Lie
algebra representation of PU(3).

1. Introduction

Let M be a connected, closed, smooth, 8-dimensional, spinc manifold and let ξ be
an 8-dimensional oriented real vector bundle over M admitting a spinc-structure. We
consider, for various compact Lie groups G and homomorphisms ρ : G → SO(8), the
problem of reducing the structure group of ξ from SO(8), via ρ, to G. In each case we
shall obtain, in terms of the cohomology of M and cohomology characteristic classes of
ξ and M , necessary and sufficient conditions for the reduction. The homomorphisms
ρ that we examine are:

(i) the standard inclusion U(4) ⊆ SO(8);
(ii) the homomorphism U(3) → SO(8) determined by the adjoint representation of

the quotient PU(3) of U(3) by its centre;
(iii) the compositions of the standard inclusions Sp(2)×{±1} U(1) ⊆ U(4) ⊆ SO(8);
(iv) the standard inclusion Sp(2) ×{±1} Sp(1) ⊆ SO(8);
(v) the composition of the defining map and the standard inclusion Spinc(k) →

SO(k) ⊆ SO(8) for k = 6, 5, 4, 3.

The results concerning almost complex structures on M (case (i) for ξ = τM , the
tangent bundle of M) were obtained, using other methods, by Heaps [15] and by
Thomas [17]; see also Geiges and Müller [14]. In [4], [5], [6], [8] Čadek and Vanžura
dealt with (i) for spin vector bundles and with special cases of (iii) and (iv). The
result in case (ii) on reduction to U(3) through the adjoint representation of PU(3)
was obtained by Crabb in response to a question of N.J. Hitchin and F. Witt; see [18].
Conditions for existence of a 4-field, (v), are also due to Čadek and Vanžura [7].
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The results of this paper apply to a broader class of vector bundles than was pre-
viously considered. In some cases we need make no further restriction on ξ; for the
more difficult ones we need only additional assumptions on w2(ξ) and w2(M). The
derivation of the more delicate results involves the use of real KO-theory and twisted
quaternionic K-theory, which may be of independent interest.

We fix a spinc structure on M , with characteristic class c ∈ H2(M ; Z) (lifting
w2(M)), and an orientation for the vector bundle ξ.

It is, at first sight, somewhat surprising that one should be able to obtain purely
cohomological criteria for reduction of the structure group. However, there are certain
special features of the problem that make its solution tractable.

1.1. Two oriented 8-dimensional real vector bundles ξ and ξ′ over M such that [ξ] =
[ξ′] ∈ KO0(M) are isomorphic as oriented bundles if and only if e(ξ)[M ] = e(ξ′)[M ] ∈
Z.

This reduces the obstruction theory to a KO-theoretic, stable problem.

1.2. The spinc structure for M allows us to split off the ‘top cell’ in real and complex
K-theory. Let B ⊆ M be an embedded open disc of dimension 8, that is, a tubular
neighbourhood of a point. Then we have short exact sequences:

0 → Z = KO0(M, M − B) −−−→
←−−

KO0(M) → KO0(M − B) → 0

id ↓ ∼= ↓ ↓
0 → Z = K0(M, M − B) −−−→

←−−
K0(M) → K0(M − B) → 0

split by the spinc index:

ind : K0(M) → Z.

Note that KO1(M, M −B) and K1(M, M −B) are zero. Thus the splitting of K0(M)
induces a splitting of KO0(M) as a direct sum KO0(M − B) ⊕ Z, and a real vector
bundle ξ over M is determined stably by its restriction to M − B and the image of
[ξ] ∈ KO0(M) under the spinc index.

This leaves us with an obstruction theory problem on the essentially 7-dimensional
space M − B.

1.3. In a cell decomposition of M as a finite complex (in which B is an open cell) the
restriction map

KO0(M − B) → KO0(M (4))

to the 4-skeleton is injective. For an argument using the Atiyah-Hirzebruch spectral se-
quence shows that the restriction map KO0(M−B) → KO0(M (7)) is an isomorphism,
since H8(M−B; Z) = 0 and KO1(M−B, M (7)) = 0, and the restriction KO0(M (7)) →
KO0(M (4)) is injective, because KO0(M (5), M (4)) = 0, KO0(M (6), M (5)) = 0 and
KO0(M (7), M (6)) = 0.

This means that we can distinguish stable bundles over M − B by calculations in
dimension 4 and below.

The cohomological classes which can be realized as the Chern classes of a complex
vector bundle over M are described in Proposition 3.2. Conditions for the existence
of a complex structure on the vector bundle ξ are derived in Section 4 and stated as
Proposition 4.1. The result on the reduction of the structure group from SO(8) to
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U(3) is given as Proposition 6.2. Sections 7, 8 and 10 deal with almost quaternionic
structures; the main results appear as Propositions 8.2, 10.1 and 10.4. Reduction to
Spin(3) and to Spin(4) is considered in Section 9.

Almost fifty years ago Hirzebruch and Hopf [16] investigated the reduction of the
structure group of an oriented 4-manifold from SO(4) to SO(2) × SO(2) and to U(2).
This paper follows in the tradition of their work.

2. The spin characteristic class in dimension 4

In this section we recall some fairly standard facts about the spin characteristic class
in dimension 4 and the classification of spin and spinc bundles in low dimensions. We
shall write ρ2 : H∗(M ; Z) → H∗(M ; F2) for reduction (mod 2).

An elementary computation shows that the Chern classes c2 and c3 of a complex
vector bundle with c1 = 0 satisfy:

(2.1) Sq2(ρ2c2) = ρ2c3.

Let F be the homotopy fibre of

Sq2 ◦ ρ2 + ρ2 : K(Z, 4) × K(Z, 6) → K(F2, 6).

By (2.1), we can lift the map (c2, c3) : BSU(∞) → K(Z, 4) × K(Z, 6) to a map
BSU(∞) → F .

Lemma 2.1. The map BSU(∞) → F above induces an isomorphism in homotopy
groups πi(BSU(∞)) → πi(F ) for i ≤ 7 (and a surjection for i = 8).

Proof. We have π4(F ) = Z, π6(F ) = 2Z, and πi(F ) = 0 otherwise. The Chern class

c2 : K̃0(S4) = Z → H4(S4; Z) = Z is an isomorphism, and c3 : K̃0(S6) = Z →
H6(S6; Z) = Z is multiplication by 2. �

Recall that M is a closed, connected, 8-dimensional, spinc-manifold and that B ⊆ M
is an open disc. The complex K-group K0(M −B) = [(M −B)+; Z ×BU(∞)] splits
as a direct sum

K0(M − B) = Z ⊕ H2(M ; Z) ⊕ [(M − B)+; BSU(∞)],

where the summand Z = [(M −B)+; Z], corresponding to the trivial bundles, is given
by the dimension and the summand H2(M ; Z) = [(M − B)+; BU(1)], corresponding
to the line bundles, is given by c1. (The subscript + denotes a disjoint basepoint, and
the brackets [−;−] indicate the set of pointed homotopy classes.)

According to Lemma 2.1, the map [(M − B)+; BSU(∞)] → [(M − B)+; F ] is
surjective (and, in fact, bijective). This completes the description of the Chern classes
of SU-bundles over M −B. (See [19] for a similar description in the case of real vector
bundles.)

Proposition 2.2. The image of the mapping

(c2, c3) : [(M − B)+; BSU(∞)] → H4(M ; Z) ⊕ H6(M ; Z)

is the set {(u, v) | Sq2ρ2(u) = ρ2(v)}.

By adding (or subtracting) a complex line bundle with c1 = l one obtains the
following generalization.
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Corollary 2.3. The image of the mapping

(c1, c2, c3) : [(M − B)+; BU(∞)] → H2(M ; Z) ⊕ H4(M ; Z) ⊕ H6(M ; Z)

is the set {(l, u, v) | Sq2ρ2(u) + ρ2(lu) = ρ2(v)}.

Lemma 2.4. The inclusion map

SU(∞) → Spin(∞).

induces an isomorphism πi(BSU(∞)) → πi(BSpin(∞)) for i ≤ 5.

Proof. For restriction from C to R gives an isomorphism K−4(∗) = Z → KO−4(∗) = Z;
the homotopy groups are zero for i < 4 and for i = 5. �

Definition. The spin characteristic class in H4(BSpin(∞); Z) corresponding to −c2 ∈
H4(BSU(∞); Z) is denoted by q1. For an oriented real vector bundle ξ admitting a
spin structure, that is, such that w2(ξ) = 0, the characteristic class q1 is, as we show
below, independent of the choice of spin structure and we write it as q1(ξ) ∈ H4(M ; Z).

To see the independence we may argue as follows. Over the 5-skeleton there is a
complex vector bundle ζ with c1(ζ) = 0 that is isomorphic to ξ |M (5) as a real bundle.
We must verify that c2(ζ) does not depend on the choice of an SU-structure. If ζ ′ is
another such bundle, then ζ − ζ ′ is stably trivial as a real bundle and so, considered
as a map M (5) → BSU, lifts to SO/SU. We have to show that c2(ζ − ζ ′) = 0. But
ρ2 : H4(SO/SU; Z) → H4(SO/SU; F2) = F2 is an isomorphism and ρ2(c2(ζ − ζ ′)) =
w4(ζ − ζ ′) = 0..

From the definition it is immediate that, for a spin bundle ξ, we have 2q1(ξ) = p1(ξ)
and ρ2(q1(ξ)) = w4(ξ). Note also that q1 is additive: q1(ξ ⊕ ξ′) = q1(ξ) + q1(ξ

′) for
two bundles ξ and ξ′ admitting spin structures. A complex vector bundle ζ admits a
spin structure if and only if c1(ζ) is divisible by 2, say equal to 2m and then q1(ζ) =
2m2 − c2(ζ) (which does not depend on the choice of m).

We next extend this definition formally to a characteristic class for spinc-bundles.
Let ξ now be a real vector bundle admitting a spinc structure. Thus w2(ξ) is the
reduction (mod 2) ρ2(l) of an integral class l ∈ H2(M ; Z).

Definition. For an orientable vector bundle ξ and class l ∈ H2(M ; Z) such that
ρ2(l) = w2(ξ) we define

q1(ξ; l) = q1(ξ − λ) ∈ H4(M ; Z),

where λ is a complex line bundle with c1(λ) = l.

It is elementary to verify that:

2q1(ξ; l) = p1(ξ) − l2; ρ2(q1(ξ; l)) = w4(ξ);

q1(ξ; l + 2m) = q1(ξ; l) − 2lm − 2m2 for m ∈ H2(M ; Z),

and, if ζ is a complex bundle with c1(ζ) = l, then q1(ζ ; l) = −c2(ζ).
This invariant is enough to distinguish oriented vector bundles over M − B.

Proposition 2.5. Consider two oriented (stable) vector bundles ξ and ξ′ over M −B
with w2(ξ) = w2(ξ

′) = ρ2(l), where l ∈ H2(M ; Z). Then ξ and ξ′ are stably isomorphic
if and only if q1(ξ; l) = q1(ξ

′; l).
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Proof. For ξ − ξ′ is a spin bundle with q1(ξ − ξ′) = 0. So ξ − ξ′ is trivial over M (4),
and hence, by (1.3), over M − B. �

Remark 2.6. With the benefit of hindsight it is now easy to rederive the main results
of Hirzebruch and Hopf [16]. Let η be an oriented 4-dimensional real vector bundle
with w2(η) the reduction of an integral class over a closed, connected, oriented 4-
manifold N . Then η is isomorphic to a direct sum µ1 ⊕ µ2 of oriented 2-dimensional
bundles with e(µi) = mi if and only if w2(η) = ρ2(l), where l = m1 +m2, e(η) = m1m2

and p1(η) = m2
1 +m2

2 (= l2−2m1m2). For we have only to compare the classes q1(η; l)
with q1(µ1 ⊕ µ2; l) and e(η) with e(µ1 ⊕ µ2). Similarly, η has a complex structure
(compatible with its given orientation) with c1 = l if and only if w2(η) = ρ2(l) and
p1(η) + 2e(η) = l2.

3. The spinc index

We turn next to the cohomological description of the fundamental splitting (1.2).
The spinc index is given by

(3.1) y ∈ K0(M) 7→ ind y = (ec/2Â(τM)ch(y))[M ] ∈ Z.

Here the Chern character, ch(y), of y has the explicit expansion:

(3.2)
ch(y) = dim y + c1 + (c2

1 − 2c2)/2 + (c3
1 − 3c1c2 + 3c3)/6+

(c4
1 − 4c2

1c2 + 4c1c3 + 2c2
2 − 4c4)/24 + . . . ,

where the ci are the Chern classes of y, and

Â(τM) = 1 − p1(τM)/24 + (−4p2(τM) + 7p2
1(τM))/5760 + · · · .

The Chern character of the complexification of a real class x ∈ KO0(M) is written in
terms of the Pontrjagin classes pi of x as:

(3.3) dim x + p1 + (p2
1 − 2p2)/12 + . . . ;

for p1(x) = −c2(y) and p2(x) = c4(y), where y is the complexification of x.

Remark 3.1. From the Universal Coefficient theorem and Poincaré duality for the
oriented 8-dimensional manifold M one obtains a short exact sequence

0 → T (H2(M ; Z)) ⊗ F2 → H2(M ; F2) → Hom(H6(M ; Z), F2) → 0,

in which T denotes the torsion subgroup of an abelian group.
When w2(M)·H6(M ; Z) = 0, or equivalently, by the Wu formula, when Sq2ρ2H

6(M ; Z)
= 0, we may choose a spinc-structure for M for which the characteristic class c is tor-
sion and so disappears from the rational cohomology formulae.

On the other hand, if w2(M) · H6(M ; Z) 6= 0, then there is, for any chosen class c,
an element t ∈ H6(M ; Z) such that (c · t)[M ] ∈ Z is odd.

We can use the splitting to extend the description (2.3) of the Chern classes of
complex vector bundles over M − B to bundles over M .
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Proposition 3.2. Consider cohomology classes l ∈ H2(M ; Z), u ∈ H4(M ; Z), v ∈
H6(M ; Z), w ∈ H8(M ; Z). According to (2.3), there is a 4-dimensional complex
vector bundle ζ over M − B with c1(ζ) = l, c2(ζ) = u and c3(ζ) = v if and only if
Sq2ρ2u = ρ2(v + lu). In that case

1

2
(u(u + q1(τM ; c) − 2l2 − 3cl − c2) + (2l + 3c)v)[M ] ∈ Q

is an integer, I say, and I (mod 6) is independent of the choice of c. Such a bundle
extends over M to a complex vector bundle ζ with c4(ζ) = w if and only if

w[M ] ≡ I (mod 6).

Proof. We observe, first of all, that 4-dimensional complex vector bundles over an 8-
dimensional space lie in the stable range, and so the problem is K-theoretic. By (1.2),
the stable complex bundles y ∈ K0(M) over M extending a given bundle over M −B
are classified by the integer ind y ∈ Z. A computation using (3.1) and (3.2) shows
that, for a bundle ζ with the given Chern classes and a complex line bundle λ with
c1(λ) = l, we have

ind(ζ − C4) − ind(λ − C) =
1

6
(I − w[M ]).

The result follows. �

In the same way, we may use the splitting of KO0(M) to distinguish oriented real
vector bundles over M .

Proposition 3.3. Let ξ and ξ′ be oriented 8-dimensional real vector bundles over M
with w2(ξ) = w2(ξ

′) = ρ2(l), where l ∈ H2(M ; Z). Then ξ and ξ′ are isomorphic if
and only if

a) q1(ξ; l) = q1(ξ
′; l), b) p2(ξ) = p2(ξ

′), c) e(ξ) = e(ξ′).

Proof. Condition a) is necessary and sufficient for the restrictions of ξ and ξ′ to M −B
to be isomorphic. It implies, in particular, that p1(ξ) = p1(ξ

′). And then ind(C ⊗
ξ) = ind(C ⊗ ξ′) if and only if p2(ξ) = p2(ξ

′), from (3.1) and (3.3). Hence a) and
b) are necessary and sufficient conditions for ξ and ξ′ to be stably isomorphic, by
(1.2). Finally, equality of the Euler classes, (1.1), gives isomorphism as oriented vector
bundles. �

4. Reduction to U(4) : a complex structure

Consider an oriented real vector bundle ξ of dimension 8 over M such that w2(ξ)
lifts to an integral class l ∈ H2(M ; Z). We shall determine necessary and sufficient
conditions for ξ to admit a complex structure with first Chern class c1 = l. Notice that
p2(ξ)−q2

1(ξ; l) is divisible by 2 in H8(M ; Z), since ρ2(p2(ξ)−q2
1(ξ; l)) = w2

4(ξ)−w2
4(ξ) =

0.

Proposition 4.1. (Heaps, Čadek and Vanžura) Suppose that ξ is an oriented 8-
dimensional real vector bundle over M admitting a spinc structure. Let l ∈ H2(M ; Z)
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be a class such that w2(ξ) = ρ2(l). Then the structure group SO(8) of ξ admits a reduc-
tion to U(4) with c1 = l if and only if there is a class v ∈ H6(M ; Z) with ρ2(v) = w6(ξ)
such that

a)
1

2
(p2(ξ) − q2

1(ξ; l))[M ] ≡ J (mod 2) and b) p2(ξ) − q2
1(ξ; l) = 2(e(ξ) − lv),

where

J =
1

2
(q1(ξ; l)(q1(ξ; l) − q1(τM ; c) + 2l2 + 3lc + c2) + 3cv)[M ]

(which is an integer if ρ2(v) = w6(ξ)).

Remark 4.2. The condition a), given that ρ2(v) = w6(ξ), is necessary and sufficient
for the existence of a stable complex structure on ξ, that is, a complex structure on
ξ ⊕ R2. (More precisely, if ξ has a stable complex structure outside a finite subset of
M , then the sum of the local obstructions in π7(SO(∞)/U(∞)) = Z/2 to extending
the stable structure to M is equal to 1

2
(p2(ξ)− q2

1(ξ; l))[M ] − J (mod 2).) If the class
c can be chosen to be torsion, then the expression for J simplifies, and, in particular,
J does not depend on v. If not, then, as was observed in (3.1), there is a class t such
that (ct)[M ] is odd, and v can be modified by addition of a multiple of 2t to satisfy
a). Thus, if w2(M)H6(M ; Z) 6= 0, the only condition required for the existence of
a stable complex structure with c1 = l is that w6(ξ) should be the reduction of an
integral class. (Compare [15].)

Proof. Suppose that there is a 4-dimensional complex vector bundle ζ , with Chern
classes c1 = l, c2 = u, c3 = v, c4 = w, that is stably isomorphic to ξ. Then

ρ2(v) = w6(ξ), u = −q1(ξ; l) and 2w = p2(ξ) − q2
1(ξ; l) + 2lv,

because p2(ξ) = c4(ζ ⊕ ζ) = 2c4(ζ) − 2c1(ζ)c3(ζ) + c2
2(ζ).

Necessary and sufficient conditions for the existence of a stable complex structure on
ξ are, therefore, given by (3.2) and (3.3) with J = I−(lv)[M ]. (Notice that Sq2w4(ξ) =
w6(ξ) + w2(ξ)w4(ξ).) This reduces to the condition a), except that congruence is
required (mod 6). But the congruence is automatically satisfied (mod 3). For the
integrality of ind(C⊗R ξ−C8)− ind(C⊗R λ−C2), where λ as before is a complex line
bundle with c1 = l, gives

(4.1) (p2(ξ) − q2
1(ξ; l))[M ] ≡ (q1(ξ; l)(q1(ξ; l) − q1(τM ; c) + 2l2 + c2))[M ] (mod 6).

(It is, of course, clear that there can be no 3-primary obstruction to the existence of
a stable complex structure on ξ, because 2ξ = ξ ⊕ ξ admits a complex structure as
C ⊗R ξ.)

Condition b) expresses the equality of the Euler classes required for isomorphism
rather than stable isomorphism. �

5. Reduction to Spinc(6) : a 2-field

In this section we consider reduction to

Spinc(6) → SO(6) → SO(8),

where the first homomorphism is the canonical projection and the second is the stan-
dard inclusion.
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There is an isomorphism

{(z, g) ∈ T × U(4) | z2 = det g} → Spinc(6).

Suppose that ζ is a 4-dimensional C-vector bundle over M , and λ a complex line
bundle, and that we are given an isomorphism Λ4ζ → λ ⊗ λ. Then λ∗ ⊗ Λ2ζ has a
real structure as C ⊗R η, where η is a 6-dimensional real vector bundle over M . The
trivialization of Λ6(λ∗ ⊗ Λ2ζ) = λ−6 ⊗ (Λ4ζ)3 gives an orientation of η.

Lemma 5.1. The characteristic classes of η are as follows:

w2(η) = ρ2(l), q1(η; l) = l2 − c2(ζ),
e(η) = c3(ζ) + lq1(η; l), p2(η) = q2

1(η; l) + 2le(η) − 4c4(ζ),

where l = c1(λ) and the orientation of η is chosen appropriately.

Proof. Over the 7-skeleton, the 4-dimensional complex vector bundle (λ∗)2 ⊗ ζ has a
non-zero section, and hence we can write ζ = ζ ′ ⊕ λ2, with Λ3ζ ′ = C. So λ∗ ⊗ Λ2ζ =
(λ∗ ⊗ Λ2ζ ′) ⊕ (λ ⊗ ζ ′) and η is the underlying real bundle of λ ⊗ ζ ′. This allows the
computation of w2, q1 and e. The second Pontrjagin class is c4(λ

∗ ⊗ Λ2ζ). �

Proposition 5.2. Let ξ be an oriented 8-dimensional real vector bundle over M with
w2(ξ) = ρ2(l), l ∈ H2(M ; Z). Let v ∈ H6(M ; Z). Then ξ admits a reduction of
structure group to Spinc(6) with spinc characteristic class l and Euler class v if and
only if the following conditions are satisfied.

e(ξ) = 0; ρ2(v) = w6(ξ);

(
1

2
(p2(ξ) − q2

1(ξ; l)) + q1(ξ; l)(q1(ξ; l) − q1(τM ; c) + 2l2 + 3lc + c2) + 3(l + c)v)[M ]

≡ 0 (mod 4).

Proof. We require a 4-dimensional complex vector bundle ζ over M with first Chern
class c1(ζ) = 2l such that the associated bundle η satisfies:

w2(ξ) = w2(η); q1(ξ; l) = q1(η; l); v = e(η); p2(ξ) = p2(η).

This will guarantee that ξ and η ⊕ R2 are stably isomorphic. The vanishing of the
Euler class e(ξ) will then be enough for the two vector bundles to be isomorphic.

The conditions for the existence of ζ are given in Proposition 3.2. One has first

Sq2(ρ2(l
2 − q1(ξ; l))) = ρ2(v − lq1(ξ; l)),

that is, Sq2(w2
2(ξ)+w4(ξ)) = ρ2(v)+w2(ξ)w4(ξ), which reduces to the obvious condition

that ρ2(v) = w6(ξ). In the notation of Proposition 3.2 we find that

2I − 2w[M ] = (q1(ξ; l)(q1(ξ; l) − q1(τM ; c) + 2l2 + 3lc + c2) + l2q1(τM ; c)

− l2(7l2 + 6cl + c2) + (4l + 3c)v)[M ] + (
1

2
(p2(ξ) − q2

1(ξ; l)) − lv)[M ] ∈ 12Z.

By considering the special case in which ξ = λ ⊕ R6, with q1(ξ; l) = 0 and p2(ξ) = 0,
when we may take v = 0, we see that

(l2(q1(τM ; c) − (7l2 + 6cl + c2)))[M ] ∈ 12Z.
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This leads to the stated congruence, but (mod 12) instead of (mod 4). However the
congruence automatically holds (mod 3), by (4.1). �

Remark 5.3. Given a complex line bundle µ over M , there is a similar necessary
and sufficient condition for ξ to split as a sum η ⊕ µ. There are other methods when
w2(ξ) = w2(M) or w2(µ) = w2(ξ)+w2(M); see [12] and [3]. The problems of reduction
to U(4) and Spinc(6) are related, or rather the SU(4) and Spin(6) reductions - the cases
in which l = 0. The correspondence is explained in [4].

6. Reduction to U(3) : the adjoint representation

For a finite dimensional complex Hilbert space V , let us write su(V ) for the Lie
algebra of the special unitary group. Thus dimR su(V ) = (dimC V )2−1. In particular,
taking V = C3, we have an 8-dimensional real representation su(C3) of U(3), and
so, up to conjugation, a homomorphism ρ : U(3) → SO(8). (In fact, since ρ factors
through the projective unitary group PU(3), which is a quotient of SU(3) by the central
subgroup of order 3, the homomorphism must lift to U(3) → Spin(8).) In this section
we investigate the reduction of the structure group of ξ over M to U(3).

So suppose that ζ is a 3-dimensional complex (unitary) vector bundle over M . We
form the associated Lie algebra bundle su(ζ) of real dimension 8.

Lemma 6.1. The vector bundle su(ζ) is spin and its characteristic classes are as
follows:

w2(su(ζ)) = 0, e(su(ζ)) = 0,
q1(su(ζ)) = c2

1(ζ) − 3c2(ζ), p2(su(ζ)) = c4
1(ζ) − 6c2

1(ζ)c2(ζ) + 9c2
2(ζ),

w4(su(ζ)) = ρ2(c
2
1(ζ) + c2(ζ)), w6(su(ζ)) = ρ2(c1(ζ)c2(ζ) + c3(ζ)).

Proof. We may calculate in the torsion-free cohomology of BU(3) and so reduce to the
case that ζ = µ1 ⊕ µ2 ⊕ µ3 is a sum of 3 complex line bundles. In that case we have
the explicit description (using a bar for the complex conjugate):

su(ζ) = iR2 ⊕ ((µ1 ⊗ µ2) ⊕ (µ1 ⊗ µ3) ⊕ (µ2 ⊗ µ3))

(as a real bundle). The computations are then straightforward. �

The standard method leads to necessary and sufficient conditions for reduction of
the structure group.

Proposition 6.2. Let ξ be an oriented 8-dimensional real vector bundle over M
with w2(ξ) = 0. Consider cohomology classes l ∈ H2(M ; Z), u ∈ H4(M ; Z), v ∈
H6(M ; Z). Then there is a 3-dimensional complex vector bundle ζ over M such that
su(ζ) ∼= ξ, with c1(ζ) = l, c2(ζ) = u and c3(ζ) = v, if and only if

q1(ξ) = −3u + l2; ρ2(v − lu) = w6(ξ); p2(ξ) = q2
1(ξ); e(ξ) = 0;

and
1

2
(u(u + q1(τM ; c) − c2) + (2l + 3c)(v − lu))[M ] ≡ 0 (mod 6).

(It is to be understood in the statement that the expression in the last line is integral
if ρ2(v − lu) = w6(ξ).)
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Proof. We require first the existence of a complex vector bundle ζ as in Proposition
3.2 with w = 0, so that ζ admits a nowhere zero cross-section. Then the conditions
that q1(ξ) = l2 − 3u and p2(ξ) = l4 − 6l2u + 9u2 ensure that su(ζ) and ξ are stably
isomorphic. Recall that ρ2(q1(ξ)) = w4(ξ), so that Sq2ρ2(u) = Sq2w4(ξ) = w6(ξ),
because w2(ξ) = 0.

Finally, equality of the Euler classes e(su(ζ)) = 0 = e(ξ) is necessary and sufficient
for the two bundles to be isomorphic. �

Remark 6.3. If µ is a complex line bundle, then su(µ ⊗ ζ) = su(ζ). Hence, the
conditions above must be invariant under the transformation ζ 7→ µ ⊗ ζ , that is:
l 7→ l + 3m, u 7→ u + 2lm + 3m2, v 7→ v + um + lm2 + m3, where c1(µ) = m.

The conditions simplify if the manifold M is spin (c = 0) and we look for an SU(3)-
structure (l = 0) on ξ.

Corollary 6.4. Suppose that M is a spin manifold. Then the bundle ξ admits an
SU(3)-structure if and only if w6(ξ) is the reduction of an integral class, e(ξ) = 0, and
there is a class u ∈ H4(M ; Z) such that

q1(ξ) = −3u, p2(ξ) = 9u2 and
1

2
(u(u + q1(τM)))[M ] ≡ 0 (mod 6).

For the special case in which ξ = τM , see [18] (although the argument there pur-
porting to show that w6(M) = 0 seems to be incorrect).

7. Quaternionic bundles

Modules over a quaternion algebra are understood to be right modules unless explicit
reference is made to left multiplication.

Consider a complex line bundle λ over M , with c1(λ) = l. In order to use a spinor
index in KO-theory, we require that ρ2(l) = w2(M).

Let Hλ be the bundle of quaternion algebras associated with λ: Hλ = C ⊕ λ, where
jz = zj for j ∈ S(λ), z ∈ C, and j2 = −1. An Hλ-vector bundle is a complex vector
bundle by restriction of scalars. We will say that a complex vector bundle ζ admits
an Hλ-structure if it has a compatible Hλ-multiplication. One can show that ζ has an
Hλ-structure if and only if it has a non-singular skew-symmetric form ζ ⊗ ζ → λ. The
next result, which goes back to an idea of Dupont [13], is fundamental.

Lemma 7.1. Let β be a 3-dimensional complex vector bundle over M − B such that
c1(β) = l and c3(β) = 0. Then β has a nowhere-zero section over M −B and so splits
as a direct sum β = C ⊕ µ, where µ is an Hλ-line bundle.

Proof. We have to show that the sphere bundle S(β) has a section over M−B. The top
obstruction is a class o in H7(M − B; Z/2) (= H7(M ; Z/2)), because π6(S

5) = Z/2.
Consider an element x of H1(M ; Z/2), represented by a real line bundle ν. The zero-
set of a generic cross-section of ν is a 7-dimensional submanifold N of M−B. It suffices
to prove that o maps to zero in H7(N ; Z/2). For evaluation on the fundamental class
[N ] gives (o · x)[M ] ∈ Z/2. This is established by a KO-theory Hopf theorem. It will
be convenient, as in [10] and [11], to use a local coefficient notation KO∗(M ; α) for
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the reduced KO-theory K̃O∗(Mα) of the Thom space of a (virtual) real vector bundle
α over M .

The composition

KO0(N ; −β)
η(ν)
−−→ KO0(N ; ν − β)

π!−→ KO−2(∗) = Z/2,

where η(ν) ∈ KO0(N ; ν) is a twisted Hopf element (lifting the generator η of KO−1(∗) =
Z/2) and π! is the index determined by the spin structure on τM − β, maps the KO-
Euler class γ(β) to (o · x)[M ] ∈ Z/2. Now there is a Z/2-equivariant lifting:

KO0
Z/2(N ; −L ⊗ β)

η(ν)
−−→ KO0

Z/2(N ; ν − L ⊗ β)
π!−→ KO−8

Z/2(∗; −6L) = Z,

where L is the non-trivial 1-dimensional real representation of Z/2. (For more details,
see [10].) But η(ν) is a torsion class. So the image of γ(L ⊗ β) in Z must be zero.

Of course, a 2-dimensional complex bundle µ with c1 = l admits an Hλ-structure
given by the exterior product to the determinant bundle regarded as a skew-symmetric
form µ ⊗ µ → Λ2µ ∼= λ. �

8. Reduction from U(4) to Sp(2) ×{±1} U(1)

Let ζ be a 4-dimensional complex vector bundle over M . The structure group U(4)
of bundle ζ reduces to the subgroup Sp(2)×{±1}U(1) if and only if there is a complex
line bundle λ over M such that ζ has an Hλ-structure. For more details see [2].

So consider a complex line bundle λ with c1(λ) = l and ρ2(l) = w2(M). We ask
when the structure group of ζ can be reduced to an Hλ-structure. Simultaneously, we
want to characterize the Chern classes of such vector bundles.

If an Hλ-vector bundle has a nowhere zero section, we can split off a trivial Hλ-line
bundle. As a first consequence, an m-dimensional Hλ-bundle over a 3-dimensional
space must be trivial, that is, isomorphic to Hm

λ , and so has c1 = ml, where l = c1(λ).
Again we can treat the problem in three stages, starting with the stable question

over M−B. An Hλ-bundle over M−B can be reduced to dimension 1 over Hλ because
a higher dimensional bundle has a nowhere zero section. So a necessary condition for
lifting ζ is that c3(ζ − Hλ) = 0, that is,

c3(ζ) − lc2(ζ) + l3 = 0.

In that case, we show that (ζ − Hλ) |M − B can be reduced to complex dimension 2
and so it has an Hλ-structure. Let β be a 3-dimensional complex vector bundle over
M − B such that β ⊕ λ is stably isomorphic to ζ . (Such a bundle always exists.)
Note that c1(β) = l. We are assuming that c3(β) = 0, so that β has a nowhere-zero
cross-section over M − B by Lemma 7.1. This establishes:

Lemma 8.1. A 4-dimensional complex bundle ζ has a stable Hλ-structure over M−B
if and only if c1(ζ) = 2l and c3(ξ) − lc2(ξ) + l3 = 0.

The rest of the argument follows the familiar pattern. The stable Hλ-bundles are
classified by a twisted K-group KSp0

λ(M), which can be identified with the KO-group

K̃O−2(Mλ) of the Thom space of λ. (See [1] pp. 135–136 and [9] Chapter 9 for the

twisted K-theory.) To describe the isomorphism, we think of K̃O−2(Mλ) as the KO-
theory with compact supports KO0(C⊕λ) of the total space of the bundle C⊕λ = Hλ.
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The isomorphism maps the class [µ] ∈ KSpλ(M) of an Hλ-module µ over M to the
class in KO(C ⊕ λ) given by the R-linear map

µ → µ : x 7→ xv

over v ∈ Hλ = C ⊕ λ, which is an isomorphism outside the (compact) zero-section.

A spin structure on τM+λ gives an index, or Gysin map KSp0
λ(M) = K̃O−2(Mλ) →

KO−4(∗) = Z. The corresponding splitting of the complex K-groups is that defined
by taking the spinc structure on M with characteristic class c = −l.

Now we have a map from the KSpλ-sequence to the complex K-theory giving a
commutative diagram

Z = KSp0
λ(M, M − B) −−−→

←−−
KSp0

λ(M) → KSp0
λ(M − B) → 0

↓ 2× ↓ ↓
Z = K0(M, M − B) −−−→

←−−
K0(M) → K0(M − B) → 0

in which the restriction from the twisted quaternionic to the complex theory is multi-
plication by 2 on the top cell Z.

Taking the spinc structure on M with characteristic class c = −l, for ζ to admit an
Hλ-structure we, thus, require that

ind ζ = (e−l/2Â(τM)ch(ζ))[M ] ∈ 2Z,

since two stably isomorphic Hλ-bundles of dimension 2 over M are isomorphic. This
leads to the following characterization.

Proposition 8.2. Let λ be a complex line bundle over M with c1(λ) = l and ρ2(l) =
w2(M). Consider cohomology classes u ∈ H4(M ; Z) and w ∈ H8(M ; Z). Then
there is a 2-dimensional Hλ-vector bundle ζ over M −B with c2(ζ) = u if and only if
Sq2ρ2u = ρ2(lu − l3). In that case c1(ζ) = 2l, c3(ζ) = lu − l3 and the expression

K =
1

4
(p1(τM)u + 2u2 + l2(3l2 − p1(τM) − 5u))[M ] ∈ Q

is an integer. Such a bundle extends to an Hλ-bundle over M with c4(ζ) = w if and
only if

w[M ] ≡ K (mod 12).

Proof. A complex vector bundle over M of dimension 4 lies in the stable range, and
so the problem is K-theoretic. Over M −B the solution is given by Corollary 2.3 and
Lemma 8.1. Now elements y ∈ K0(M) having Hλ-structure and extending a given
element in K0(M − B) are classified by even integers ind y. One can compute that

ind ζ − ind H2
λ =

1

6
(K − w[M ]),

and this completes the proof. �

As immediate corrollaries we get
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Corollary 8.3. Let ξ be a 4-dimensional complex bundle over M , and let λ be a
complex line bundle, with c1(λ) = l, such that ρ2(l) = w2(M). Then ξ admits an
Hλ-structure if and only if

c1(ξ) = 2l; c3(ξ) − lc2(ξ) + l3 = 0

and the expression

K =
1

4
(p1(τM)c2(ξ) + 2c2

2(ξ) + l2(3l2 − p1(τM) − 5c2(ξ)))[M ] ∈ Q,

which is always an integer (if the conditions above hold), satisfies

K ≡ c4(ξ)[M ] (mod 4).

Corollary 8.4. Let λ be a complex line bundle over M with c1(λ) = l and ρ2(l) =
w2(M). Let u ∈ H4(M ; Z). Then there is an Hλ-line bundle η over M with (c1(η) = l
and) c2(η) = u if and only if Sq2ρ2(u) = ρ2(lu) and the integer

1

4
(p1(τM)u + 2u2 − l2u)[M ] ≡ 0 (mod 12).

Proof. If η is such an Hλ-line bundle, then ζ = η ⊕ Hλ is a 4-dimensional complex
vector bundle with c1(ξ) = 2l, c2(ξ) = u + l2, c3(ξ) = lu, c4(ξ) = 0. Conversely,
if a 4-dimensional complex vector bundle ζ has these Chern classes and admits an
Hλ-structure, then, since its Euler class is zero, it splits as a direct sum of an Hλ-line
and a trivial Hλ summand. �

9. Reduction to Spinc(4) and Spinc(3)

Again let λ be a complex line bundle over M with c1(λ) = l and w2(M) = ρ2(l). We
shall use the results of the last section on Hλ-line bundles to investigate the existence
of Spinc(4) and Spinc(3)-structures on an 8-dimensional vector bundle ξ.

Since Spinc(4) = (Sp(1) × Sp(1) × U(1))/{±(1, 1, 1)} any 4-dimensional real vector
bundle η over M having a Spinc(4)-structure with characteristic class l can be expressed
as

η = HomHλ
(ζ−, ζ+) = ζ+ ⊗Hλ

ζ∗−,

where ζ+ and ζ− are right Hλ-line bundles over M and ζ∗− = HomHλ
(ζ−, Hλ) is consid-

ered as a left Hλ-line bundle.
We may also think of η as the real form of the complex bundle ζ+⊗C ζ∗− with the real

structure given by the symmetric C-valued bilinear form arizing as the tensor product
of a λ-valued skew-symmetric form on ζ+ and a λ∗-valued skew-symmetric form on ζ∗−.

Lemma 9.1. The characteristic classes of η are:

w2(η) = ρ2(l); w4(η) = w4(ζ+) + w4(ζ−);
q1(η; l) = −(c2(ζ+) + c2(ζ−)); e(η) = c2(ζ+) − c2(ζ−),

with the appropriate choice of orientation.

Proof. Since c1(ζ+) = c1(ζ−) = l, by a splitting principle we may suppose that ζ+ =
µ+ ⊕λ⊗µ∗+ and ζ− = µ−⊕λ⊗µ∗−, where µ+ and µ− are complex line bundles. Using
the description of C ⊗R η as ζ+ ⊗C ζ∗−, we may identify η with the complex bundle
(µ∗+ ⊕ λ∗ ⊗C µ+) ⊗C µ−. �
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Proposition 9.2. (Čadek and Vanžura). Let ξ satisfy w2(ξ) = w2(M) = ρ2(l). Then
the structure group of ξ can be reduced to Spinc(4) with characteristic class l if and
only if there exist classes u+, u− ∈ H4(M ; Z) such that the following conditions are
satisfied.

q1(ξ; l) = −(u+ + u−); w6(ξ) = 0; Sq2ρ2u+ = ρ2(lu+);

e(ξ) = 0; p2(ξ) = (u+ − u−)
2;

1

4
(u+(p1(τM) + 2u+ − l2))[M ] ≡ 0 (mod 12);

1

4
(u−(p1(τM) + 2u− − l2))[M ] ≡ 0 (mod 4).

Remark 9.3. The first three conditions imply that Sq2ρ2(u−) = ρ2(lu−). If the
conditions on u+ and u− are satisfied, the last congruence holds also (mod 12). The
integrality of ind(ξ − R8) ⊗ C − ind(λ + λ∗ − C2) gives

(q1(ξ; l)2 + q1(ξ; l)l2 + p2(ξ) − q1(ξ; l)p1(τM))[M ] ≡ 0 (mod 3),

which is the sum of the (mod 3) congruences for u+ and u−.

Proof. Given Hλ-line bundles ζ+ and ζ− with c2 equal to u+ and u− respectively, we
construct η as above. Then η ⊕ R4 is isomorphic to ξ if and only if q1(η; l) = q1(ξ; l),
p2(ξ) = p2(η) = e(η)2 and e(ξ) = e(η ⊕ R4) = 0. The existence of ζ+ and ζ− is
guaranteed by Corollary 8.4. �

The group Spinc(3) is isomorphic to Sp(1) ×{±1} U(1). By a similar argument, for
any 3-dimensional spinc vector bundle α over M with w2(α) = ρ2(l) there is just one
Hλ-line vector bundle ζ such that

R ⊕ α = EndHλ
(ζ) = ζ ⊗Hλ

ζ∗.

Since w4(α) = 0, q1(α; l) = 2u for an element u ∈ H4(M ; Z). From Lemma 9.1 and
Corollary 8.4 we get

Proposition 9.4. Let w2(M) = ρ2(l) and let u ∈ H4(M ; Z). Then there is a 3-
dimensional vector bundle α over M with w2(α) = ρ2(l) and q1(α, l) = 2u if and only
if Sq2ρ2(u) = ρ2(lu) and the integer

1

4
u(p1(τM) − 2u − l2)[M ] ≡ 0 (mod 12).

Proof. The conditions are necessary and sufficient for the existence of an Hλ-line bundle
ζ with c1(ζ) = l and c2(ζ) = −u. Then α ⊕ R = ζ ⊗Hλ

ζ∗ has the prescribed
characteristic classes by Lemma 9.1. �

Corollary 9.5. Let ξ be an 8-dimensional real vector bundle over M with w2(ξ) =
w2(M) = ρ2(l). Then the structure group of ξ can be reduced to Spinc(3) with charac-
teristic class l if and only if there exists a class u ∈ H4(M ; Z) such that the following
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conditions are satisfied.

q1(ξ; l) = 2u; w6(ξ) = 0; Sq2ρ2u = ρ2(lu);

e(ξ) = 0; p2(ξ) = 0;

1

4
(u(p1(τM) − 2u − l2))[M ] ≡ 0 (mod 4).

10. Reduction to Sp(2) ×{±1} U(1) and Sp(2) ×{±1} Sp(1) : a quaternionic

structure

It is straightforward now to give conditions for an 8-dimensional real vector bundle
ξ over M to admit an Hλ-structure.

Proposition 10.1. (Čadek and Vanžura). Let λ be a complex line bundle over M
with c1(λ) = l and w2(M) = ρ2(l). An oriented 8-dimensional real vector bundle ξ
admits an Hλ-structure if and only if:

a) w2(ξ) = 0 and w6(ξ) = w2(M)(w4(ξ) + w2
2(M));

b)
1

2
(p2(ξ) − q2

1(ξ))[M ] ≡
1

4
(2q2

1(ξ) − p1(τM)q1(ξ) + l2(p1(τM) − 3q1(ξ) + l2))[M ] (mod 4);

c) 2e(ξ) = p2(ξ) − q2
1(ξ).

Proof. Suppose that there is a 4-dimensional complex Hλ-vector bundle ζ with c2(ζ) =
u and c4(ζ) = w stably isomorphic to ξ. Then

w2(ξ) = ρ2(c1(ζ)) = ρ2(2l) = 0,

u = −q1(ξ; 2l) = 2l2 − q1(ξ),

w6(ξ) = ρ2(c3(ζ)) = ρ2(lu − l3) = w2(M)(w4(ξ) + w2
2(M)),

2w = p2(ξ) − c2
2(ζ) + 2c1(ζ)c3(ζ) = p2(ξ) − q2

1(ξ).

According to Proposition 8.2 necessary and sufficient conditions for the existence
of a stable Hλ-structure on ξ are then given by conditions a) and b) except that
the congruence in (8.2) is required (mod 12). But the congruence is always satisfied
(mod 3) since the integrality of ind(ξ ⊗ C − C8) − ind(2(λ ⊕ λ) − C4) gives

(4q2
1(ξ) − 2p2(ξ) − q1(ξ)p1(τM) + l2p1(τM) − 2l4)[M ] ≡ 0 (mod 3).

Condition c) expresses the equality of the Euler classes. �

We next consider the extension to other twisted quaternionic structures. Let α be
a 3-dimensional oriented Euclidean vector bundle over M . Recall that an oriented 3-
dimensional real inner product space V has a vector product × : V ⊗V → V , which can
be used to give R1⊕V a quaternionic multiplication with (0, x)·(0, y) = (−〈x, y〉, x×y)
for x, y ∈ V . Applied to the fibres of α, this gives the 4-dimensional real vector bundle
R1 ⊕ α the structure of a bundle of quaternion algebras.

When α = Ri ⊕ λ, we may identify R1 ⊕ α with the bundle Hλ already considered.
We now investigate the more general problem of the existence of a right R1⊕α-module
structure on an 8-dimensional real vector bundle ξ. This is equivalent to reduction of
the structure group to Sp(2)×{±1} Sp(1). To apply the methods of this paper we must
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require that w2(α) = w2(M) = ρ2(l). In that case, the bundle of algebras R1 ⊕ α is
the endomorphism algebra of an Hλ-line bundle ζ :

R1 ⊕ α = EndHλ
(ζ).

Notice that
EndHλ

(Hλ) = Hλ.

Lemma 10.2. Let ξ be an 8-dimensional real vector bundle and let ζ be an Hλ-line
bundle. Then ξ has an EndHλ

(ζ)-structure if and only if there is a 2-dimensional
Hλ-vector bundle η such that

ξ ∼= HomHλ
(ζ, η) = η ⊗Hλ

ζ∗.

Proof. This is standard module theory: ζ is an invertible (EndHλ
(ζ), Hλ)-bimodule. �

Lemma 10.3. The characteristic classes of ξ = η ⊗Hλ
ζ∗ where c1(ζ

∗) = −l, c2(ζ) =
−u and c1(η) = 2l are

w2(ξ) = 0; q1(ξ) = 2u − c2(η) + 2l2;

p2(ξ) = 2c4(η) + c2(η)(c2(η) − 2u − 4l2) + 6u2 + 6ul2 + 4l2;

e(ξ) = c4(η) + c2(η)u − l2u + u2.

Proof. To compute the characteristic classes we can suppose that η is a sum of two
Hλ-line bundles η1 ⊕ η2 and use Lemma 9.1. For instance, the computation of the
Euler class is as follows:

e(ξ) = e((η1 ⊕ η2) ⊗Hλ
ζ∗) = e(η1 ⊗Hλ

ζ∗)e(η2 ⊗Hλ
ζ∗)

= (c2(η1) − c2(ζ
∗))(c2(η2) − c2(ζ

∗)) = c4(η) + c2(η)u − l2u + u2

�

Proposition 10.4. (See [5], Theorem 8.1). Let w2(M) = ρ2(l). Then an 8-dimensional
oriented vector bundle ξ has an Hα-structure with w2(α) = ρ2(l) and q1(α; l) = 2u if
and only if w2(ξ) = 0 and the following conditions are satisfied.

p2(ξ) − q2
1(ξ) − 2e(ξ) = 0; w6(ξ) + w4(ξ)ρ2(l) + ρ2(l

3) = 0; Sq2ρ2u = ρ2(lu);

1

4
(u(p1(τM) − 2u − l2))[M ] ≡ 0 (mod 12);

1

4
(4q2

1(ξ) − 2p2(ξ) − q1(ξ)p1(τM) − 3l2q1(ξ) + l2p1(τM) + l4

+ u(20u + 10l2 + 2p1(τM)) − 12q1(ξ)u)[M ] ≡ 0 (mod 4).

Substituting u = 0 we get the conditions from Proposition 10.1.

Example 10.5. The quaternionic projective space HP 2, the Grassmannian G4,2(C)
and the homogeneous space G2/SO(4) are known to be quaternionic Kaehler mani-
folds and therefore the structure groups of their tangent bundles can be reduced to
Sp(2) ×{±1} Sp(1). Using our results we can say a little bit more.

The tangent bundle τ(HP 2) has no complex structure (and hence no Hλ-structure),
but it has an Hα-structure if and only if q1(α, 0) = 2ka, where k ≡ 1, 9 (mod 24) and
a is the generator of H4(HP 2; Z).
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There are infinitely many complex structures on τ(G4,2(C)), but none of them ex-
tends to an Hλ-structure. The tangent bundle admits Hα-structures with q1(α, 0) =
2ka2, where k ≡ 1, 9 (mod 12) and a generates H2(G4,2; Z).

In the case of τ(G2/SO(4)) our Proposition 10.4 can be used only to decide if there
is an Hα-structure with w2(α) = w2(G2/SO(4)) = 0. And such a structure does not
exist.

Consider next the complex manifolds Vd = {(z0, · · · , z5) ∈ CP 5; zd
0 +zd

1 + · · ·+zd
5 =

0}. Among them only V2 = G4,2(C) and V6 have almost quaternionic structures
(see also [6]). The tangent bundle τ(V6), like τ(G4,2), has infinitely many complex
structures, none being a restriction of an Hλ-structure. But τ(V6) is an Hα-module
for the bundles α with q1(α, 0) = 2ka2, where k ≡ 1 (mod 4) and a is a generator of
H2(V6; Z).

11. Reduction to Spinc(5) : a 3-field

Consider the composition

Sp(2) ×{±1} U(1) = Spinc(5) → SO(5) → SO(8)

of the canonical map and the standard inclusion. Suppose that λ is a complex line
bundle over M and that ζ is a 2-dimensional Hλ-bundle. Then the 6-dimensional
complex bundle λ∗ ⊗ Λ2ζ has a trivial 1-dimensional summand given by the (dual of
the) skew form ζ ⊗ ζ → λ and a real structure given by a symmetric C-valued form on
λ∗ ⊗ Λ2ζ . So we may write λ∗ ⊗C Λ2ζ = C ⊗R (R ⊕ η) for a 5-dimensional real vector
bundle η.

Lemma 11.1. The characteristic classes of η are:

w2(η) = ρ2(l); w4(η) = ρ2(l
2) + w4(ζ);

q1(η; l) = l2 − c2(ζ) : p2(η) = q2
1(η; l) − 4c4(ζ).

Proof. Apply Lemma 5.1 to η ⊕ R. �

Proposition 11.2. (Crabb and Steer). Suppose that w2(M) = w2(ξ) = ρ2(l). Then
ξ admits a Spinc(5)-structure with characteristic class l if and only if the following
conditions hold.

w6(ξ) = 0; e(ξ) = 0;

(
1

2
(p2(ξ) − q2

1(ξ; l)) +
1

2
(2q2

1(ξ; l) − q1(ξ; l)p1(τM) + q1(ξ; l)l2))[M ] ≡ 0 (mod 8).

Proof. The proof follows the same pattern as that of Proposition 5.2, only that instead
of Proposition 3.2 we use Proposition 8.2. (If e(ξ) = 0, the last congruence is always
satisfied (mod 3) by (4.1).) �

Next we describe when a given 8-dimensional vector bundle has a 3-dimensional
subbundle. To do so, we will need the following statement:

Proposition 11.3. Let w2(M) = ρ2(l). Consider cohomology classes u ∈ H4(M ; Z)
and z ∈ H8(M ; Z). Then there is a 5-dimensional vector bundle β over M with
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w2(β) = ρ2(l), q1(β; l) = u and p2(β) = z if and only if Sq2ρ2(u) = ρ2(lu) and there is
a class w ∈ H8(M ; Z) such that 4w = u2 − z and the integer

w[M ] ≡
1

4
u(2u − p1(τM) + l2)[M ] (mod 12).

Proof. This follows from Lemma 11.1 and Proposition 8.2. �

Corollary 11.4. (Čadek, Vanžura). Let w2(M) = ρ2(l) and let ξ satisfy w2(ξ) = 0.
Then ξ has a 3-dimensional subbundle α with characteristic classes w2(α) = ρ2(l) and
q1(α; l) = 2u if and only if the following conditions are satisfied.

e(ξ) = 0; w6(ξ) + w4(ξ)ρ2(l) + ρ2(l
3) = 0; Sq2ρ2u = ρ2(lu);

1

4
(u(p1(τM) − 2u − l2))[M ] ≡ 0 (mod 12);

1

4
(p2(ξ) + q2

1(ξ) − q1(ξ)p1(τM) − 3l2q1(ξ) + l2p1(τM) + l4

+ u(20u + 10l2 + 2p1(τM) − 12q1(ξ))[M ] ≡ 0 (mod 4).

Proof. The conditions on u ensure the existence of a 3-dimensional vector bundle α
with q1(α; l) = 2u. It remains to show that the other conditions ensure the existence of
a 5-dimensional vector bundle β with w2(β) = ρ2(l), q1(β;−l) = q1(ξ)− q1(α; l)− l2 =
q1(ξ) − 2u − l2 and p2(β) = p2(ξ) − p1(β)p1(α) = p2(ξ) − (4u + l2)(2q1(ξ) − 4u − l2).
This can be done using the previous proposition. �

Remark 11.5. In [4] a certain automorphism ϕ of the group Spin(8) was found such
that an 8-dimensional vector bundle ξ with the spin structure ξ admits reduction to
Sp(2)×{±1} Sp(1) if and only if a vector bundle η with spin structure η = ϕ∗(ξ) has a
3-dimensional subbundle ([4], Theorem 3.2). Moreover, ϕ∗ in the integer cohomology
of BSpin(8) was computed as

ϕ∗(q1) = q1; ϕ∗(e) = −q2; ϕ∗(q2) = −e.

Here q2 is uniquely defined by the equation p2 = q2
1 +2e+4q2. This relates reductions

to Sp(2)×{±1} Sp(1) with reductions to Spin(5)×{±1} Spin(3) and allows us to deduce
Proposition 10.4 from Corrolary 11.4.
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