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0. Foreword

These notes form a brief overview of basic topics in a usual introductory course of
algebraic topology. They have been prepared for my series of lectures at the Okayama
University. They cannot substitute standard textbooks. The technical proofs of sev-
eral important theorems are omitted and many other theorems are not proved in full
generality. However, in all such cases I have tried to give references to well known
textbooks the list of which you can find at the end.

I would like to express my acknowledgements to the Okayama University, and espe-
cially to Professor Mamoru Mimura for inviting me to Okayama. I am also gratefull
to my PhD. student Richard Lastovecki whose comments helped me to correct and
improve the text.

The notes are available online in electronic form at

http://www.math.muni.cz/˜ cadek

Date: September 5, 2002.
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1. Basic notions and constructions

1.1. Notation. The closure, the interior and the boundary of a topological space
X will be denoted by X, intX and ∂X, respectively. The letter I will stand for the
interval [0, 1]. Rn and Cn will denote the vector spaces of n-tuples of real and complex
numbers, respectively, with the standard norm ‖x‖ =

∑n
i=1 |xi|

2. The sets

Dn = {x ∈ Rn; ‖x‖ ≤ 1},

Sn = {x ∈ Rn+1; ‖x‖ = 1}

are the n-dimensional disc and the n-dimensional sphere, respectively.

1.2. Categories of topological spaces. Every category consists of objects and
morphisms between them. Morphisms f : A → B and g : B → C can be composed
into a morphism g◦f : A→ C and for every object B there is a morphism idB : B → B
such that idB ◦f = f and g ◦ idB = g. The composition of morphisms is associative.

The category with topological spaces as objects and continuous maps as morphisms
will be denoted T OP. Topological spaces with base points (usually denoted by ∗)
are sometimes called based spaces. Together with continuous maps f : (X, ∗) →
(Y, ∗) such that f(∗) = ∗ they form the category T OP∗. Topological spaces X, A
will be called a pair of topological spaces if A is a subspace of X (notation (X,A)).
The notation f : (X,A) → (Y,B) means that f : X → Y is a continuous map
which preserves subspaces, i. e. f(A) ⊆ B. The category T OP2 consists of pairs of
topological spaces as objects and continuous maps f : (X,A) → (Y,B) as morphisms.
Finally, T OP2

∗ will denote the category of pairs of topological spaces with base points
in subspaces and continuous maps preserving both subspaces and base points.

So far on a space will mean a topological space and a map will mean a continuous
map.

1.3. Homotopy. Maps f, g : X → Y are called homotopic, notation f ∼ g, if there
is a map h : X × I → Y such that h(x, 0) = f(x) and h(x, 1) = g(x). This map
is called homotopy between f and g. The relation ∼ is an equivalence. Homotopies
in categories T OP∗, T OP2 or T OP2

∗ have to preserve base points, i. e. h(∗, t) = ∗,
subsets or both subsets and base points, respectively.

Spaces X and Y are called homotopy equivalent if there are maps f : X → Y and
g : Y → X such that f ◦ g ∼ idY and g ◦ f ∼ idX in the category T OP. We also say
that they have the same homotopy type.

Example. Sn and Rn+1 − {0} are homotopy equivalent. Take inclusion f : Sn →
Rn+1 − {0} and g : Rn+1 − {0} → Sn, g(x) = x/‖x‖ as homotopy equivalences.

A space is called contractible if it is homotopy equivalent to a point.

1.4. Retracts and deformation retracts. Let i : A →֒ X be an inclusion. We say
that A is a retract of X if there is a map r : X → A such that r ◦ i = idA. The map r
is called a retraction.

We say that A is a deformation retract of X (sometimes also strong deformation
retract) if there is a map h : X × I → X such that h(−, 0) = idX , h(i(−), t) = idA for
all t ∈ I and h(X, 1) = A. The map h is called a deformation retraction.
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Exercise. Show that deformation retract of X is homotopy equivalent to X.

1.5. Basic constructions in T OP. Consider a topological space X with an equiv-
alence ≃. Then X/ ≃ is the set of equivalence classes with the topology determined
by the projection p : X → X/ ≃ in the following way: U ⊆ X/ ≃ is open iff p−1(U) is
open in X.

We will show this constructions in several special cases. Let A be a subspace of X.
The factorspace X/A is the space X/ ≃ where x ≃ y iff x = y or both x, y ∈ A. This
space is often considered as a based space with base point determined by the subspace
A. If A = ∅ we put X/∅ = X ∪ {∗}.

Exercise. Prove that Dn/Sn−1 is homeomorphic to Sn. For it consider f : Dn → Sn

f(x1, x2, . . . , xn) = (2
√

1 − ‖x‖2x, 2‖x‖2 − 1).

Disjoint union of spaces X and Y will be denoted X ⊔ Y . Open sets are unions of
open sets in X and in Y . Let A be a subspace of X and let f : A → Y be a map.
Then X ∪f Y is the space (X ⊔ Y )/ ≃ where the equivalence is generated by relations
a ≃ f(a).

The mapping cylinder of a map f : X → Y is the space

Mf = X × I ∪f×1 Y

which arises from X × I and Y after identification of points (x, 1) ∈ X × I and
f(x) ∈ Y .

Exercise. We have two inclusions iX : X = X × {0} →֒ Mf and iY : Y →֒ Mf and a
retraction r : Mf → Y . How is r defined?

X
f

~~}}
}}

}}
}}

iX
��

f

  A
AA

AA
AA

A

Y
iY

// Mf r
// Y

Prove that

(1) Y is a deformation retract of Mf .
(2) ix ◦ r = f
(3) iy ◦ f ∼ iX

The mapping cone of a mapping f : X → Y is the space

Cf = Mf/(X × {0}.

A special case of a mapping cone is the cone of a space X

CX = X × I/(X × {0}) = CidX
.

The suspension of a space X is the space

SX = CX/(X × {1}).

Exercise. Show that SSn is homeomorphic to Sn+1. For it consider the map f :
Sn × I → Sn+1

f(x, t) = (
√

1 − (2t− 1)2x, 2t− 1).
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The join of spaces X and Y is the space

X ⋆ Y = X × Y × I/ ≃

where ≃ is an equivalence generated by (x, y1, 0) ≃ (x, y2, 0) and (x1, y, 1) ≃ (x2, y, 1).

Exercise. Show that the operation of join is associative and compute joins of two
points, two intervals, several points, S0 ⋆ X, Sn ⋆ Sm.

1.6. Basic constructions in T OP∗ and T OP2. Let X be a space with a base point
x0. The reduced suspension of X is the space

ΣX = SX/({x0} × I)

with base point determined by x0 × I. In 2.8 we will show that ΣX is homotopy
equivalent to SX.

The space

(X, x0) ∨ (Y, y0) = (X ⊔ Y )/(X × {x0} × Y ∪X × {y0} = X × {y0} ∪ {x0} × Y

with base point (x0, y0) is called the wedge of X and Y and usually denoted only as
X ∨ Y .

The smash product of spaces (X, x0) and (Y, y0) is the space

X ∧ Y = X × Y/(X × {y0} ∪ {x0} × Y ) = X × Y/X ∨ Y.

Analogously, the smash product of pairs (X,A) and (Y,B) is the pair

(X × Y,A× Y ∪X ×B).

Exercise. Show that Sm ∧ Sn ∼= Sn+m.

1.7. Homotopy extension property. We say that a pair of topological spaces
(X,A) has the homotopy extension property (abbreviation HEP) if any map f : X → Y
and any homotopy h : A× I → Y such that h(a, 0) = f(a) for a ∈ A can be extended
to a homotopy H : X × I → Y such that H(x, 0) = f(x) and H(a, t) = h(a, t) for all
x ∈ X, a ∈ A and t ∈ I. (Draw a picture.)

If a pair (X,A) has the homotopy extension property, the inclusion i : A →֒ X is
called a cofibration.

Theorem. A pair (X,A) has HEP if and only if X×{0}∪A× I is a retract of X× I.

Exercise. Using this Theorem show that the pair (Dn, Sn−1) satisfies HEP. (In fact,
Dn × {0} ∪ Sn−1 × I is even a deformation retract of Dn × I.) Many other examples
will be given in the next section.

Proof of Theorem. Let (X,A) has HEP. Put Y = X ×{0}∪A× I and consider f and
h to be inclusions. Their extension H : X × {0} ∪ A× I → X × I is a retraction.

Let r : X×{0}∪A×I → X×I be a retraction. Let be given a map f and a homotopy
h as in the definition. They together determine a map F : X × {0} ∪ A × I → Y .
Then H = F ◦ r is an extension of f and h. �

Exercise. Let a pair (X,A) satisfy HEP and consider a map g : A → Y . Prove that
(X ∪g Y, Y ) also satisfies HEP.
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2. CW-complexes

2.1. Constructive definition of CW-complexes. CW-complexes are all the spaces
which can be obtained by the following construction:

(1) We start with a discrete space X0. Single points of X0 are called 0-dimensional
cells.

(2) Suppose that we have already constructed Xn−1. For every element α of an
index set Jn take a map fα : Sn−1 = ∂Dn

α → Xn−1 and put

Xn =
⋃

α

(

Xn−1 ∪fα
Dn
α

)

.

Interiors of discs Dn
α are called n-dimensional cells and denoted by enα.

(3) We can stop our construction for some n and put X = Xn or we can proceed
with n to infinity and put

X =
∞
⋃

n=0

Xn.

In the latter case X is equipped with inductive topology which means that
A ⊆ X is closed (open) iff A ∩Xn is closed (open) in Xn for every n.

Example. The sphere Sn is a CW-complex with one cell e0 in dimension 0, one cell
en in dimension n and the constant attaching map f : Sn−1 → e0.

Example. The real projective space RPn is the space of 1-dimensional linear subspaces
in Rn+1. It is homeomorhic to

Sn/(v ≃ −v) ∼= Dn/(w ≃ −w)

for all w ∈ ∂Dn = Sn−1. However, Sn−1/(w ≃ −w) ∼= RPn−1. So RPn arises from
RPn−1 by attaching one n-dimensional cell using the projection f : Sn−1 → RPn−1.
Hence RPn is a CW-complex with one cell in every dimension from 0 to n.

We define RP∞ =
⋃∞
n=1 RPn. It is again a CW-complex.

Example. The complex projective space CPn is the space of complex 1-dimensional
linear subspaces in Cn+1. It is homeomorhic to

S2n+1/(v ≃ λv) ∼= {(w,
√

1 − |w|2) ∈ Cn+1; ‖w‖ ≤ 1}/((w, 0) ≃ λ(w, 0), ‖w‖ = 1)

∼= D2n/(w ≃ λw; w ∈ ∂D2n)

for all λ ∈ C, |λ| = 1. However, ∂D2n/(w ≃ λw) ∼= CPn−1. So CPn arises from CPn−1

by attaching one 2n-dimensional cell using the projection f : S2n−1 = ∂D2n → CPn−1.
Hence CPn is a CW-complex with one cell in every even dimension from 0 to 2n.

Define CP∞ =
⋃∞
n=1 CPn. It is again a CW-complex.

2.2. Another definition of CW-complexes. Sometimes it is advantageous to be
able to describe CW-complexes by their properties. We carry it out in this paragraph.
Then we show that the both definitions of CW-complexes are equivalent.

Definition. A cell complex is a Hausdorff topological space X such that
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(1) X as a set is a disjoint union of cells eα

X =
⋃

α∈J

eα.

(2) For every cell eα there is a number, called dimension.

Xn =
⋃

dim eα≤n

eα

is the n-skeleton of X.
(3) Cells of dimension 0 are points. For every cell of dimension ≥ 1 there is a

characteristic map

ϕα : (Dn, Sn−1) → (X,Xn−1)

which is a homeomorphism of intDn onto eα.

The cell subcomplex Y of a cell complex X is a union Y =
⋃

α∈K eα , K ⊆ J , which
is a cell complex with the same characterictic maps as the complex X.

A CW-complex is a cell complex satisfying the following conditions:

(C) Closure finite property. The closure of every cell belongs to a finite subcomplex,
i. e. subcomplex consisting only from a finite number of cells.

(W) Weak topology property. F is closed in X if and only if F ∩ ēα is closed for
every α.

Example. Examples of cell complexes which are not CW-complexes:

(1) S2 where every point is 0-cell. It does not satisfy property (W).
(2) D3 with cells e3 = intB3, e0x = {x} for all x ∈ S2. It does not satisfy (C).
(3) X = {1/n; n ≥ 1} ∪ {0} ⊂ R. It does not satisfy (W).
(4) X =

⋃∞
n=1{x ∈ R2; ‖x− (1/n, 0)‖ = 1/n} ⊂ R2. If it were a CW-complex, the

set {1/n; n ≥ 1} would be closed in X and consequently in R2.

2.3. Proposition. The definitions 2.1 and 2.2 of CW-complexes are equivalent.

Proof. We will show that a space X constructed according to 2.1 satisfies definition
2.2. The proof in the opposite direction is left as an exercise to the reader.

The cells of dimension 0 are points of X0. The cells of dimension n are interiors of
discs Dn

α attached to Xn−1 with charakteristic maps

ϕα : (Dn
α, S

n−1
α ) → (Xn−1 ∪fα

Dn
α, X

n−1)

induced by identity on Dn
α. So X is a cell complex. From the construction 2.1 follows

that X satisfies property (W). It remains to prove property (C). We will carry it out
by induction.

Let n = 0. Then e0α = e0α.
Let (C) holds for all cells of dimension ≤ n − 1. enα is a compact set (since it is an

image of Dn
α). Its boundary ∂enα is compact in Xn−1. Consider the set of indices

K = {β ∈ J ; ∂enα ∩ eβ 6= ∅}.

If we show that K is finite, from the inductive assumption we get that ēnα lies in a
finite subcomplex which is a union of finite subcomplexes for ēβ, β ∈ K.
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Choosing one point from every intersection ∂enα ∩ eβ, β ∈ K we form a set A. A is
closed since any intersection with a cell is empty or a onepoint set. Simultaneously, it
is open, since every its element a forms an open subset (for A− {a} is closed). So A
is a discrete subset in the compact set ∂enα, consequently, it is finite. �

2.4. Lemma. Let X be a CW-complex. Then any compact set A ⊆ X lies in a finite
subcomplex, particularly, there is n such that A ⊆ Xn.

Proof. Consider the set of indices

K = {β ∈ J ; A ∩ eβ 6= ∅}.

Similarly as in 2.3 we will show that K is a finite set. Then A ⊆
⋃

β∈K ēβ and every
ēβ lies in a finite subcomplexes. Hence A itself is a subset of a finite subcomplex. �

2.5. Cellular maps. Let X and Y be CW-complexes. A map f : X → Y is called a
cellular map if f(Xn) ⊆ Y n for all n. In 12.5 we will prove that every map g : X → Y
is homotopy equivalent to a cellular map f : X → Y . If moreover, g restricted to a
subcomplex A ⊂ X is already cellular, f can be chosen in such a way that f = g on
A.

2.6. Spaces homotopy equivalent to CW-complexes. One can show that every
open subset of Rn is a CW-complex. In [Ha], Theorem A.11, it is proved that every
retract of a CW-complex is homotopy equivalent to a CW-complex. These two facts
imply that every compact manifold with or without boundary is homotopy equivalent
to a CW-complex. (See [Ha], Corollary A.12.)

2.7. Theorem. Let A be a subcomplex of a CW-complex X. Then the pair (X,A)
has the homotopy extension property.

Proof. There is a deformation retraction r : Dn × I → Dn × {0} ∪ Sn−1 × I. (Draw a
picture.)

Put Y −1 = A, Y n = Xn ∪ A. Using r we can define a deformation retraction
Rn : Y n×I → Y n×{0}∪Y n−1×I. Now define the deformation retraction R : X×I →
X×{0}∪A×I as R(x, t) = Rn(x, 2n+1(t−1/2n+1) if x ∈ Y n and t ∈ [1/2n+1, 1/2n] and
R(x, 0) = (x, 0) for all x. R is continuous since Rn : Y n × I → X × I are continuous
and X × I is a direct limit of Y n × I. �

2.8. First criterion for homotopy equivalence. Suppose that a pair (X,A) has
the homotopy extension property and that A is contractible (in A). Then the canonical
projection q : X → X/A is a homotopy equivalence.

Proof. Since A is contractible there is a homotopy h : A × I → A between idA and
constant map. This homotopy together with idX : X → X can be extended to a
homotopy f : X × I → X. Since f(A, t) ⊆ A for all t ∈ I, there is a homotopy

f̃ : X/A× I → X/A such that the diagram

X × I
f //

q

��

X/A

q

��
X/A× I

f̃

// X/A



8

commutes. Define g : X/A→ X by g(x) = f(x, 1). Then idX ∼ g◦q via the homotopy

f and idX/A ∼ q◦g via the homotopy f̃ . Hence X is homotopy equivalent to X/A. �

Exercise. Using the previous criterion show that S2/S0 ∼ S2 ∨ S1.

Exercise. Using the previous criterion show that the suspension and the reduced
suspension of a CW-complex are homotopy equivalent.

2.9. Second criterion for homotopy equivalence. Let (X,A) be a pair of CW-
complexes and let Y be a space. Suppose that f, g : A → Y are homotopic maps.
Then X ∪f Y and X ∪g Y are homotopy equivalent.

Proof. Let F : A× I → Y be a homotopy between f and g. We will show that X ∪f Y
and X ∪g Y are both deformation retracts of (X × I) ∪F Y . Consequently, they have
to be homotopy equivalent.

We construct a deformation retraction in two steps.

(1) (X × {0}) ∪f Y is a deformation retract of (X × {0} ∪ A× I) ∪F Y .
(2) (X × {0} ∪A× I) ∪F Y is a deformation retract of (X × I) ∪F Y .

�

Exercise. Let (X,A) be a pair of CW-complexes. Suppose that A is a contractible
in X, i. e. there is a homotopy F : A → X between idX and const. Using the first
criterion show that X/A ∼= X ∪CA/CA ∼ X ∪CA. Using the second criterion prove
that X ∪ CA ∼ X ∨ SA. Then

X/A ∼ X ∨ SA.

Apply it to compute Sn/Si, i < n.

3. Simplicial and singular homology

3.1. Exact sequences. A sequence of homomorphisms of Abelian groups or modules
over a ring

. . .
fn+1
−−→ An

fn
−→ An−1

fn−1
−−→ An−2

fn−2
−−→ . . .

is called an exact sequence if
Im fn = Ker fn−1.

Exactness of the following sequences

O → A
f
−→ B, B

g
−→ C → 0, 0 → C

h
−→ D → 0

means that f is a monomorphism, g is an epimorphism and h is an isomorphism,
respectively.

A short exact sequence is an exact sequence

0 → A
i
−→ B

j
−→ C → 0.

In this case C ∼= B/A. We say that the short exact sequence splits if one of the
following three equivalent conditions is satisfied:

(1) There is a homomorphism p : B → A such that pi = idA.
(2) There is a homomorphism q : C → B such that jq = idC .
(3) There are homomorphisms p : B → A and q : C → B such that ip+ qj = idB.
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The last condition means that B ∼= A⊕ C with isomorphism (p, q) : B → A⊕ C.

3.2. Chain complexes. The chain complex (C, ∂) is a sequence of Abelian groups
(or modules over a ring) and their homomorphisms indexed by integers

. . .
∂n+2
−−−→ Cn+1

∂n+1
−−−→ Cn

∂n−→ Cn−1
∂n−1
−−−→ . . .

such that

∂n−1∂n = 0.

This conditions means that Im ∂n ⊆ Ker ∂n−1. The homomorphism ∂n is called a
boundary operator. A chain homomorphism of chain complexes (C, ∂C) and (D, ∂D) is
a sequence of homomorphisms of Abelian groups (or modules over a ring) fn : Cn → Dn

which commute with the boundary operators

∂Dn fn = fn−1∂
C
n .

3.3. Homology of chain complexes. The n-th homology group of the chain complex
(C, ∂) is the group

Hn(C) =
Ker ∂n
Im ∂n+1

.

The elements of Ker ∂n = Zn are called cycles of dimension n and the elements of
Im ∂n+1 = Bn are called boundaries (of dimension n). If a chain complex is exact,
then its homology groups are trivial.

The component fn of the chain homomorphism f : (C, ∂C) → (D, ∂D) maps cycles
into cycles and boundaries into boundaries. It enables us to define

Hn(f) : Hn(C) → Hn(D)

by the prescription Hn(f)[c] = [fn(c)] where [c] ∈ Hn(C∗) and [fn(c)] ∈ Hn(D
∗) are

classes represented by the elements c ∈ Zn(C) and fn(c) ∈ Zn(D), respectively.

3.4. Long exact sequence in homology. A sequence of chain homomorphisms

· · · → A
f
−→ B

g
−→ C → . . .

is exact if for every n ∈ Z

· · · → An
fn
−→ Bn

gn
−→ Cn → . . .

is an exact sequence of Abelian groups.

Theorem. Let 0 → A
i
−→ B

j
−→ C → 0 be a short exact sequence of chain complexes.

Then there is a connecting homomorphism ∂∗ : Hn(C) → Hn−1(A) such that the
sequence

. . .
∂∗−→ Hn(A)

Hn(i)
−−−→ Hn(B)

Hn(j)
−−−→ Hn(C)

∂∗−→ Hn−1(A)
Hn−1(i)
−−−−→ . . .

is exact.

Proof. Define the connecting homomorphism ∂∗. Let [c] ∈ Hn(C) where c ∈ Cn is a
cycle. Since j : Bn → Cn is an epimorphism, there is b ∈ Bn such that j(b) = c.
Further, j(∂b) = ∂j(b) = ∂c = 0. From exactness there is a ∈ An−1 such that
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i(a) = ∂b. Since i(∂a) = ∂i(a) = ∂∂b = 0 and i is a monomorphism, ∂a = 0 and a is
a cycle in An−1. Put

∂∗[c] = [a].

Now we have to show that the definition is correct, i. e. independent of the choice of c
and b, and to prove exactness. For this purpose it is advantageous to use an appropriate
diagram. It is not difficult and we leave it as an exercise to the reader. �

3.5. Chain homotopy. Let f, g : C → D be two chain homomorphisms. We say
that they are chain homotopic if there are homomorphisms sn : Cn → Dn+1 such that

∂Dn+1sn + sn−1∂
C
n = fn − gn for all n.

The relation to be chain homotopic is an equivalence. The sequence of maps sn is
called a chain homotopy.

Theorem. If two chain homomorphism f, g : C → D are chain homotopic, then

Hn(f) = Hn(g).

Exercise. Prove the previous theorem from the definitions.

3.6. Five Lemma. Consider the diagram

A //

f1 ∼=
��

B //

f2 ∼=
��

C //

f3
��

D //

f4 ∼=
��

E

f5 ∼=
��

Ā // B̄ // C̄ // D̄ // Ē

If the horizontal sequences are exact and f1, f2, f4 and f5 are isomorphisms, then f3

is also an isomorphism.

Proof. Left as an exercise. �

3.7. Simplicial homology. We describe two basic ways how to define homology
groups for topological spaces – simplicial homology which is closer to geometric in-
tuition and singular homology which is more general. For the definition of simplicial
homology we need the notion of ∆-complex, which is a special case of CW-complex.

Let v0, v1, . . . , vn be points in Rm such that v1 − v0, v2 − v0, vn− v0 are linearly inde-
pendent. The n-simplex [v0, v1, . . . , vn] with the vertices v0, v1, . . . , vn is the subspace
of Rm

{
n
∑

i=0

tivi;
n
∑

i=1

ti = 1, ti ≥ 0}

with a given ordering of vertices. A face of this simplex is any simplex determined by
a proper subset of vertices in the given ordering.

Let ∆α, α ∈ J be a collection of simplices. Subdivide all their faces of dimension
i into sets F i

β. A ∆-complex is a quotient space of disjoint union
∐

α∈J ∆α obtained

by identifying simplices from every F i
β into one single simplex via affine maps which

preserve the ordering of vertices. Thus every ∆-complex is determined only by com-
binatorial data.

A special case of ∆-complex is a finite simplicial complex. It is a union of simplices
the vertices of which lie in a given finite set of points {v0, v1, . . . , vn} in Rm such that
v1 − v0, v2 − v0, . . . , vn − v0 are linearly independent.
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Example. Torus, real projective space of dimension 2 and Klein bottle are ∆-complexes
as one can see from the following pictures.

b b b

b b b

a a a

a

a

a

c c c

In all the cases we have two sets F 2 whose elements are triangles, three sets F 1

every with two segments and one set F 0 containing all six vertices of both triangles.
These surfaces are also homeomorhic to finite simplicial complexes, but their struc-

ture as simplicial complexes is more complicated than their structure as ∆-complexes.

To every ∆-complex X we can assign the chain complex (C, ∂) where Cn(X) is a free
Abelian group generated by n-simplices of X (i. e. the rank of Cn(X) is the number
of the sets F n and the boundary operator on generators is given by

∂[v0, v1, . . . , vn] =
n
∑

i=0

(−1)i[v0, . . . , v̂i . . . , vn].

Here the symbol v̂i means that the vertex vi is omitted. Prove that ∂∂ = 0.
The simplicial homology groups of ∆-complex X are the homology groups of the

chain complex defined above. Later, we will show that these groups are independent
of ∆-complex structure.

Exercise. Compute simplicial homology of S2 (find a ∆-complex structure), RP2,
torus and Klein bottle (with ∆-complex structures given in example above).

Let X and Y be two ∆-complexes and f : X → Y a map which maps every simplex
of X into a simplex of Y and it is affine on all simplexes. Using appropriate sign
conventions we can define the chain homomorphism fn : Cn(X) → Cn(Y ) induced by
the map f . This chain map enables us to define homomorphism of simplicial homology
groups induced by f .

Having a ∆-subcomplex A of a ∆-complex X (i. e. subspace of X formed by some of
the simplices of X) we can define simplicial homology groups Hn(X,A). The definition
is the same as for singular homology in paragraph 3.9. These groups fit into the long
exact sequence

· · · → Hn(A) → Hn(X) → Hn(X,A) → Hn−1(A) → . . .

See again 3.9.

3.8. Singular homology. The standard n-simplex is the n-simplex

∆n = {(t0, t1, . . . , tn) ∈ Rn+1;

n
∑

i=0

ti = 1; ti ≥ 0}.
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The j-th face of this standard simplex is the (n−1)-dimensional simplex [e0, . . . , êj , . . . , en]
where ej is the vertex with all coordinates 0 with the exception of the j− th one which
is 1. Define

εjn : ∆n−1 → ∆n

as the affine map εjn(t0, t1, . . . , tn−1) = (t0, . . . , tj−1, 0, tj, . . . , tn−1) which maps

e0 → e0, . . . , ej−1 → ej−1, ej → ej+1, . . . , en−1 → en.

It is not difficult to prove

Lemma. εjn+1ε
k
n = εj−1

n+1ε
j−1
n for k < j.

A singular n-simplex in a space X is a continuous map σ : ∆n → X. Denote the
free Abelian group generated by all the singular n-simplices by Cn(X) and define the
boundary operator ∂n : Cn(X) → Cn−1(X) by

∂n(σ) =
n
∑

i=0

(−1)iσεin

for n ≥ 0. Put Cn(X) = 0 for n < 0. Using the lemma above one can show that

∂n+1∂n = 0.

The chain complex (Cn, ∂n) is called the singular chain complex of the space X. The
singular homology groups Hn(X) of the space X are the homology groups of the chain
complex (Cn(X), ∂n), i. e.

Hn(X) =
Ker ∂n
Im ∂n+1

.

Next consider a map f : X → Y . Define the chain homomorhism Cn(f) : Cn(X) →
Cn(Y ) on singular n-simplices as the composition

Cn(f)(σ) = fσ.

From definitions it is easy to show that these homomorphisms commute with boundary
operators. Hence this chain homomorphism induces homomorphisms

f∗ = Hn(f) : Hn(X) → Hn(Y ).

Moreover, Hn(idX) = idHn(X) and Hn(fg) = Hn(f)Hn(g). It means that Hn is
a functor from the category T OP to the category AG of Abelian groups and their
homomorphisms. This functor is the composition of the functor C from T OP to chain
complexes and the n-th homology functor from chain complexes to abelian groups.

Exercise. Show directly from the definition that the singular homology groups of a
point are H0(∗) = Z and Hn(∗) = 0 for n 6= 0.

3.9. Singular homology groups of a pair. Consider a pair of topological spaces
(X,A). Then the Cn(A) is a subgroup of Cn(X). Hence we get this short exact
sequence

0 → Cn(A)
i
−→ Cn(X)

j
−→

Cn(X)

Cn(A)
→ 0.
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Since the boundary operators in Cn(A) are restrictions of boundary operators in
Cn(X), we can define boundary operators

∂n :
Cn(X)

Cn(A)
→

Cn−1(X)

Cn−1(A)
.

We will denote this chain complex as (C(X,A), ∂) and its homology groups asHn(X,A).
Notice that the factor Cn(X)/Cn(A) is a free Abelian group generated by singular sim-
plices σ : ∆n → X such that σ(∆n) * A. We will need it later.

A map f : (X,A) → (Y,B) induces the chain homomorphism Cn(f) : Cn(X) →
Cn(Y ) which restricts to a chain homomorphism Cn(A) → Cn(B) since f(A) ⊆ B.
Hence we can define the chain homomorphism

Cn(f) : Cn(X,A) → Cn(Y,B)

which in homology induces the homomorphism

f∗ = Hn(f) : Hn(X,A) → Hn(Y,B).

We can again conclude that Hn is a functor from the category T OP2 into the category
AG of Abelian groups. This functor extends the functor defined on the category T OP
since every object X and every morphism f : X → Y in T OP can be considered as
the object (X, ∅) and the morphism f̂ = f : (X, ∅) → (Y, ∅) in the category T OP2

and

Hn(X, ∅) = Hn(X), Hn(f̂) = Hn(f).

3.10. Long exact sequence for singular homology. Consider inclusions of spaces
i : A → X, i′ : B → Y and maps j : (X, ∅) → (X,A), j′ : (Y, ∅) → (Y,B) induced
by idX and idY , respectively. Let f : (X,A) → (Y,B) be a map. Then there are
connecting homomorphisms ∂X∗ and ∂Y∗ such that the following diagram

∂X
∗ // Hn(A)

i∗ //

(f/A)∗
��

Hn(X
1)

j∗ //

f∗
��

Hn(X,A)
∂X
∗ //

f∗
��

Hn−1(A)
i∗ //

(f/A)∗
��∂Y

∗ // Hn(B)
i′
∗ // Hn(Y )

j′
∗ // Hn(Y,B)

∂Y
∗ // Hn−1(B)

i′
∗ //

commutes and its horizontal sequences are exact.

An analogous theorem holds also for simplicial homology.

Remark. Consider the functor I : T OP2 → T OP2 which assigns to every pair (X,A)
the pair (A, ∅). The commutativity of the last square in the diagram above means that
∂∗ is a natural transformation of functors Hn and Hn−1 ◦ I defined on T OP2.

Proof. We have the following commutative diagram of chain complexes

0 // C(A)
C(i)

//

C(f/A)
��

C(X)
C(j)

//

C(f)
��

C(X,A) //

C(f)
��

0

0 // C(B)
C(i′)

// C(Y )
C(j′)

// C(Y,B) // 0
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with exact horizontal rows. Then Theorem 3.4 and the construction of connecting
homomorphism ∂∗ imply the required statement. �

Remark. It is useful to realize how ∂∗ : Hn(X,A) → Hn−1(A) is defined. Every
element of Hn(X,A) is represented by a chain x ∈ Cn(X) with a boundary ∂x ∈
Cn−1(A). This is a cycle in Cn(A) and from the definition in 3.4 we have

∂∗[x] = [∂x].

3.11. Homotopy invariance. If two maps f, g : (X,A) → (Y,B) are homotopic,
then they induce the same homomorphisms

f∗ = g∗ : Hn(X,A) → Hn(Y,B).

Proof. We need to prove that the homotopy between f and g induces a chain homotopy
between C∗(f) and C∗(g). For the proof see [Ha], Theorem 2.10 and Proposition 2.19
or [Sp], Chapter 4, Section 4. �

Corollary. If X and Y are homotopy equivalent spaces, then

Hn(X) ∼= Hn(Y ).

3.12. Excision Theorem. There are two equivalent versions of this theorem.

Theorem (Excision Theorem, 1st version). Consider spaces C ⊆ A ⊆ X and suppose
moreover that C̄ ⊆ intA. Then the inclusion

i : (X − C,A− C) →֒ (X,A)

induces the isomorphism

i∗ : Hn(X − C,A− C)
∼=
−→ Hn(X,A).

Theorem (Excision Theorem, 2nd version). Consider two subspaces A and B of a
space X. Suppose that X = intA ∪ intB. Then the inclusion

i : (B,A ∩ B) →֒ (X,A)

induces the isomorphism

i∗ : Hn(B,A ∩B)
∼=
−→ Hn(X,A).

The second version of Excision Theorem holds also for simplicial homology if we
suppose that A and B are ∆-subcomplexes of a ∆-complex X and X = A∪B. In this
case the proof is easy since the inclusion

Cn(i) : Cn(B,A ∩ B) → Cn(A ∪B,A)

is an isomorphism, namely the both chain complexes are generated by the same n-
simplices.

Exercise. Show that the theorems above are equivalent.

The proof of Excision Theorem for singular homology can be found in [Ha], pages
119 – 124, or in [Sp], Chapter 4, Sections 4 and 6. The main step (a little bit technical
for beginners) is to prove the following lemma which we will need later.
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Lemma. Let U = {Uα; α ∈ J} be a collection of subsets of X such that X =
⋃

α∈J intUα. Denote the free chain complex generated by singular simplices σ with
σ(∆n) ∈ Uα for some α as CU

n (X). Then

CU
n (X)) →֒ Cn(X)

induces isomorphism in homology.

Proof of Excision Theorem. Consider U = {A,B}. Then the inclusion

Cn(i) : Cn(B,A ∩ B) →
CU
n (X)

Cn(A)

is an isomorphism and, moreover, according to the previous lemma, the homology of
the second chain complex is Hn(X,A). �

3.13. Homology of disjoint union. Let X =
∐

α∈J Xα be a disjoint union. Then

Hn(X) =
⊕

α∈J

Hn(Xα).

The proof follows from the definition and connectivity of σ(∆n) in X for every
singular n-simplex σ.

3.14. Reduced homology groups. For every space X 6= ∅ we define the augmented
chain complex (C̃(X), ∂̃) as follows

C̃n(X) =

{

Cn(X) for n 6= −1,

Z for n = −1.

with ∂̃n = ∂n for n 6= 0 and ∂0(
∑j

i=1 niσi) =
∑j

i=1 ni. The reduced homology groups

H̃n(X) are the homology groups of the augmented chain complex. From the definition
it is clear that

H̃n(X) = Hn(X) for n 6= 0

and
H̃n(∗) = 0 for all n.

For pairs of spaces we define H̃n(X,A) = Hn(X,A) for all n. Then theorems on long
exact sequence, homotopy invariance and excision hold for reduced homology groups
as well.

Considering a space X with distinguished point ∗ and applying the long exact
sequence for the pair (X, ∗), we get that for all n

H̃n(X) = H̃n(X, ∗) = Hn(X, ∗).

Using this equality and the long exact sequence for unreduced homology we get that

H0(X) ∼= H0(X, ∗) ⊕H0(∗) ∼= H̃0(X) ⊕ Z.

Lemma. Let (X,A) be a pair of CW-complexes, X 6= ∅. Then

H̃n(X/A) = Hn(X,A)

and we have the long exact sequence

· · · → H̃n(A) → H̃n(X) → H̃n(X/A) → H̃n−1(A) → . . .
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Proof. According to example in 2.9

(X,A) → (X ∪ CA,CA) → (X ∪ CA/CA, ∗) = (X/A, ∗)

is the composition of an excision and a homotopy equivalence. Hence H̃n(X/A) =
Hn(X,A). The rest folows from the long exact sequence of the pair (X,A). �

Exercise. Prove that H̃n(
∨

Xα) ∼= ⊕H̃n(Xα).

H̃n can be considered as a functor from T OP∗ to Abelian groups.

3.15. The long exact sequence of a triple. Three spaces (X,B,A) with the
property A ⊆ B ⊆ X are called a triple. Denote i : (B,A) → (X,A) and j : (X,A) →
(X,B) maps induced by the inclusion B →֒ X and idX , respectively. Analogously as
for pairs one can derive the following long exact sequence:

. . .
∂∗−→ Hn(B,A)

i∗−→ Hn(X,A)
j∗
−→ Hn(X,B)

∂∗−→ Hn−1(B,A)
i∗−→ . . .

3.16. Singular homology groups of spheres. Consider the long exact sequence of
the triple (∆n, ∂∆n, V = ∂∆n − ∆n−1):

· · · → Hi(∆
n, V ) → Hi(∆

n, ∂∆n)
∂∗
−→ Hi−1(∂∆

n, V ) → Hi−1(∆
n, V ) → . . .

The pair (∆n, V ) is homotopy equivalent to (∗, ∗) and hence its homology groups
are zeroes. Next using Excision Theorem and homotopy invariance we get that
Hi(∆

n, V ) ∼= Hi(∆
n−1, ∂∆n−1). Consequently, we get an isomorphism

Hi(∆
n, ∂∆n) ∼= Hi−1(∆

n−1, ∂∆n−1).

Using induction and computing Hi(∆
1, ∂∆1) = Hi([0, 1], {0, 1}) ∼= Hi−1({0, 1}, {0})

we get that

Hi(∆
n, ∂∆n) =

{

Z for i = n,

0 for i 6= n.

Doing the induction carefully we can find that the generator of the groupHn(∆
n, ∂∆n) =

Z is determined by the singular n-simplex id∆n.
The pair (Dn, Sn−1) is homeomorphic to (∆n, ∂∆n). Hence it has the same homology

groups. Using the long exact sequence for this pair we obtain

H̃i−1(Sn−1) = Hi(D
n, Sn−1) =

{

0 for i 6= n,

Z for i = n.

3.17. Mayer-Vietoris exact sequence. Denote inclusions A∩B →֒ A, A∩B →֒ B,
A →֒ X, B →֒ X by iA, iB, jA, jB, respectively. Let C →֒ A ∩ B and suppose that
X = intA ∪ intB. Then the following sequence

. . .
∂∗−→ Hn(A ∩B,C)

(iA∗,iB∗)
−−−−−→ Hn(A,C) ⊕Hn(B,C)

jA∗−jB∗−−−−−→ Hn(X,C)
∂∗−→ Hn−1(A ∩ B,C) → . . .

is exact.
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Proof. The covering U = {A,B} satisfies conditions of Lemma 3.12. The sequence of
chain complexes

0 →
C(A ∩B)

C(C)

i
−→

C(A)

C(C)
⊕
C(B)

C(c)

j
−→

CU(X)

C(C)
→ 0

where i(x) = (x, x) and j(x, y) = x − y is exact. Consequently, it induces a long
exact sequence. Using Lemma 3.12 we get that Hn(C

U(X), C(C)) = Hn(X,C), which
completes the proof. �

3.18. Equality of simplicial and singular homology. Let (X,A) be a pair of
∆-complexes. Then the natural inclusion of simplicial and singular chain complexes
C∆(X,A) →֒ C(X,A) induces the isomorphism of simplicial and singular homology
groups

H∆
n (X,A) ∼= Hn(X,A).

Outline of the proof. Consider the long exact sequences for the pair (Xk, Xk−1) of
skeletons of X. We get

H∆
n+1(X

k, Xk−1) //

��

H∆
n (Xk−1) //

��

H∆
n (Xk) //

��

H∆
n (Xk, Xk−1) //

��

H∆
n−1(X

k−1)

��

Hn+1(X
k, Xk−1) // Hn(X

k−1) // Hn(X
k) // Hn(X

k, Xk−1) // Hn−1(X
k−1)

Using induction by k we have H∆
i (Xk−1) = Hi(X

k−1) for all i. Further, C∆
i (Xk, Xk−1)

is according to definition zero if i 6= k and free Abelian of rank equal the number of i-
simplices ∆i

α if i = k. The homology groups H∆
i (Xk, Xk−1) have the same description.

Since
∐

α

∆k
α/
∐

α

∂∆k
α = Xk/Xk−1

we get the isomorphism

H∆
i (Xk/Xk−1) → Hi(

∐

α

∆k
α/
∐

α

∂∆k
α) = Hi(X

k/Xk−1).

Applying 5-lemma (see 3.6) in the diagram above, we get that H∆
n (Xk) → Hn(X

k) is
an isomorphism.

If X is finite ∆-complex, we are ready. If it is not, we have to prove that H∆
n (X) =

Hn(X). See [Ha], page 130. �

4. Homology of CW-complexes and applications

4.1. First applications of homology. Using homology groups we can easily prove
the following statements:

(1) Sn is not a retract of Dn+1.
(2) Every map f : Dn → Dn has a fixed point, i.e. there is x ∈ Dn such that

f(x) = x.
(3) If ∅ 6= U ⊆ Rn and ∅ 6= V ⊆ Rm are open homeomorphic sets, then n = m.
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Outline of the proof. (1) Suppose that there is a retraction r : Dn+1 → Sn. Then we
get the commutative diagram

Z = Hn(S
n)

id //

i∗ ((QQQQQQQQQQQQ
Hn(S

n) = Z

Hn(D
n+1) = 0

r∗

66mmmmmmmmmmmm

which is a contradiction.
(2) Suppose that f : Dn → Dn has no fixed point. Then we can define the map
g : Dn → Sn−1 where g(x) is the intersection of the ray from f(x) to x with Sn−1.
However, this map would be a retraction, a contradiction.
(3) The proof of the last statement follows from the isomorphisms:

Hi(U,U−{x}) ∼= Hi(R
n,Rn−{x}) ∼= H̃i−1(R

n−{x}) ∼= H̃i−1(S
n−1) =

{

Z for i = n,

0 for i 6= n.

�

4.2. Degree of a map. Consider a map f : Sn → Sn. In homology f∗ : H̃n(S
n) →

Hn(S
n) has the form

f∗(x) = ax, a ∈ Z.
The integer a is called the degree of f and denoted by deg f .
The degree has the following properties:

(1) deg id = 1
(2) If f ∼ g, then deg f = deg g.
(3) If f is not surjective, then deg f = 0
(4) deg(fg) = deg f · deg g
(5) Let f : Sn → Sn, f(x0, x1, . . . , xn) = (−x0, x1, . . . , xn). Then deg f = −1.
(6) The antipodal map f : Sn → Sn, f(x) = −x has deg f = (−1)n+1.
(7) If f : Sn → Sn has no fixed point, then deg f = (−1)n+1.

Proof. We outline only the proof of (5) and (7). The rest is not difficult and left as an
exercise.

We show (5) by induction on n. The generator of H̃0(S
0) is 1 − (−1) and f∗ maps

it in (−1) − 1. Hence the degree is −1. Suppose that the statement is true for n. To
prove it for n+1 we use the diagram with rows coming from a suitable Mayer-Vietoris
exact sequence

0 // H̃n+1(S
n+1)

∼= //

f∗
��

H̃n(S
n) //

(f/Sn)∗
��

0

0 // H̃n+1(S
n+1)

∼= // H̃n(S
n) // 0

If (f/Sn)∗ is a multiplication by −1, so is f∗.
To prove (7) we show that f is homotopic to the antipodal map through the homo-

topy

H(x, t) =
tf(x) − (1 − t)x

‖tf(x) − (1 − t)x‖
.
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�

Corollary. Sn has a nonzero continuous vector field if and only if n is odd.

Proof. Let Sn has such a field v(x). We can suppose ‖v(x)‖ = 1. Then the identity is
homotopic to antipodal map through the homotopy

H(x, t) = cos tπ · x+ sin tπ · v(x).

Hence according to properties (2) and (6)

(−1)n+1 = deg(− id) = deg(id) = 1.

Consequently, n is odd.
On the contrary, if n = 2i+1, we can define the required vector field by prescription

v(x0, x1, x2, x3, . . . , x2i, x2i+1) = (−x1, x0,−x3, x2, . . . ,−x2i+1, x2i).

�

4.3. Local degree. Consider a map f : Sn → Sn and y ∈ Sn such that f−1(y) =
{x1, x2, . . . , xm}. Let Ui be open disjoint neighbourhoods of points xi and V a neigh-
bourhood of y such that f(Ui) ⊆ V . Then

(f/Ui)∗ : Hn(Ui, Ui − {xi}) ∼= Hn(S
n, Sn − {xi}) = Z

−→ Hn(V, V − {y}) ∼= Hn(S
n, Sn − {y}) = Z

is a multiplication by an integer which is called a local degree and denoted by deg f |xi.

Theorem. Let f : Sn → Sn, y ∈ Sn and f−1(y) = {x1, x2, . . . , xm}. Then

deg f =

m
∑

i=1

deg f |xi.

For the proof see [Ha], Proposition 2.30, page 136.

The suspension Sf of a map f : X → Y is given by the prescription Sf(x, t) =
(f(x), t).

Theorem. deg Sf = deg f for any map f : Sn → Sn.

Proof. f induces Cf : CSn → CSn. The long exact sequence for the pair (CSn, Sn)
and the fact that SSn = CSn/Sn give rise to the diagram

H̃n+1(S
n+1) ∼=

//

Sf∗
��

H̃n+1(CS
n, Sn)

∂∗

∼=
//

Cf∗
��

H̃n(S
n)

f∗
��

H̃n+1(S
n+1) ∼=

// H̃n+1(CS
n, Sn)

∂∗
∼=

// H̃n(S
n)

which implies the statement. �

Corollary. For any n ≥ 1 and given k ∈ Z there is a map f : Sn → Sn such that
deg f = k.
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Proof. For n = 1 put f(z) = zk where z ∈ S1 ⊂ C. Using the computation based on
local degree (see 4.3) we get deg f = k. The previous theorem implies that the degree
of Sn−1f : Sn → Sn is also k. �

4.4. Computations of homology of CW-complexes. If we know a CW-structure
of a space X, we can compute its cohomology relatively easily. Consider the sequence
of Abelian groups and its morphisms

(Hn(X
n, Xn−1), dn)

where dn is the composition

Hn(X
n, Xn−1)

∂n−→ Hn(X
n−1)

jn−1
−−→ Hn−1(X

n−1, Xn−2).

Theorem. Let X be a CW-complex. (Hn(X
n, Xn−1), dn) is a chain complex with

homology
HCW
n (X) ∼= Hn(X).

Proof. First we show how the groups Hk(X
n, Xn−1) look like. Put X−1 = ∅ and

X0/∅ = X0 ⊔ {∗}. Then

Hk(X
n, Xn−1) = H̃k(X

n/Xn−1) = H̃k(
∨

Snα) =

{

⊕

α Z n = k,

0 n 6= k.

Now we show that
Hk(X

n) = 0 for k > n.

From the long exact sequence of the pair (Xn, Xn−1) we get Hk(X
n) = Hk(X

n−1). By
induction Hk(Xn) = Hk(X

−1) = 0.
Next we prove that

Hk(X
n) = Hk(X) for k ≤ n− 1.

From the long exact sequence for the pair (Xn+1, Xn) we obtain Hk(X
n) = Hk(X

n+1).
By induction Hk(X

n) = Hk(X
n+m) for every m ≥ 1. Since the image of each singular

chain lies in some Xn+m we get Hk(X
n) = Hk(X).

To prove Theorem we will need the following diagram with parts of exact sequences
for the pairs (Xn+1, Xn), (Xn, Xn−1) and (Xn−1, Xn−2).

0

&&MMMMMMMMMMMMM Hn(X
n+1)

Hn(X
n)

OO

jn

))RRRRRRRRRRRRRR

Hn+1(X
n+1, Xn)

∂n+1

OO

dn+1 // Hn(X
n, Xn−1)

dn //

∂n

))SSSSSSSSSSSSSS
Hn−1(X

n−1, Xn−2)

Hn−1(X
n−1)

jn−1

OO

From it we get
dndn+1 = jn−1(∂njn)∂n+1 = jn−1(0)∂n+1 = 0.
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Further,
Ker dn = Ker ∂n = Im jn ∼= Hn(X

n)

and

Im dn+1
∼= Im ∂n+1

since jn−1 and jn are monomorphisms. Finally,

HCW
n (X) =

Ker dn
Im dn+1

∼=
Hn(X

n)

Im ∂n+1

∼= Hn(X
n+1) ∼= Hn(X).

�

Example. Hn(X) = 0 for CW-complexes without cells in dimension n.

Hk(CPn) =

{

Z for k ≤ 2n even,

0 in other cases.

4.5. Computation of dn. Let enα and en−1
β be cells in dimension n and n − 1 of a

CW-complex X, respectively. Since

Hn(X
n, Xn−1) =

⊕

α

Z, Hn−1(X
n−1, Xn−2) =

⊕

β

Z,

they can be considered as generators of the groups above. Let ϕα : ∂Dn
α → Xn−1 be

the attaching map for the cell enα. Then

dn(e
n
α) =

∑

β

dαβe
n−1
β

where dαβ is a degree of the following composition

Sn−1 = ∂Dn
α

ϕα
−→ Xn−1 → Xn−1/Xn−2 → Xn/(Xn−2 ∪

⋃

γ 6=β

en−1
γ ) = Sn−1.

For the proof we refer to [Ha], page 140 and 141.

Exercise. Compute homology groups of various 2-dimensional surfaces (torus, Klein
bottle, projective plane) using their CW-structure with only one cell in dimension 2.

4.6. Homology of real projective spaces. The real projective space RPn is formed
by cell e0, e1, . . . , en, one in each dimension from 0 to n. The attaching map for the
cell ek+1 is the projection ϕ : Sk → RPk. So we have to compute the degree of the
composition

f : Sk
ϕ
−→ RPk → RPk/RPk−1 = Sk.

Every point in Sk has two preimages x1, x2. In a neihbourhood Ui of xi f is a
homeomorphism, hence its local degree deg f |xi = ±1. Since f/U2 is the composition
of the antipodal map with f/U1, the local degrees deg f |x1 and deg f |x1 differs by the
multiple of (−1)k+1. (See the properties (4) and (6) in 4.2.) According to 4.3

deg f = ±1(1 + (−1)k+1) =

{

0 for k + 1 odd,

±2 for k + 1 even.
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So we have obtained the chain complex for computation of HCW
∗ (RPn). The result is

Hk(RPn) =











Z for k = 0 and k = n odd,

Z2 for k odd , 0 < k < n,

0 in other cases.

4.7. Euler characteristic Let X be a finite CW-complex. The Euler characteristic
of X is the number

χ(X) =

∞
∑

i=0

(−1)k rankHk(X).

Theorem. Let X be a finite CW-complex with ck cells in dimension k. Then

χ(X) =
∞
∑

k=0

(−1)kck.

Proof. Realize that ck = rankHk(X
k, Xk−1) = rank Ker dk + rank Im dk+1. We get

χ(X) =
∞
∑

k=0

(−1)k rankHk(X) =
∞
∑

k=0

(−1)k(rank Ker dk − rank Im dk+1)

=
∞
∑

k=0

(−1)k rank Ker dk +
∞
∑

k=0

(−1)k rank Im dk =
∞
∑

k=0

(−1)kck.

�

Example. 2-dimensional oriented surface of genus g (the number of handles attached
to the 2-sphere) has the Euler characteristic χ(Mg) = 2 − 2g.

2-dimensional nonorientable surface of genus g (the number of Möbius bands which
replace discs cut out from the 2-sphere) has the Euler characteristic χ(Ng) = 2 − g.

4.8. Lefschetz Fixed Point Theorem Let G be a finitely generated Abelian group
and h : G→ G a homomorphism. The trace trh is the trace of the homomorphism

Zn ∼= G/TorsionG→ G/TorsionG ∼= Zn

induced by h.
Let X be a finite CW-complex. The Lefschetz number of a map f : X → X is

L(f) =

∞
∑

i=0

(−1)i trHif.

Notice that L(idX) = χ(X). Similarly as for the Euler characteristic we can prove

Lemma. Let fn : (Cn, dn) → (Cn, dn) be a chain homomorphism. Then
∞
∑

i=0

(−1)i trHif =
∞
∑

i=0

(−1)i tr fi

whenever the right hand side is defined.

Theorem (Lefschetz Fixed Point Theorem). If X is a finite simplicial complex or its
retract and f : X → X a map with L(f) 6= 0, then f has a fixed point.
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For the proof see [Ha], Chapter 2C. Theorem has many consequences.

Corollary A (Brouwer Fixed Point Theorem). (See also 4.1 (2).) Every continuous
map f : Dn → Dn has a fixed point.

Proof. The Lefschetz number of f is 1. �

In the same way we can prove

Corollary B. If n is even, then every continuous map f : RPn → RPn has a fixed
point.

Corollary C. Let M be a smooth compact manifold in Rn with nonzero vector field.
Then χ(M) = 0.

The converse of this statement is also true.

Outline of the proof. If M has a nonzero vector field, there is a continuous map f :
M →M which is a ”small shift in the direction of the vector field”. Since such a map
has no fixed point, its Lefschetz number has to be zero. Moreover, f is homotopic to
identity and hence

χ(M) = L(idX) = L(f) = 0.

�

4.9. Homology with coefficients. Let G be an Abelian group. From the singular
chain complex (Cn(X), ∂n) of a space X we make the new chain complex

Cn(X;G) = Cn(X) ⊗G, ∂n(G) = ∂n ⊗ idG .

The homology groups of X with coefficients G are

Hn(X;G) = Hn(C∗(X;G), ∂∗(G)).

The homology groups defined before are in fact the homology groups with coefficients
Z. The homology groups with coefficients G satisfy all the basic general properties as
the homology groups with integer coefficients with the exception that

Hn(;G) =

{

0 for n 6= 0,

G for n = 0.

If coefficient group G is a field (for instance G = Q or Zp for p a prime), then homology
groups with coefficients G are vector spaces over this field. It often brings advantages.

The computation of homology with coefficients G can be carried out again using a
CW-complex structure. For instance we get

Hk(RPn; Z2) =

{

Z2 for 0 ≤ k ≤ n,

0 in other cases.

For an application of Z2-coefficients see the proof of the following theorem in [Ha],
pages 174–176.

Theorem (Borsuk-Ulam Theorem). Every map f : Sn → Sn satisfying

f(−x) = −f(x)

has an odd degree.
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5. Singular cohomology

Cohomology forms a dual notion to homology. It enables us to define product
∪ : H i(X)×Hj(X) → H i+j(X). In this section we give basic definitions and properties
of singular cohomology groups which are very similar to those in the section on singular
homology.

5.1. Cochain complexes. A cochain complex (C, δ) is a sequence of Abelian groups
(or modules over a ring) and their homomorphisms indexed by integers

. . .
δn−2

−−→ Cn−1 δn−1

−−→ Cn δn

−→ Cn+1 δn+1

−−→ . . .

such that

δnδn−1 = 0.

δn is called a coboundary operator. A cochain homomorphism of cochain complexes
(C, δC) and (D, δD) is a sequence of homomorphisms of Abelian groups (or modules
over a ring) fn : Cn → Dn which commute with the coboundary operators

δnDfn = fn+1δnC .

5.2. Cohomology of cochain complexes. The n-th cohomology group of a cochain
complex (C, δ) is the group

Hn(C) =
Ker δn

Im δn−1
.

The elements of Ker δn = Zn are called cocycles of dimension n and the elements of
Im δn−1 = Bn are called coboundaries (of dimension n). If a cochain complex is exact,
then its cohomology groups are trivial.

The component fn of the cochain homomorphism f : (C, δC) → (D, δD) maps
cocycles into cocycles and coboundaries into coboundaries. It enables us to define

Hn(f) : Hn(C) → Hn(D)

by the prescription Hn(f)[c] = [fn(c)] where [c] ∈ Hn(C) and [fn(c)] ∈ Hn(D) are
classes represented by the elements c ∈ Zn(C) and fn(c) ∈ Zn(D), respectively.

5.3. Long exact sequence in cohomology. A sequence of cochain homomorphisms

· · · → A
f
−→ B

g
−→ C → . . .

is exact if for every n ∈ Z

· · · → An
fn

−→ Bn
gn

−→ Cn → . . .

is an exact sequence of Abelian groups. Similarly as for homology groups we can prove

Theorem. Let 0 → A
i
−→ B

j
−→ C → 0 be a short exact sequence of cochain complexes.

Then there is a so called connecting homomorphism δ∗ : Hn(C) → Hn+1(A) such that
the sequence

. . .
δ∗
−→ Hn(A)

Hn(i)
−−−→ Hn(B)

Hn(j)
−−−→ Hn(C)

δ∗
−→ Hn+1(A)

Hn+1(i)
−−−−→ . . .

is exact.
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5.4. Cochain homotopy. Let f, g : C → D be two cochain homomorphisms. We
say that they are cochain homotopic if there are homomorphisms sn : Cn → Dn−1

such that
δn−1
D sn + sn+1δnC = fn − gn for all n.

The relation to be cochain homotopic is an equivalence. The sequence of maps sn is
called a cochain homotopy. Similarly as for homology we have

Theorem. If two cochain homomorphism f, g : C → D are cochain homotopic, then

Hn(f) = Hn(g).

5.5. Singular cohomology groups of a pair. Consider a pair of topological spaces
(X,A), an inclusion i : A →֒ X and an Abelian group G. Let

C(X,A) = (Cn(X)/Cn(A), ∂n)

be the singular chain complex of the pair (X,A). The singular cochain complex
(C(X,A;G), δ) for the pair (X,A) is defined as

Cn(X,A;G) = Hom(Cn(X,A), G) ∼= {h ∈ Hom(Cn(X), G); h|Cn(A) = 0}

= Ker i∗ : Hom(Cn(X), G) −→ Hom(Cn(A), G).

and
δn(h) = h ◦ ∂n+1 for h ∈ Hom(Cn(X,A), G).

The n-th cohomology group of the pair (X,A) with coefficients in the group G is the
n-th cohomology group of this cochain complex

Hn(X,A;G) = Hn(C(X,A;G), δ).

We write Hn(X;G) for Hn(X, ∅;G). A map f : (X,A) → (Y,B) induces the cochain
homomorphism Cn(f) : Cn(Y ;G) → Cn(X;G) by

Cn(f)(h) = h ◦ Cn(f)

which restricts to a cochain homomorphism Cn(Y,B;G) → Cn(X,A;G) since f(A) ⊆
B. In cohomology it induces the homomorphism

f ∗ = Hn(f) : Hn(Y,B) → Hn(X,A).

Moreover, Hn(id(X,A)) = idHn(X,A;G) and Hn(fg) = Hn(g)Hn(f). We can conclude
that Hn is a contravariant functor (cofunctor) from the category T OP2 into the cat-
egory AG of Abelian groups.

5.6. Long exact sequence for singular cohomology. Consider inclusions of spaces
i : A →֒ X, i′ : B →֒ Y and maps j : (X, ∅) → (X,A), j′ : (Y, ∅) → (Y,B) induced
by idX and idY , respectively. Let f : (X,A) → (Y,B) be a map. Then there are
connecting homomorphisms δ∗X and δ∗Y such that the following diagram

. . .
δ∗X // Hn(X,A;G)

j∗ // Hn(X;G)
i∗ // Hn(A;G)

δ∗X // Hn+1(X,A;G)
j∗ // . . .

. . .
δ∗Y // Hn(X,B;G)

j′∗ //

f∗

OO

Hn(Y ;G)
i′∗ //

f∗

OO

Hn(B;G)
δ∗Y //

(f/B)∗

OO

Hn+1(Y,B;G)
j′∗ //

f∗

OO

. . .

commutes and its horizontal sequences are exact.
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The proof follows from Theorem 5.3 using the fact that

0 → Cn(X,A;G)
Cn(j)
−−−→ Cn(X;G)

Cn(i)
−−−→ Cn(A;G) → 0

is a short exact sequence of cochain complexes as it follows directly from the definition
of Cn(X,A;G).

Remark. Consider the functor I : T OP2 → T OP2 which assigns to every pair (X,A)
the pair (A, ∅). The commutativity of the last square in the diagram above means that
δ∗ is a natural transformation of contravariant functors Hn ◦ I and Hn+1 defined on
T OP2.

Remark. It is useful to realize how δ∗ : Hn(A;G) → Hn+1(X,A;G) looks like. Every
element of Hn(A;G) is represented by a cochain q ∈ Hom(Cn(A);G) with a zero
coboundary δq ∈ Hom(Cn+1(A);G). Extend q to Q ∈ Hom(Cn(X);G) in arbitrary
way. Then δQ ∈ Hom(Cn+1(X), G) restricted to Cn+1(A) is equal to δq = 0. Hence it
lies in Hom(Cn+1(X,A);G) and from the definition in 5.3 we have

δ∗[q] = [δQ].

5.7. Homotopy invariance. If two maps f, g : (X,A) → (Y,B) are homotopic, then
they induce the same homomorphisms

f ∗ = g∗ : Hn(Y,B;G) → Hn(X,A;G).

Proof. We already know that the homotopy between f and g induces a chain homotopy
s∗ between C∗(f) and C∗(g). Then we can define a cochain homotopy between C∗(f)
and C∗(g) as

sn(h) = h ◦ sn−1 for h ∈ Hom(Cn(Y );G)

and use Theorem 5.4. �

Corollary. If X and Y are homotopy equivalent spaces, then

Hn(X) ∼= Hn(Y ).

5.8. Excision Theorem. Similarly as for singular homology groups there are two
equivalent versions of this theorem.

Theorem (Excision Theorem, 1st version). Consider spaces C ⊆ A ⊆ X and suppose
that C̄ ⊆ intA. Then the inclusion

i : (X − C,A− C) →֒ (X,A)

induces the isomorphism

i∗ : Hn(X,A;G)
∼=
−→ Hn(X − C,A− C;G).

Theorem (Excision Theorem, 2nd version). Consider two subspaces A and B of a
space X. Suppose that X = intA ∪ intB. Then the inclusion

i : (B,A ∩ B) →֒ (X,A)

induces the isomorphism

i∗ : Hn(X,A;G)
∼=
−→ Hn(B,A ∩ B;G).
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The proof of Excision Theorem for singular cohomology follows from the proof of
the homology version.

5.9. Cohomology of finite disjoint union. Let X =
∐k

α=1 Xα be a disjoint union.
Then

Hn(X;G) =

k
⊕

α=1

Hn(Xα).

The statement is not generally true for infinite unions.

5.10. Reduced cohomology groups. For every space X 6= ∅ we define the aug-
mented cochain complex (C̃∗(X;G), δ̃) as follows

C̃n(X;G) = Hom(C̃n(X);G)

with δ̃nh = h◦ ∂̃n+1 for h ∈ Hom(C̃n(X);G). See 3.14. The reduced cohomology groups

H̃n(X;G) with coefficients in G are the cohomology groups of the augmented cochain
complex. From the definition it is clear that

H̃n(X;G) = Hn(X;G) for n 6= 0

and

H̃n(∗;G) = 0 for all n.

For pairs of spaces we define H̃n(X,A;G) = Hn(X,A;G) for all n. Then theorems
on long exact sequence, homotopy invariance and excision hold for reduced cohomology
groups as well.

Considering a space X with base point ∗ and applying the long exact sequence for
the pair (X, ∗), we get that for all n

H̃n(X;G) = H̃n(X, ∗;G) = Hn(X, ∗;G).

Using this equality and the long exact sequence for unreduced cohomology we get that

H0(X;G) ∼= H0(X, ∗;G) ⊕H0(∗;G) ∼= H̃0(X) ⊕ G.

Analogously as for homology groups we have

Lemma. Let (X,A) be a pair of CW-complexes. Then

H̃n(X/A;G) = Hn(X,A;G)

and we have the long exact sequence

· · · → H̃n(X/A;G) → H̃n(X;G) → H̃n(A;G) → H̃n+1(X/A;G) → . . .

5.11. The long exact sequence of a triple. Consider a triple (X,B,A), A ⊆
B ⊆ X. Denote i : (B,A) →֒ (X,A) and j : (X,A) → (X,B) maps induced by the
inclusion B →֒ X and idX , respectively. Analogously as for homology one can derive
the long exact sequence of the triple (X,B,A)

. . .
δ∗
−→ Hn(X,B;G)

j∗

−→ Hn(X,A;G)
i∗
−→ Hn(B,A;G)

δ∗
−→ Hn+1(X,B;G)

j∗

−→ . . .



28

5.12. Singular cohomology groups of spheres. Considering the long exact se-
quence of the triple (∆n, δ∆n, V = δ∆n − ∆n−1): we get that

H i(∆n, ∂∆n;G) =

{

G for i = n,

0 for i 6= n.

The pair (Dn, Sn−1) is homeomorphic to (∆n, ∂∆n). Hence it has the same coho-
mology groups. Using the long exact sequence for this pair we obtain

H̃ i(Sn;G) = H i+1(Dn+1, Sn) =

{

0 for i 6= n,

G for i = n.

5.13. Mayer-Vietoris exact sequence. Denote inclusions A∩B →֒ A, A∩B →֒ B,
A →֒ X, B →֒ X by iA, iB, jA, jB, respectively. Let C →֒ A, D →֒ B and suppose
that X = intA ∪ intB, Y = intC ∪ intD. Then there is the long exact sequence

. . .
δ∗
−→ Hn(X, Y ;G)

(j∗
A
,j∗

B
)

−−−−→ Hn(A,C;G) ⊕Hn(B,D;G)

i∗
A
−i∗

B−−−→ Hn(A ∩B,C ∩D;G)
δ∗
−→ Hn+1(X, Y ;G) → . . .

Proof. The coverings U = {A,B} and V = {C,D} satisfy conditions of Lemma 3.12.
The sequence of chain complexes

0 → Cn(A ∩ B,C ∩D)
i

−→ Cn(A,C) ⊕ Cn(B;D)
j

−→ CU ,V
n (X, Y ) → 0

where i(x) = (x, x) and j(x, y) = x − y is exact. Applying Hom(−, G) we get a new
short exact sequence of cochain complexes

0 → Cn
U ,V(X, Y ;G)

j∗

−→ Cn(A,C;G) ⊕ Cn(B,D;G)
i∗

−→ Cn(A ∩B,C ∩D;G) → 0

and it induces a long exact sequence. Using Lemma 3.12 we get thatHn(CU ,V(X, Y ;G)) =
Hn(X, Y ;G), which completes the proof. �

5.14. Computations of cohomology of CW-complexes. If we know a CW-
structure of a space X, we can compute its cohomology in the same way as homology.
Consider the chain complex from Section 4

(Hn(X
n, Xn−1), dn).

Theorem. Let X be a CW-complex. The n-th cohomology group of the cochain
complex

(Hom(Hn(X
n, Xn−1;G), dn) dn(h) = h ◦ dn

is isomorphic to the n-th singular cohomology group Hn(X;G).

Exercise. Try to prove the theorem above after reading the next section using the
results and proofs from 4.4.

Exercise. Compute singular cohomology of real and complex projective spaces with
coefficients Z and Z2.
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6. More homological algebra

In this section we will deal with algebraic constructions leading to the definitions
of homology and cohomology groups with coefficients given in the previous sections.
At the end we use introduced notions to state and prove so called universal coefficient
theorems for singular homology and cohomology groups.

6.1. Functors and cofunctors. Let A and B be two categories. A functor t : A → B
assigns to every object x in A an object t(x) in B and to every morphism f : x → y
in A a morphism t(f) : t(x) → t(y) such that t(idx) = idt(x) and t(fg) = t(f)t(g).

A contravariant functor or briefly cofunctor t : A → B assigns to every object
x in A an object t(x) in B and to every morphism f : x → y in A a morphism
t(f) : t(y) → t(x) such that t(idx) = idt(x) and t(fg) = t(g)t(f).

Let R be a commutative ring with a unit element. The category of R-modules and
their homomorphisms will be denoted by R-MOD. R-GMOD will be used for the
category of graded R-modules, R-CH and R-COCH will stand for the categories of
chain complexes and the category of cochain complexes of R-modules, respectively.
For R = Z the previous categories are Abelian groups AG, graded Abelian groups
GAG, chain complexes of Abelian groups Z-CH and cochain complexes of Abelian
groups Z-COCH, respectively.

Homology H is a functor from the category R-CH to the category R-GMOD. Let
t be a functor from R-MOD to R-MOD which induces a functor t : CH → CH, and
let s be a cofunctor from R-MOD to R-MOD, which induces a cofunctor from CH
to COCH. The aim of this section is to say something about the functor H ◦ t and
the cofunctor H ◦ s. Model examples of such functors will be t(−) = − ⊗R M and
s(−) = HomR(−,M) for a fixed R-module M . We have already used these functors
when we have defined homology and cohomology groups with coefficients.

6.2. Tensor product. The tensor product A⊗R B of two R-modules A and B is the
factor of the free R-module over A×B and the ideal generated by the elements of the
form

r(a, b)−(ra, b), r(a, b)−(a, rb), (a1+a2, b)−(a1, b)−(a2, b), (a, b1+b2)−(a, b1)−(a, b2)

where a, a1, a2 ∈ A, b, b1, b2 ∈ B, r ∈ R. The class of equivalence of the element (a, b)
in A ⊗R B is denoted by a ⊗ b. The map ϕ : A × B → A ⊗R B, ϕ(a, b) = a ⊗ b is
bilinear and has the following universal property:

Whenever an R-module C and a bilinear map ψ : A × B → C are given, there is
just one R-modul homomorphism Ψ : A⊗R B → C such that the diagram

A× B
ψ //

ϕ

��

C

A⊗R B

Ψ

;;vvvvvvvvv

commutes. This property determines the tensor product uniquely up to isomorphism.
If f : A → C and g : B → D are homomorphisms of R-modules then (a, b) →

f(a) ⊗ g(b) is a bilinear map and the universal property above ensures the existence
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and uniqueness of an R-homomorphism f ⊗ g : A⊗R B → C ⊗R D with the property
(f ⊗ g)(a⊗ b) = f(a) ⊗ g(b).

Homomorphisms between R-modules form an R-module denoted by HomR(A,B).
If R = Z, we will denote the tensor product of Abelian groups A and B without the
subindex Z, i.e. A ⊗ B, and similarly, the group of homomorfisms from A to B will
be denoted by Hom(A,B).

Exercise. Prove from the definition that

Z ⊗ Z = Z, Z ⊗ Zn = Zn, Zn ⊗ Zm = Zd(n,m), Zn ⊗ Q = 0

where d(m,n) is the greatest common divisor of n and m. Further compute

Hom(Z,Z), Hom(Z,Zn), Hom(Zn,Z), Hom(Zn,Zm).

6.3. Additive functors and cofunctors. A functor (or a cofunctor) t : MOD →
MOD is called additive if

t(α + β) = t(α) + t(β)

for all α, β ∈ HomR(A,B). Additive functors and cofunctors have the following prop-
erties.

(1) t(0) = 0 for any zero homomorphism.
(2) t(A⊕ B) = t(A) ⊕ t(B)
(3) Every additive functor (cofunctor) converts short exact sequences which split

into short exact sequences which again split.
(4) Every additive functor (cofunctor) can be extended to a functor CH → CH

(cofunctor CH → COCH) which preserves chain homotopies (converts chain
homotopies to cochain homotopies).

Proof of (2) and (3). Consider a short exact sequence

0 → A
i
−→ B

j
−→ C → 0

which splits, i. e. there are homomorphisms p : B → A, q : C → B such that pi = idA,
jq = idC , ip + qj = idB. See 3.1. Applying an additive functor t we get a splitting
short exact sequence described by homomorphisms t(i), t(j), t(p), t(q). �

6.4. Exact functors and cofunctors. An additive functor (or an additive cofunctor)
t : MOD → MOD is called exact if it preserves short exact sequences.

Example. The functor t(−) = − ⊗ Z2 and the cofunctor s(−) = Hom(−,Z) are
additive but not exact. To show it apply them on the short exact sequence

0 → Z
2×
−→ Z → Z2 → 0.

The functor t(−) = −⊗ Q from AG to AG is exact.

Lemma. Let (C, ∂) be a chain complex and let t : MOD → MOD be an exact
functor. Then

Hn(tC, t∂) = tHn(C, ∂).

Consequently, t converts all exact sequences into exact sequences.
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Proof. Since t preserves short exact sequences, it preserves kernels, images and factors.
So we get

Hn(tC) =
Ker t∂n
Im t∂n+1

=
t(Ker ∂n)

t(Im ∂n+1)
= t

(

Ker ∂n
Im ∂n+1

)

= t(Hn(C)).

�

6.5. Right exact functors. An additive functor t : MOD → MOD is called right
exact if it converts any exact sequence

A
i
−→ B

j
−→ C → 0

in to an exact sequence

tA
t(i)
−−→ tB

t(j)
−−→ tC → 0.

Theorem. Consider an R-module M . The functor t(−) = − ⊗R M from MOD to
AG is right exact.

Proof. The exact sequence A
i
−→ B

j
−→ C → 0 is converted into the sequence

A⊗R M
i⊗idM−−−→ B ⊗R M

j⊗idM−−−−→ C ⊗RM → 0.

It is clear that j⊗ idM is an epimorphism. According to the lemma below Ker(j⊗ idM)
is generated by elements b ⊗ m where b ∈ Ker j = Im i. Hence, Ker(j ⊗ idM) =
Im(i⊗ idM). �

Lemma. If α : A → A′ and β : B → B′ are epimorphisms, then Ker(α ⊗ β) is
generated by elements a⊗ b where a ∈ Kerα or b ∈ Ker β.

For the proof see [Sp], Chapter 5, Lemma 1.5.

6.6. Left exact cofunctors. An additive cofunctor t : MOD → MOD is called left
exact if it converts any exact sequence

A
i
−→ B

j
−→ C → 0

in to an exact sequence

O → tC
t(j)
−−→ tB

t(i)
−−→ tA.

Theorem. Consider an R-module M . The cofunctor t(−) = HomR(−,M) from
MOD to MOD is left exact.

The proof is not difficult and is left as an exercise.

6.7. Projective modules. An R-modul is called projective if for any epimorphism
p : A → B and any homomorphism f : P → B there is F : P → A such that the
diagram

A

p

��
P

F
??~~~~~~~

f
// B

��
0
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commutes. Every free R-module is projective.

6.8. Projective resolution. A projective resolution of an R-module A is a chain
complex (P, ε), Pi = 0 for i < 0 and a homomorphism α : P0 → A such that the
sequence

→ Pi
εi−→ Pi−1 → · · · → P1

ε1−→ P0
α
−→ A→ 0

is exact. It means that

Hi(P, ε) =

{

0 for i 6= 0,

P0/ Im ε1 = P0/Kerα ∼= A for i = 0.

If all Pi are free modules, the resolution is called free.

Lemma. To every module there is a free resolution.

Proof. For module A denote F (A) a free module over A and π : F (A) → A a canonical
projection. Then the free resolution of A is constructed in the following way

P2 = F Ker ε1
//

ε2
--

Ker ε1
// P1 = F (Ker π) //

ε1
,,

Ker π // P0 = F (A) π
// A

�

Lemma. Every Abelian group A has the projective resolution

0 → Ker π → F (A)
π
−→ A→ 0.

Proof. Ker π as a subgroup of free Abelian group F (A) is free. �

Theorem. Consider a homomorphism of R-modules ϕ : A → A′. Let (Pn, εn) and
(P ′

n, ε
′
n) be projective resolutions of A and A′, respectively. Then there is a chain

homomorphism ϕn : (P, ε) → (P ′, ε′) such that the diagram

. . . ε3 // P2
ε2 //

ϕ2

��

P1
ε1 //

ϕ1

��

P0
α //

ϕ0

��

A //

ϕ

��

0

. . .
ε′3 // P ′

2

ε′2 // P ′
1

ε′1 // P ′
0

α′

// A′ // 0

commutes. Moreover, any two such chain homomorphism (P, ε) → (P ′, ε′) are chain
homotopic.

Proof of the first part. α′ is an epimorphism and P0 is projective. Hence there is ϕ0 :
P0 → P ′

0 such that the first square on the right side commutes.
Since α′(ϕ0ε1) = ϕ(αε1) = ϕ ◦ 0 = 0, we get that

Im(ϕ0ε) ⊆ Kerα′ = Im ε′1.

ε′1 : P ′
1 → Im ε′1 is an epimorhism and P1 is projective. Hence there is ϕ1 : P1 → P ′

1

such that the second square in the diagram commutes.
The proof of the rest of the first part proceeds in the same way by induction. �
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Proof of the second part. Let ϕ∗ and ϕ′
∗ be two chain homomorphisms making the

diagram above commutative. Since α′(ϕ0 − ϕ′
0) = α(ϕ− ϕ) = 0, we have

Im(ϕ0 − ϕ′
0) ⊆ Kerα′ = Im ε′1.

Therefore there exists s0 : P0 → P ′
1 such that ε′1s0 = ϕ0 − ϕ′

0.
Next, ε′1(ϕ1 − ϕ′

1 − s0ε1) = ε′1(ϕ1 − ϕ′
1) − ε′1s0ε1 = (ϕ0 − ϕ′

0)ε1 − (ϕ0 − ϕ′
0)ε1 = 0,

hence

Im(ϕ0 − ϕ′
0 − s0ε1) ⊆ Ker ε′1 = Im ε′2,

and consequently, there is s1 : P1 → P ′
2 such that

ε′2s1 = ϕ1 − ϕ′
1 − s0ε1.

The rest proceeds by induction in the same way. �

6.9. Derived functors. Consider a right exact functor t : MOD → MOD and a
homomorphism of R-modules ϕ : A→ A′. Let (P, ε) and (P ′, ε′) be projective resolu-
tions of A and A′, respectively, and let ϕ∗ : (P, ε) → (P ′, ε′) be a chain homomorphism
induced by ϕ. The derived functors ti : MOD → MOD of the functor t are defined

tiA = Hi(tP, tε)

tiϕ = Hi(tϕ).

The functor t0 is equal to t since

t0A = tP0/ Im tε1 = tP0/Ker tα ∼= tA.

Using the previous theorem we can easily show that the definition does not depend on
the choice of projective resolutions and a chain homomorphism ϕ∗.

Definition. The i-th derived functors of the functor t(−) = −⊗R M is denoted

TorRi (−,M).

If R = Z, the index Z in the notation will be omitted.

Example. Let R = Z. Any Abelian group A has a free resolution with Pi = 0 for
i ≥ 2. Hence

Tori(A,B) = 0 for i ≥ 2.

Hence we will omit the index 1 in Tor1(A,B). We have

(1) Tor(A,B) = 0 for any free Abelian group A.
(2) Tor(A,B) = 0 for any free Abelian group B.
(3) Tor(Zm,Zn) = Zd(m,n) where d(m,n) is the greatest common divisor of m and

n.
(4) Tor(−, B) is an additive functor.

The proof based on the definition is not difficult and left to the reader.

6.10. Derived cofunctors. Consider a left exact cofunctor t : MOD → MOD
and a homomorphism of R-modules ϕ : A → A′. Let (P, ε) and (P ′, ε′) be projective



34

resolutions of A and A′, respectively, and let ϕ∗ : (P, ε) → (P ′, ε′) be a chain homo-
morphism induced by ϕ. The derived cofunctors ti : MOD → MOD of the functor t
are defined

tiA = H i(tP, tε)

tiϕ = H i(tϕ).

The functor t0 is equal to t since

t0A = Ker tε0 = tA.

Using Theorem 6.8 we can easily show that the definition does not depend on the
choice of projective resolutions and a chain homomorphism ϕ∗.

Definition. The i-th derived functors of the functor t(−) = HomR(−,M) is denoted

ExtiR(−,M).

If R = Z, the index Z in the notation will be omitted.

Example. Let R = Z. Since every Abelian group A has a free resolution with Pi = 0
for i ≥ 2,

Exti(A,B) = 0 for i ≥ 2.

Hence we will write Ext(A,B) for Ext1(A,B). We have

(1) Ext(A,B) = 0 for any free Abelian group A.
(2) Ext(Zn,Z) = Zn.
(3) Ext(Zm,Zn) = Zd(m,n) where d(m,n) is the greatest common divisor of m and

n.
(4) Ext(−, B) is an additive cofunctor.

The proof is the application of the definition and it is left to the reader.

6.11. Universal coefficient theorem. The aim of this paragraph is to express the
cohomology group of a space Hn(X;G) with the aid of functors Hom and Ext using
the homology groups H∗(X).

Theorem. If a free chain complex C of Abelian groups has homology groups Hn(C),
then the cohomology groups Hn(C;G) of the cochain complex Cn = Hom(Cn, G) are
determined by split short exact sequence

0 → Ext(Hn−1(C), G) → Hn(C;G)
h
−→ Hom(Hn(C), G) → 0

where h[f ]([c]) = f(c) for c ∈ Cn, f ∈ Hom(Cn;G).

Remark. The exact sequence is natural but the splitting not. In this case the nat-
urality means that for every chain homomorphism f : C → D we have commutative
diagram

0 // Ext(Hn−1(C), G) //

Ext(Hn−1f,idG)
��

Hn(C;G)
hC //

Hnf
��

Hom(Hn(C), G) //

Hom(Hnf,idG)
��

0

0 // Ext(Hn−1(D), G) // Hn(D;G)
hD // Hom(Hn(D), G) // 0
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Proof. The free chain complex (Cn, ∂) determines two other chain complexes, the chain
complex of cycles (Zn, 0) and the chain complex of boundaries (Bn, 0). We have the
short exact sequence of chain complexes

0 → Zn
i
−→ Cn

∂
−→ Bn−1 → 0.

Since Bn−1 is a subgroup of the free Abelian group Cn−1, it is also free and the exact
sequence splits. Since the functor Hom(−, G) is additive, it converts this sequence into
the short exact sequence of cochain complexes

0 → Hom(Bn−1, G)
δ
−→ Hom(Cn, G)

i∗
−→ Hom(Zn, G) → 0.

As in the proof of Theorem 5.6 we obtain the long exact sequence of cohomology
groups of the given cochain complexes

→ Hom(Zn−1, G) → Hom(Bn−1, G) → Hn(C;G)
i∗
−→ Hom(Zn, G)

δ∗
−→ Hom(Bn, G) →

Next, one has to realize how the connecting homomorphism δ∗ in this exact sequence
look like using its definition and the special form of the short exact sequence. The
conclusion is that δ∗ = j∗ where j : Bn →֒ Zn is an iclusion. Now we can reduce the
long exact sequence to the short one

0 →
Hom(Bn−1, G)

Im j∗
−→ Hn(C;G)

i∗
−→ Ker j∗ → 0.

We determine Ker j∗ and Hom(Bn−1, G)/ Im j∗. Consider the short exact sequence

0 → Bn
j
−→ Zn → Hn(C) → 0.

It is a free resolution of Hn(C). Applying the cofunctor Hom(−, G) we get the cochain
complex

0 → Hom(Zn, G)
j∗

−→ Hom(Bn, G) → 0 → 0 → . . .

from which we can easily compute that

Hom(Hn(C), G) = Ker j∗, Ext(Hn(C), G) =
Hom(Bn−1, G)

Im j∗
.

This completes the proof of exactness.
We will find a splitting r : Hom(Hn(C);G) → Hn(C∗;G). Let g ∈ Hom(Hn(C), G).

We can define f ∈ Hom(Cn, G) such that on cycles c ∈ Zn

f(c) = g([c])

where [c] ∈ Hn(C). f is a cocycle, hence [f ] ∈ Hn(C;G) and h[f ]([c]) = f(c) =
g([c]). �

In a very similar way one can prove

6.12. Universal coefficient theorem for homology. If a free chain complex C has
homology groups Hn(C), then the homology groups Hn(C∗;G) of the chain complex
Cn ⊗G are determined by split short exact sequence

0 → Hn(C) ⊗G
l
−→ Hn(C;G) → Tor(Hn−1(C), G) → 0

where l([c] ⊗ g) = [c⊗ g] for c ∈ Zn(C), g ∈ G.



36

6.13. Exercise. Compute cohomology of real projective spaces with Z and Z2 coef-
ficients using the universal coefficient theorem for cohomology.

Exercise. Using again the universal coefficient theorem for cohomology and Theorem
4.4 prove that that for a given CW-complex X the cohomology of the cochain complex

(Hn(Xn, Xn−1;G), dn)

where dn is the composition

Hn(Xn, Xn−1;G)
j∗n−→ Hn(Xn;G)

δ∗
−→ Hn+1(Xn+1, Xn;G)

is isomorphic to H∗(X;G). See also Theorem 5.14.

7. Products in cohomology

An internal product in cohomology brings a further algebraic structure. The con-
travariant functor H∗ becomes a cofunctor into graded rings. It enables us to obtain
more information on topological spaces and homotopy classes of maps. In this sec-
tion we will define an internal product – called the cup product and a closely related
external product – called the cross product.

7.1. Cup product. Let R be a commutative ring and X a space. For two cochains
ϕ ∈ Ck(X;R) and ψ ∈ C l(X;R) we define their cup product ϕ ∪ ψ ∈ Ck+l(X;R)

(ϕ ∪ ψ)(σ) = ϕ(σ/[v0, v1, . . . , vk]) · ψ(σ/[vk, vk+1, . . . , vk+l])

for any singular simplex σ : ∆k+l → X. The notation σ/[v0, v1, . . . , vk] and σ/[vk, vk+1,
. . . , vk+l] stands for σ composed with inclusions of the standard simplices ∆k and ∆l

into the indicated faces of the standard simplex ∆k+l, respectively. The coboundary
operator δ behaves on the cup products of cochains as graded derivation as shown in
the following

Lemma.

δ(ϕ ∪ ψ) = δϕ ∪ ψ + (−1)kϕ ∪ δψ.

Proof. For σ ∈ Ck+l+1(X) we get

(δϕ ∪ ψ)(σ) + (−1)k(ϕ ∪ δψ)(σ) = δϕ(σ/[v0, v1, . . . , vk+1])ψ(σ/[vk+1, . . . , vk+l+1])

+ (−1)kϕ(σ[v0, v1, . . . , vk])δψ(σ/[vk, . . . , vk+l+1])

=

k+1
∑

i=0

(−1)iϕ(σ/[v0, . . . , v̂i, . . . , vk+1])(ψ(σ/[vk+1, . . . , vk+l+1]))

+ (−1)k

(

k+l+1
∑

j=k

(−1)j−kϕ(σ/[v0, . . . , vk])ψ(σ/[vk, . . . , v̂j , . . . , vk+l+1])

)

=
k+l+1
∑

i=0

(−1)i(ϕ ∪ ψ)(σ/[v0, . . . , v̂i, . . . , vk+l+1]) = δ(ϕ ∪ ψ)(σ).

�

Lemma implies that
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(1) If ϕ and ψ are cocycles, then ϕ ∪ ψ is cocycle.
(2) If one of the cochains ϕ and ψ is a coboundary, then ϕ ∪ ψ is a coboundary.

It enable us to define the cup product

∪ : Hk(X;R) ×H l(X;R) → Hk+l(X;R)

by the prescription
[ϕ] ∪ [ψ] = [ϕ ∪ ψ]

for cocycles ϕ and ψ. Since ∪ is an R-bilinear map on Hk(X;R)×H l(X;R), it can be
considered as an R-linear map on the tensor product Hk(X;R) ⊗R H

l(X;R). Given
a pair of spaces (X,A) we can define the cup product as a linear map

∪ :Hk(X,A;R) ⊗R H
l(X;R) → Hk+l(X,A;R),

∪ :Hk(X;R) ⊗R H
l(X,A;R) → Hk+l(X,A;R),

∪ :Hk(X,A;R) ⊗R H
l(X,A;R) → Hk+l(X,A;R).

Moreover, if A and B are open in X or A and B are subcomplexes of CW-complex
X, one can define

∪ : Hk(X,A;R) ⊗R H
l(X,B;R) → Hk+l(X,A ∪B;R).

Exercise. Prove that the previous definitions of cup product for pairs of spaces are
correct. For the last case you need Lemma in 3.12.

Remark. In the same way as the singular cohomology groups and the cup product
have been defined using the singular chain complexes, we can introduce simplicial
cohomology groups for ∆-complexes and a cup product in these groups.

7.2. Properties of the cup product are following:

(1) The cup product is associative.
(2) If X 6= ∅, there is an element 1 ∈ H0(X;R) such that for all α ∈ Hk(X,A;R)

1 ∪ α = α ∪ 1 = α.

(3) For all α ∈ Hk(X,A;R) and β ∈ H l(X,A;R)

α ∪ β = (−1)klβ ∪ α,

i. e. the cup product is graded commutative.
(4) Naturality of the cup product. For every map f : (X,A) → (Y,B) and any

α ∈ Hk(Y,B;R), β ∈ H l(Y,B;R) we have

f ∗(α ∪ β) = f ∗(α) ∪ f ∗(β).

Remark. Properties (1) – (3) mean that H∗(X,A;R) =
⊕∞

i=0H
i(X,A;R) with the

cup product is not only a graded group but also a graded ring and that H∗(X;R) is
even a graded ring with a unit if X 6= ∅. Property (4) says that f : (X,A) → (Y,B)
induces a ring homomorphism f ∗ : H∗(Y,B;R) → H∗(X,A;R).

Proof. To prove properties (1), (2) and (4) is easy and left to the reader as an exercise.
To prove property (3) is more difficult. We refer to [Ha] Theorem 3.14, pages 215 –
217 for geometrically motivated proof. Another approach is outlined later in 7.8. �
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7.3. Cross product. Consider spaces X and Y and projections p1 : X×Y → X and
p2 : X × Y → Y . We will define the cross product or external product. The absolute
and relative forms are the linear maps

µ : Hk(X,R) ⊗H l(Y ;R) → Hk+l(X × Y ;R),

µ : Hk(X,A;R) ⊗H l(Y,B;R) → Hk+l(X × Y,A× Y ∪X ×B;R)

given by

µ(α⊗ β) = p∗1(α) ∪ p∗2(β).

For the relative form of the cross product we suppose that A and B are open in X and
Y , or that A and B are subcomplexes of X and Y , respectively. (See the definition
of the cup product.) The name cross product comes from notation since µ(α ⊗ β) is
often written as α× β.

Exercise. Let ∆ : X → X × X be the diagonal ∆(x) = (x, x). Show that for
α, β ∈ H∗(X;R)

α ∪ β = ∆∗
(

µ(α⊗ β)
)

.

7.4. Tensor product of graded rings. Let A∗ =
⊕∞

n=0A
n and B∗ =

⊕∞
n=0B

n

be graded rings. Then the tensor product of graded rings A∗ ⊗ B∗ is the graded ring
C∗ =

⊕∞
n=0C

n where

Cn =
⊕

i+j=n

Ai ⊗Bj

with the multiplication given by

(a1 ⊗ b1) · (a2 ⊗ b2) = (−1)|b1|·|a2|(a1 · a2) ⊗ (b1 · b2).

Here |b1| is the degree of b1 ∈ B∗, i.e. b1 ∈ B|b1|. If A∗ and B∗ are graded commutative,
so is A∗ ⊗B∗.

Lemma. The cross product

µ : Hk(X,A;R) ⊗H l(Y,B;R) → Hk+l(X × Y,A× Y ∪X ×B;R)

is a homomorphism of graded rings.

Proof. Using the definitions of the cup and cross products and their properties we have

µ
(

(a× b) · (c× d
)

) = (−1)|b|·|c|µ
(

(a ∪ c) ⊗ (b ∪ d)
)

= (−1)|b|·|c|p∗1(a ∪ c) ∪ p
∗
2(b ∪ d)

= (−1)|b|·|c|p∗1(a) ∪ p
∗
1(c) ∪ p

∗
2(b) ∪ p

∗
2(d)

= p∗1(a) ∪ p
∗
2(b) ∪ p

∗
1(c) ∪ p

∗
2(d) = µ(a⊗ b) ∪ µ(c⊗ d).

�

7.5. Künneth Formula tells us how to compute the graded R-modules H∗(X×Y ;R)
or H∗(X×Y ;R) out of the graded modules H∗(X;R) and H∗(Y ;R) or H∗(X;R) and
H∗(Y ;R), respectively. Under certain conditions it even determines the ring structure
of H∗(X × Y ;R).
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Theorem (Künneth Formula). Let (X,A) and (Y,B) be pairs of CW-complexes.
Suppose that Hk(Y,B;R) are free finitely generated R-modules for all k. Then

µ : H∗(X,A;R) ⊗H∗(Y,B;R) → H∗(X × Y,A× Y ∪X × B;R)

is an isomorphism of graded rings.

Example. H∗(Sk × Sl) ∼= Z/I where I is the ideal generated by elements α2, β2,
αβ = (−1)klβα and degα = k, deg β = l.

Proof. Consider the diagram

H∗(X,A) ⊗R H
∗(Y ) //

µ

��

H∗(X) ⊗R H
∗(Y )

uujjjjjjjjjjjjjjj

µ

��

H∗(A) ⊗R H
∗(Y )

δ∗⊗id
kkVVVVVVVVVVVVVVVVVV

µ

��

H∗(X × Y,A× Y )H∗(X × Y ) // H∗(X × Y )

uujjjjjjjjjjjjjjj

H∗(A× Y )

δ∗
kkVVVVVVVVVVVVVVVVVVV

where the the upper and the lower triangles come from the long exact sequences
for pairs (X,A) and (X × Y,A × Y ), respectively. The right rhomb commutes as a
consequence of the naturality of the cross product. We prove that the left rhomb also
commutes.

Let ϕ and ψ be cocycles in C∗(A) and C∗(Y ), respectively. Let Φ be a cocycle in
C∗(X) extending ϕ. Then p∗1Φ ∪ p∗2ψ ∈ C∗(X × Y ) extends p∗1ϕ ∪ p∗2ψ ∈ C∗(A × Y ).
Using the definition of the connecting homomorphism in cohomology (see Remark 5.3)
we get

µ
(

(δ∗ ⊗ id)([ϕ] ⊗ [ψ])
)

= µ[δΦ ⊗ ψ] = p∗1[δΦ] ∪ p∗2[ψ],

δ∗
(

µ([ϕ] ⊗ [ψ])
)

= δ∗[p∗1ϕ ∪ p∗2ψ] = [δ(p∗1Φ ∪ p∗2ψ)] = p∗1[δΦ] ∪ p∗2[ψ].

First, we prove the statement of Theorem for the case A = B = ∅ using the induction
by the dimension of X and Five Lemma. If dimX = 0, X is a finite discrete set and
the statement of Theorem is true. Suppose that Theorem holds for spaces of dimension
n− 1 or less. Let dimX = n. It suffices to show that

µ : H∗(Xn, Xn−1) ⊗H∗(Y ) → H∗(Xn × Y,Xn−1 × Y )

is an isomorphism and than to use Five Lemma in the diagram above with A = Xn−1

to prove the statement for X = Xn. Xn/Xn−1 is homeomorphic to
⊔

iD
n
i /
⊔

i ∂D
n
i .

So it is sufficient to carry out the proof by induction using our diagram for X =
⊔

iD
n
i

and A =
⊔

i ∂D
n
i .

So we have proved the theorem for X a finite dimensional CW-complex and A =
B = ∅. Using once more our diagram and Five Lemma, we can easily prove Theorem
for any pairs (X,A), (Y, ∅) with X of finite dimension. For X of infinite dimension,
we have to prove H i(X) = H i(Xn) for i < n which is equivalent to H i(X/Xn) = 0.
We omit the details and refer the reader to to [Ha], pages 220 – 221. �
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7.6. Application of the cup product. In this paragraph we show how to use the
cup product to prove that S2k is not an H-space. A space X is called an H-space if
there is a map m : X ×X → X called a multiplication and an element e ∈ X called
a unit such that m(e, x) = m(x, e) = x for all x ∈ X.

Suppose that there is a multiplication m : S2k×S2k → S2k with a unit e. According
to Example after Theorem 7.5

H∗(S2k × S2k; Z) = Z[α, β]/I

where I is the ideal generated by relations α2 = 0, β2 = 0 and αβ = βα. The
last relation is due to the fact that the dimension of the sphere is even. Moreover,
α = γ ⊗ 1 and β = 1 ⊗ γ where γ ∈ H2k(S2k; Z) is a generator. Let us compute
m∗ : H∗(S2k; Z) → H∗(S2k ×H2k; Z). We have

m∗(γ) = aα + bβ, a, b ∈ Z.

Since the composition

S2k id×e
−−−→ S2k × S2k m

−→ S2k

is the identity, we get that a = 1. Similarly, b = 1. Now compute m∗(γ2):

0 = m∗(0) = m∗(γ2) =
(

m∗(γ)
)2

= (α + β)2 = 2αβ 6= 0,

a contradiction. Does this proof go through for odd dimensional spheres?

7.7. Künneth Formula in homological algebra. Consider two chain complexes
(C∗, ∂C), (D∗, ∂D) of R-modules. Suppose there is an integer N such that Cn = Dn = 0
for all n < N . Then their tensor product is the chain complex (C∗ ⊗D∗, ∂) with

(C∗ ⊗D∗)n =
⊕

i+j=n

Ci ⊗Di

and the boundary operator on Ci ⊗Dj

∂(c⊗ d) = ∂Cc⊗ d+ (−1)ic⊗ ∂Dd.

It is easy to make sure that ∂∂ = 0.
Next we can define the graded R-module C∗ ∗D∗ as

(C∗ ∗D∗)n =
⊕

i+j=n

TorR1 (Ci, Dj).

A ring R is called hereditary if any submodule of a free R-module is free. Examples
of hereditary rings are Z and all fields.

Theorem (Algebraic Künneth Formula). Let R be a hereditary ring and let C∗ and
D∗ be chain complexes of R-modules. If C∗ is free, then the homology groups of
C∗ ⊗D∗ are determined by the splitting short exact sequence

0 → (H∗(C) ⊗H∗(D))n
l
−→ Hn(C∗ ⊗D∗) → (H∗(C) ∗H∗(D))n−1 → 0

where l([c] ⊗ [d]) = [c⊗ d]. This sequence is natural but the splitting is not.
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Notice that for the chain complex

Dn =

{

0 for n 6= 0,

G for n = 0

the Küneth Formula gives the universal coefficient theorem for homology groups 6.12.
The proof of the Künneth Formula is similar to the proof of the universal coefficient

theorem and we omit it.

7.8. Eilenberg-Zilbert Theorem. To be able to apply the previous Künneth For-
mula in topology we have to show that the singular chain complex C∗(X × Y ) of a
product X × Y is chain homotopy equivalent to the tensor product of the singular
chain complexes C∗(X) ⊗ C∗(Y ).

Theorem (Eilenberg-Zilbert). Up to chain homotopy there are unique natural chain
homomorphisms

Φ :C∗(X) ⊗ C∗(Y ) → C∗(X × Y ),

Ψ :C∗(X × Y ) → C∗(X) ⊗ C∗(Y )

such that for 0-simplices σ and τ

Φ(σ ⊗ τ) = (σ, τ), Ψ(σ, τ) = σ ⊗ τ.

Moreover, such chain homomorphisms are chain homotopy equivances: there are
natural chain homotopies such that

ΨΦ ∼ idC∗X⊗C∗(Y ), ΦΨ ∼ idC∗(X×Y ) .

For the proof of this theorem see [Do], IV.12.1. The chain homomorphism Ψ is
called the Eilenberg-Zilbert homomorphism and denoted EZ. It enables a different
and more abstract approach to the definitions of the cross and cup products. The
cross product is

µ([α] ⊗ [β]) = [(α⊗ β) ◦ EZ]

for cocycles α ∈ C∗(X;R) and β ∈ C∗(Y ;R) and the cup product is

([ϕ] ⊗ [ψ]) = [(ϕ⊗ ψ) ◦ EZ ◦ ∆∗]

for cocycles ϕ, ψ ∈ C∗(X;R) and the diagonal ∆ : X → X ×X. In our definition in
7.1 we have used for EZ ◦ ∆∗ the homomorphism

σ → σ/[v0, v1, . . . , vk] ⊗ σ/[vk, . . . , vn].

The properties of EZ can be used for a different proof of the graded commutativity
of the cup product.

7.9. Künneth Formulas in topology. The following statement is an immediate
consequence of the previous paragraph.

Theorem (Künneth formula for homology). LetR be a hereditary ring. The homology
groups of the product of two spaces X and Y are determined by the following splitting
short exact sequence

0 → (H∗(X;R) ⊗H∗(Y ;R))n
l
−→ Hn(X × Y ;R) → (H∗(X;R) ∗H∗(Y ;R))n−1 → 0

where l([c] ⊗ [d]) = [c⊗ d]. This sequence is natural but the splitting is not.
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For cohomology groups one can prove

Theorem (Künneth formula for cohomology groups). Let R be a hereditary ring.
The cohomology groups of the product of two spaces X and Y are determined by the
following splitting short exact sequence

0 → (H∗(X;R) ⊗H∗(Y ;R))n
µ
−→ Hn(X × Y ;R) → (H∗(X;R) ∗H∗(Y ;R))n+1 → 0.

This sequence is natural but the splitting is not.

For the proof and other forms of Künneth formulas see [Do], Chapter VI, Theorem
12.16 or [Sp], Chapter 5, Theorem 5.11. and 5.12.

8. Vector bundles and Thom isomorphism

In this section we introduce the notion of vector bundle and define its important
algebraic invariants Thom and Euler classes. The Thom class is involved in so called
Thom isomorphism. Using this isomorphism we derive the Gysin exact sequence which
is an important tool for computing cup product structure in cohomology.

8.1. Fibre bundles. A fibre bundle structure on a space E, with fiber F , consists
of a projection map p : E → B such that each point of B has a neighbourhood U for
which there is a homeomorphism h : p−1(U) → U × F such that the diagram

p−1(U)
h //

p

��

U × F

pr1
yysssssssssss

U

commutes. Here pr1 is the projection on the first factor. h is called a local trivialization,
the space E is called the total space of the bundle and B is the base space.

A subbundle (E ′, B, p′) of a fibre bundle (E,B, p) has the total space E ′ ⊆ E,
the fibre F ′ ⊆ F , p′ = p/E ′ and local trivializations in E ′ are restrictions of local
trivializations of E.

A vector bundle is a fibre bundle (E,B, p) whose fiber is a vector space (real or
complex). Moreover, we suppose that for each b ∈ B the fiber p−1(b) over b is a vector
space and all local trivializations restricted to p−1(b) are linear isomorphisms. The
dimension of a vector bundle is the dimension of its fiber. For p−1(U) where U ⊆ B
we will use notation EU . Further, E0

U will stand for EU without zeroes in vector spaces
Ex = p−1(x) for x ∈ U .

8.2. Orientation of vector spaces. Let V be a real vector space of dimension n.
The orientation of V is the choice of a generator in Hn(V, V − {0}; Z) = Z. If R is
a commutative ring with a unit, the R-orientation of V is the choice of a generator
in Hn(V, V − {0};R) = R. For R = Z we have two possible orientations, for R = Z2

only one.

8.3. Orientation of vector bundles. Consider a vector bundle (E,B, p) with fiber
Rn. The R-orientation of the vector bundle E is a choice of orientation in each vector
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space p−1(b), b ∈ B, i. e. a choice of generators tb ∈ Hn(Eb, E
0
b ;R) = R such that for

each b ∈ B there is a neighbourhood U and an element

tU ∈ Hn(EU , E
0
U ;R)

with the property
i∗x(tU ) = tx

for each x ∈ U and ix : Ex →֒ EU an inclusion.
If a vector bundle has an R-orientation, we say that it is R-orientable. An R-oriented

vector bundle is a vector bundle with a chosen R-orientation. Talking on orientation
we will mean Z-orientation.

Example. Every vector bundle (E,B, p) is Z2-orientable. After we have some knowl-
edge of fundamental group, we will be able to prove that vector bundles with H1(B) =
0 are orientable.

8.4. Thom class and Thom isomorphism. A Thom class of a vector bundle
(E,B, p) of dimension n is an element t ∈ Hn(E,E0;R) such that i∗b(t) is a generator
in Hn(Eb, E

0
b ;R) = R for each b ∈ B where ib : Eb →֒ E is an inclusion.

It is clear that any Thom class determines a unique orientation. The reverse state-
ment is also true.

Theorem (Thom Isomorphism Theorem). Let (E,B, p) be an R-oriented vector bun-
dle of real dimension n. Then there is just one Thom class t ∈ Hn(E,E0;R) which
determines a given R-orientation. Moreover, the homomorphism

τ : Hk(B;R) → Hk+n(E,E0;R), τ(a) = p∗(a) ∪ t

is an isomorphism (so called Thom isomorphism).

Remark. Notice that Thom Isomorphism Theorem is a generalization of the Künneth
Formula 7.5 for (Y,A) = (Rn,Rn − {0}). We use it in the proof.

Proof. (1) First suppose that E = B × Rn. Then according to Theorem 7.5

H∗(E,E0;R) = H∗(B × Rn, B × (Rn − {0});R) = H∗(B;R) ⊗H∗(Rn,Rn − {0});R)

∼= H∗(B;R)[e]/〈e2〉

where e ∈ Hn(Rn,Rn − {0});R) is the generator given by the orientation of E. Now,
there is just one Thom class t = 1 × e and

τ(a) = p∗(a) ∪ t = a× e

is an isomorphism.

(2) If U is open subset of B, then the orientation of (E,B, p) induces an orientation of
the vector bundle (EU , U, p). Suppose that U and V are two open subsets in B such
that the statement of Theorem is true for EU , EV and EU∩V with induced orientations.
Denote the corresponding Thom classes by tU , tV and tU∩V . The uniqueness of tU∩V

implies that the restrictions of both classes tU and tV on Hn(EU∩V , E
0
U∩V ;R) are tU∩V .

We will show that Theorem holds for EU∪V .
Consider the Mayer-Vietoris exact sequence 5.13 for A = EU , B = EV , C = E0

U ,
D = E0

V together with the Mayer-Vietoris exact sequence for A = U , B = V and C =
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D = ∅. Omitting coefficients these exact sequences together with Thom isomorphisms
τU , τV and τU∩V yield the following diagram where PEU stands for the pair (EU , E

0
U)

δ∗ // Hk+n(PEU∪V )
(j∗

U
,j∗

V
)
// Hk+n(PEU) ⊕Hk+n(PEV )

i∗
U
−i∗

V // Hk+n(PEU∩V ) //

δ∗ // Hk(U ∪ V )
(j∗U ,j

∗

V )
//

τU∪V

OO�
�

�

Hk(U) ⊕Hk(V )
i∗U−i∗V //

τU⊕τV

OO

Hk(U ∩ V )

τU∩V

OO

//

(At the moment we do not need commutativity.) From the first row of this diagram
we get that

H i(EU∪V , E
0
U∪V ) = 0 for i < n

and that there is just one class tU∪V ∈ Hn(EU∪V , E
0
U∪V ) such that

(j∗U , j
∗
V )(tU∪V ) = (tU , tV ).

This is the Thom class for EU∪V and we can define the homomorphism τU∪V : Hk(U ∪
V ) → Hk+n(EU∪V , E

0
U∪V ) by

τU∪V (a) = p∗(a) ∪ tU∪V .

Complete the diagram by this homomorphism. When we check the commutativity
of the completed diagram, it suffices to apply Five Lemma to show that τU∪V is an
isomorphism.

To prove the commutativity we have to go into the cochain level from which the
Mayer-Vietoris sequences are derived in natural way. Let t′U and t′V be cocycles repre-
senting the Thom classes tU and tV . We can choose them in such a way that

i∗U t
′
U = i∗V t

′
V = t′U∩V

where t′U∩V represents the Thom class tU∩V . Consider the diagram where the rows are
the short exact sequences inducing the Mayer-Vietoris exact sequences above.

0 // C∗
0(EU + EV )

(j∗
U
,j∗

V
)
// C∗

0(EU ) ⊕ C∗
0 (EV )

i∗
U
−i∗

V // C∗(EU∩V ) // 0

0 // C∗(U + V )
(j∗

U
,j∗

V
)
//

τ ′U∪V

OO�
�

�

C∗(U) ⊕ C∗(V )

τ ′U⊕τ ′V

OO

i∗
U
−i∗

V // C∗(U ∩ V ) //

τ ′U∩V

OO

0

Here we use the following notation: C∗(U + V ) is the free Abelian group generated
by simplices lying in U and V , C∗(U + V ) = HomR(C∗(U + V ), R). C∗

0(EU + EV )
are the cochains from C∗(EU +EV ) which are zeroes on simplices from C∗(E

0
U +E0

V ).
τ ′U (a) = p∗(a) ∪ t′U . (According to Lemma in 3.12 the cohomology of C∗

0(EU + EV ) is
H∗(EU∪V , E

0
U∪V ;R).)

There is just one cocycle t′U∪V representing the Thom class tU∪V such that

(j∗U , j
∗
V )(t′U∪V ) = (t′U , t

′
V ).

If we show that τ ′U , τ ′V , τ ′U∩V and τ ′U∪V are cochain homomorphisms which make the
diagram commutative, then the diagram with the Mayer-Vietoris exact sequences will
be also commutative. To prove the commutativity of the cochain diagram above is
not difficult and left to the reader. Here we prove that τ ′U is a cochain homomorhism.
(The proof for the other τ ′ is the same.)
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Let a ∈ Ck(U). Since t′U is cocycle we get

δτ ′U(a) = δ(p∗(a) ∪ t′U ) = δ(p∗(a)) ∪ t′U + (−1)kp∗(a) ∪ δ(t′U ) = p∗(δ(a)) ∪ t′U = τ ′Uδ(a).

(3) Let B be compact (particullary a finite CW-complex). Then there is a finite open
covering U1, U2, . . . , Um such that EUi

is homeomorphic to Ui × Rn. So according to
(1) the statement of Theorem holds for all EUi

. Using (2) and induction we can show
that Theorem holds for E =

⋃m
i=1EUi

as well.
(4) The proof for the other base spaces B needs a limit transitions in cohomology and
the fact that for any B there is always a CW-complex X and a map f : B → X
inducing isomorphism in cohomology. Here we omit this part. �

8.5. Euler class. Let ξ = (E,B, p) be oriented vector bundle of dimension n with
the Thom class tξ ∈ Hn(E,E0; Z). Consider the standard inclusion j : E → (E,E0).
Since p : E → B is a homotopy equivalence, there is just one class e(ξ) ∈ Hn(B; Z),
called the Euler class of ξ, such that

p∗(e(ξ)) = j∗(tξ).

For R-oriented vector bundles we can define the Euler class e(ξ) ∈ Hn(B;R) in the
same way. Particulary, for any vector bundle ξ = (E,B, p) has an Euler class with
Z2-coefficients called the n-th Stiefel-Whitney class wn(ξ) ∈ Hn(B; Z2).

8.6. Gysin exact sequence. The following theorem gives us a useful tool for com-
putation of the ring structure of singular cohomology of various spaces.

Theorem (Gysin exact sequence). Let ξ = (E,B, p) be an R-oriented vector bundle
of dimension n with the Euler class e(ξ) ∈ Hn(B;R). Then there is a homomorphism
∆∗ : H∗(E0;R) → H∗(B;R) of modules over H∗(B;R) such that the sequence

. . .
p∗

−→ Hk+n−1(E0;R)
∆∗

−→ Hk(B;R)
∪e(ξ)
−−−→ Hk+n(B;R)

p∗

−→ Hk+n(E0;R)
∆∗

−→ . . .

is exact.

Proof. The definition of ∆∗ and the exactness follows from the following cummutative
diagram where we have used the long exact sequence for the pair (E,E0) and the
Thom isomorphism τ :

Hk+n−1(E0)
δ∗ //

∆∗

((P
P

P
P

P
P

Hk+n(E,E0)
j∗ // Hk+n(E)

i∗ // Hk+n(E0)

Hk(B)

τ∼=

OO

∪e(ξ)
//____ Hk+n(B)

p∗∼=

OO

p∗

88qqqqqqqqqq

The right action of b ∈ H∗(B) on H∗(E0) is given by

x · b = x ∪ i∗p∗(b), x ∈ H∗(E0).

Using the definition of the connecting homomorphism and the properties of cup prod-
uct one can show that

∆∗(x · b) = ∆∗(x) ∪ b.

The details are left to the reader. �
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Example. Consider the canonical one dimensional vector bundle γ = (E,RPn, p)
where

E = {(l, v) ∈ RPn × Rn+1; v ∈ l},

the elements of RPn are identified with lines in Rn+1 and p(l, v) = l. The space E0 is
equal to Rn+1 − {0} and homotopy equivalent to Sn.

Using the Gysin exact sequence with Z2-coefficients and the fact thatHk(RPn; Z2) =
Z2 for 0 ≤ k ≤ n, we get successively that the first Stiefel-Whitney class w1(γ) ∈
H1(RPn; Z2) is different from zero and that

H∗(RPn); Z2) ∼= Z2[w1(γ)]/〈w1(γ)
n+1〉.

Exercise. Using the Gysin exact sequence show that

H∗(CPn; Z) ∼= Z[x]/〈xn+1〉

where x ∈ H2(CPn; Z).

9. Poincaré duality

Many interesting spaces used in geometry are closed oriented manifolds. Poincaré
duality expresses a remarkable symmetry between their homology and cohomology.

9.1. Manifolds. A manifold of dimension n is a Hausdorff space M in which each
point has an open neighbourhood U homeomorphic to Rn. The dimension of M is
characterized by the fact that for each x ∈ M , the local homology group Hi(M,M −
{x}; Z) is nonzero only for i = n since by excision and homotopy equivalence

Hi(M,M − {x}; Z) = Hi(U,U − {x}; Z) = Hi(R
n,Rn − {0}; Z)

= H̃i−1(S
n−1; Z).

A compact manifold is called closed .

Example. Examples of closed manifolds are spheres, real and complex projective
spaces, the orthogonal groups O(n) and SO(n), the unitary groups U(n) and SU(n),
real and complex Stiefel and Grassmann manifolds. The real Stiefel manifold Vn,k is
the space of k-tuples of orthonormal vectors in Rn. The real Grassmann manifolds
Gn,k is the space of k-dimensional vector subspaces of Rn.

9.2. Orientation of manifolds. Consider a manifold M of dimension n. A local
orientation ofM in a point x ∈M is a choice of a generator µx ∈ Hn(M,M−{x};Z) =
Z.

If A ⊆M , we will use Hi(M |A) and H i(M |A) for Hi(M,M−A; Z) and H i(M ;M−
A; Z), respectively, to shorten our notation.

An orientation of M is a function assigning to each point x ∈M a local orientation
µx ∈ Hn(M |x) such that each point has an open neighbourhood B with the property
that all local orientations µy for y ∈ B are images of an element µB ∈ Hn(M |B) under
the map ρy∗ : Hn(M |B) → Hn(M |x) where ρy : (M,M − {x}) → (M,M − B) is the
natural inclusion.

If an orientation exists on M , the manifold is called orientable. A manifold with
chosen orientation is called oriented.
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Proposition. A connected manifold M is orientable if it is simply connected, i. e.
every map S1 → M is homotopic to a constant map.

For the proof one has to know more about covering spaces and fundamental group.
See [Ha], Proposition 3.25, pages 234 – 235.

In the same way we can define an R-orientation of a manifold for any commutative
ring R. Every manifold is Z2-oriented.

9.3. Fundamental class. A fundamental class of a manifold M with coefficients in
R is an element µ ∈ Hn(M ;R) such that ρx∗(µ) is a generator of Hn(M |x;R) = R for
each x ∈M where ρx : (M, ∅) → (M,M − {x}) is the obvious inclusion. It is usual to
denote the fundamental class of the manifold M by [M ]. We will keep this notation.

If a fundamental class of M exists, it determines uniquely the orientation µx =
ρx∗([M ]) of M .

Theorem. Let M be a closed manifold of dimension n. Then:

(a) If M is R-orientable, the natural map Hn(M ;R) → Hn(M |x;R) = R is an
isomorphism for all x ∈M .

(b) If M is not R-orientable, the natural map Hn(M ;R) → Hn(M |x;R) = R is
injective with the image {r ∈ R; 2r = 0} for all x ∈M .

(c) Hi(M ;R) = 0 for all i > n.

(a) implies immediately that very oriented closed manifold has just one fundamental
class. It is a suitable generator of Hn(M ;R).

The theorem will follow from a more technical statement:

Lemma. Let M be n-manifold and let A ⊆M be compact. Then:

(a) Hi(M |A;R) = 0 for i > n and α ∈ Hn(M |A;R) is zero iff its image ρx∗(α) ∈
Hn(M |x;R) is zero for all x ∈M .

(b) If x 7→ µx is an R-orientation of M , then there is µA ∈ Hn(M |A;R) whose
image in Hn(M |x;R) is µx for all x ∈ A.

To prove the theorem put A = M . We get immediately (c) of the theorem. Further,
the lemma implies that an oriented manifold M has a fundamental class [M ] = µM
and any other element in Hn(M ;R) has to be its multiple in R. So we obtain (a) of
the theorem. For the proof of (b) we refer to [Ha], pages 234 – 236.

Proof of Lemma. Since R does not play any substantial role in our considerations, we
will omit it from our notation. We will omit also stars in notation of maps induced in
homology. The proof will be divided into several steps.

(1) Suppose that the statements are true for compact subsets A, B and A ∩ B of M .
We will prove them for A ∪B using the Mayer-Vietoris exact sequence:

0 → Hn(M |A ∪ B)
Φ
−→ Hn(M |A) ⊕Hn(M |B)

Ψ
−→ Hn(M |A ∩B)

where Φ(α) = (ρAα, ρBα), Ψ(α, β) = ρA∩Bα− ρA∩Bβ.
Hi(M |A ∪ B) = 0 for i > n is immediate from the exact sequence. Suppose α ∈

Hn(M |A∪B) restricted to Hn(M |x) is zero for all x ∈ A∪B. Then ρAα and ρBα are
zeroes. Since Φ is a monomorphism, α has to be also zero.
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Take µA and µB such that their restrictions to Hn(M |x) are orientations. Then the
restrictions to points x ∈ A ∩ B are the same. Hence also the restrictions to A ∩ B
coincide. It means Ψ(µA, µB) = 0 and the Mayer-Vietoris exact sequence yields the
existence of α in Hn(M |A ∪ B) such that Φ(α) = (µA, µB). Therefore α reduces to a
generator of Hn(M |x) for all x ∈ A ∪B, and consequently, α = µA∪B.

(2) If M = Rn and A is a compact convex set, the lemma is true since Hi(Rn|A) =
Hi(Rn|0).

(3) If M = Rn and A is finite simplicial complex in Rn, then A =
⋃m
i=1Ai where Ai

are convex compact sets. Using (1) and induction by m we can prove that the lemma
holds in this case as well.

(4) Let M = Rn and A is an arbitrary compact subset. Let α ∈ Hi(Rn|A) be repre-
sented by relative cycle z and let C ⊂ Rn − A be the union of images of the singular
simplices in ∂z. Since C is compact, dist(C,A) > 0, and consequenly, there is a finite
simplicial complex K ⊃ A such that C ⊂ Rn−K. z defines an element αK ∈ Hi(Rn|K)
which reduces to α ∈ Hi(Rn|A). If i > n, then by (3) αK = 0 and consequently also
α = 0.

Suppose i = n and α reduces to zero in each point x ∈ A. K can be chosen in
such a way that every its point lies in a simplex of K together with a point of A.
Consequently, αK reduces to zero not only for all x ∈ A but for all x ∈ K. (Use the
case (2) to prove it.) By (3) αK = 0, therefore also α = 0.

The proof of existence of µA ∈ Hn(Rn|A) in the statement (b) is easy. Take µB ∈
Hn(Rn|B) for a ball B ⊃ A and its reduction is µA.

(5) Let M be a general manifold and A a compact subset in open U homeomorphic
to Rn. Now by excision

Hi(M |A) = Hi(U |A) = Hi(R
n|A)

and we can use (4).

(6) Let M be a manifold and A an arbitrary compact set. Then A can be covered by
open sets V1, V2, . . . , Vm such that the closure of Vi lies in an open set Ui homeomorphic
to Rn. Then by (5) the lemma holds for Ai = A ∩ V̄i. By (1) and induction it holds
also for

⋃m
i=1Ai = A. �

9.4. Cap product. Let X be a space. On the level of chains and cochains the cap
product

∩ : Cn(X;R) ⊗ Ck(X;R) → Cn−k(X;R)

is given by

σ ∩ ϕ = ϕ(σ/[v0, v1, . . . , vk])σ/[vk, vk+1, . . . , vn]

where σ is a singular n-simplex, ϕ : Ck(X;R) → R is a cochain and σ/[v0, v1, . . . , vk]
is the composition of the inclusion of ∆k into the indicated face of ∆n with σ.

The proof of the following statement is similar as in the case of cup product and
therefore it is left to the reader.

Lemma. For σ ∈ Cn(X;R) and ϕ ∈ Ck(X;R)

∂(σ ∩ ϕ) = (−1)k(∂σ ∩ ϕ− σ ∩ δϕ)
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This enables us to define

∩ : Hn(X;R) ⊗Hk(X;R) → Hn−k(X;R)

by
[σ] ∩ [ϕ] = [σ ∩ ϕ]

for all cycles σ and cocycles ϕ. In the same way one can define

∩ : Hn(X,A;R) ⊗Hk(X;R) → Hn−k(X,A;R)

∩ : Hn(X,A;R) ⊗Hk(X,A;R) → Hn−k(X;R)

for any pair (X,A) and

∩ : Hn(X,A ∪ B;R) ⊗Hk(X,A;R) → Hn−k(X,B;R)

for A,B open in X or subcomplexes of CW-complex X.

Exercise. Show the correctness of all definitions and prove the following lemma.

Lemma (Naturality of cup product). Let f : (X,A) → (Y,B). Then

f∗(α ∩ f ∗(β)) = f∗(α) ∩ β

for all α ∈ Hn(X,A;R) and β ∈ Hk(Y ;R).

9.5. Poincaré duality. Now we have all the tools needed to state the Poincaré
duality for closed manifolds.

Theorem (Poincaré duality). If M is a closed R-orientable manifold of dimension n
with fundamental class [M ] ∈ Hn(M ;R), then the map D : Hk(M ;R) → Hn−k(M ;R)
defined by

D(ϕ) = [M ] ∩ ϕ

is an isomorphism.

Exercise. Use Poincaré duality to show that the real projective spaces of even dimen-
sion are not orientable.

This theorem is a consequence of a more general version of Poincaré duality. To
state it we introduce the notion of direct limit and cohomology with compact support.

9.6. Direct limits. A direct set is a partially ordered set I such that for each pair
ι, κ ∈ I there is λ ∈ I such that ι ≤ λ and κ ≤ λ.

Let Gι be a system od Abelian groups (or R-modules) indexed by elements of a
directed set I. Suppose that for each pair ι ≤ κ of indices there is a homomorphism
fικ : Gι → Gκ such that fιι = id and fκλfικ = fιλ. Then such a system is called
directed.

Having a directed system of Abelian groups (or R-modules) we will say that a ∈ Gι

and b ∈ Gκ are equivalent (a ≃ b) if fιλ(a) = fκλ(b) for some λ ∈ I. The direct limit
of the system {Gι}ι∈I is the Abelian group (R-module) of classes of this equivalence

lim−→Gι =
⊕

ι∈I

Gι/ ≃ .

Moreover, we have natural homomorphism jι : Gι → lim−→Gι.
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The direct limit is characterized by the following universal property: Having a
system of homomorphism hι : Gι → A such that hι = hκfικ whenever ι ≤ κ, there is
just one homomorphism

H : lim−→Gι → A

such that hι = Hjι.
It is not difficult to prove that direct limits preserve exact sequences.
In a system of sets the ordering is usually given by inclusions.

Lemma. If a space X is the union of a directed set of subspaces Xι with the property
that each compact set in X is contained in some Xι, the natural map

lim−→ Hn(Xι;R) → Hn(X;R)

is an isomorphism.

The proof is not difficult, we refer to [Ha], Proposition 3.33, page 244.

9.7. Cohomology groups with compact support. Consider a space X with a
directed system of compact subsets. For each pair (L,K), K ⊆ L, the inclusion
(X,X − L) →֒ (X,X −K) induces homomorphism Hk(X|K;R) → Hk(X|L;R). We
define the cohomology groups with compact support as

Hk
c (X;R) = lim−→ Hk(X|K;R).

If X is compact, then Hk
c (X;R) = Hk(X;R).

For cohomology with compact support we get the following lemma which does not
hold for ordinary cohomology groups.

Lemma. If a space X is the union of a directed set of open subspaces Xι with the
property that each compact set in X is contained in some Xι, the natural map

lim−→ Hk
c (Xι;R) → Hk

c (X;R)

is an isomorphism.

Proof. The definition of natural homomorphism in the lemma is based on the following
fact: Let U be an open subset in V . For any K ⊂ U compact the inclusion (U,U −
K) →֒ (V, V −K) induces by excision an isomorphism

Hk(V |K;R) → Hk(U |K;R).

Its inverse can be composed with natural homomorphism Hk(V |K;R) → Hk
c (V ;R).

By the universal property of direct sum there is just one homomorphism

Hk
c (U ;R) → Hk

c (V ;R).

So on inclusions of open sets Hk
c behaves as covariant functor on inclusions of open

sets and this makes the definition of the natural homomorphism in the lemma possible.
The proof that it is an isomorphism is left to the reader. �

9.8. Generalized Poincaré duality. Let M be an R-orientable manifold of dimen-
sion n. Let K ⊆ M be compact. Let µK ∈ Hn(M |K;R) be such a class that its
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reduction to Hn(M |x;R) gives a generator for each x ∈ M . The existence of such a
class is ensured by Lemma in 9.3. Define

DK : Hk(M |K) → Hn−k(M ;R) : DK(ϕ) = µK ∩ ϕ.

If K ⊂ L are two compact subsets of M we can easily prove using naturality of cap
product that

DL(ρ
∗ϕ) = DK(ϕ)

for ϕ ∈ Hk(M |K;R) and ρ : (M,M − L) →֒ (M,M −K). It enables us to define the
generalized duality map

DM : Hk
c (M ;R) → Hn−k(M ;R) : DM(ϕ) = µK ∩ ϕ

since each element ϕ ∈ Hk
c (M ;R) is contained in Hk(M |K;R) for some compact set

K ⊆M .

Theorem (Duality for all orientable manifolds). If M is an R-orientable manifold of
dimension n, then the duality map DM : Hk

c (M ;R) → Hn−k(M ;R) is an isomorphism.

The proof is based on the following

Lemma. If a manifolds M be a union of two open subsets U and V , the following
diagram of Mayer-Vietoris sequences

Hk
c (U ∩ V ) //

DU∩V

��

Hk
c (U) ⊕Hk

c (V ) //

DU⊕DV

��

Hk
c (M) //

DM

��

Hk+1
c (U ∩ V )

DU∩V

��
Hn−k(U ∩ V ) // Hn−k(U) ⊕Hn−k(V ) // Hn−k(M) // Hn−k−1(U ∩ V )

commutes up to signs.

The proof of this lemma is analogous as the proof of commutativity of the diagram
in the proof of Theorem 8.4 on Thom isomorphism. So we omit it referring the reader
to [Ha], Lemma 3.36, pages 246 – 247 or to [Br], Chapter VI, Lemma 8.2, pages 350
– 351.

Proof of Poincaré Duality Theorem. We will use the following two statements

(A) If M = U ∪ V where U and V are open subsets such that DU , DV and DU∩V

are isomorphisms, then DM is also an isomorphism.
(B) If M =

⋃∞
i=1 Ui where Ui are open subsets such that U1 ⊂ U2 ⊂ U3 ⊂ . . . and

all DUi
are isomorphisms, then DM is also an isomorphism.

The former is an immediate consequence of the previous lemma and Five Lemma. To
obtain the latter apply the direct limit to the short exact sequences

0 → Hk
c (Ui)

DUi−−→ Hn−k(Ui) → 0

and use the lemmas in 9.6 and 9.7. The proof of Duality Theorem will be carried out
in four steps.

(1) For M = Rn we have

Hk
c (R

n) ∼= Hk(∆n, ∂∆n), Hn(R
n|∆n) ∼= Hn(∆

n, ∂∆n).
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Take the generator µ ∈ Hn(∆
n, ∂∆n) represented by the singular simplex given by

identity. The only nontriavial case is k = n. In this case for a generator

ϕ ∈ Hn((∆n∂∆n)) = Hom(Hn((∆
n∂∆n), R)

we get µ ∩ ϕ = ϕ(µ) = ±1. So the duality map is an isomorphism.

(2) Let M ⊂ Rn be open. Then M is a countable union of open convex sets Vi which
are homeomorphic to Rn. Using the previous step and induction in the statement (A)
we show that the duality map is an isomorphism for every finite union of Vi. Now
application of the statement (B) yields that the duality map DM is an isomorphism
as well.

(3) Let M be a manifold which is a countable union of open sets Ui which are homeo-
morphic to Rn. Now we can proceed in the same way as in (2) using its result instead
of the result in (1).
(4) For general M we have to use Zorn lemma. See [Ha], page 248. �

Consequence. The Euler characteristic of a closed manifold of odd dimension is zero.

Proof. For M orientable we get from Poincaré duality and the universal coefficient
theorem that

rankHn−k(M ; Z) = rankHk(M ; Z) = rank HomHk(M ;Z)

= rankHk(M ; Z)

Hence χ(M) =
∑n

i=0(−1)i rankHi(M ; Z) = 0 for n odd.
If M is not orientable, we get from the Poincaré duality with Z2 coefficients that

n
∑

i=0

(−1)i dimHi(M ; Z2) = 0.

Here the dimension is considered over Z2. Applying the universal coefficient theorem
one can show that the expression on the left hand side equals to χ(M). �

Remark. Consider an oriented closed smooth manifold M . The orientation of the
manifold induces an orientation of the tangent bundle τM and we get the following
relation between the Euler class of τM , the fundamental class of M and the Euler
characteristic of M :

χ(M) = e(τM ) ∩ [M ].

Particulary, for spheres of even dimension we get that the Euler class of their tangent
bundle is twice a generator of Hn(Sn; Z). For the proof see [MS], Corollary 11.12.

9.9. Duality and cup product. One can easily show that for α ∈ Cn(X;R),
ϕ ∈ Ck(X;R) and ψ ∈ Cn−k(X;R) we have

ψ(α ∩ ϕ) = (ϕ ∪ ψ)(α).

For a closed R-orientable manifold M we define bilinear form

(∗) Hk(M ;R) ×Hn−k(M ;R) → R : (ϕ, ψ) 7→ (ϕ ∪ ψ)[M ].

A bilinear form A× B → R is called regular if induced linear maps A → Hom(B,R)
and B → Hom(A,R) are isomorphisms.
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Theorem. Let M be a closed R-orientable manifold. If R is a field, then the bilinear
form (∗) is regular.
If R = Z, then the bilinar form induced form

Hk(M ; Z)/TorsionHk(M ; Z) ×Hn−k(M ; Z)/TorsionHn−k(M ; Z) → Z

induced by (∗) is regular.

Proof. Consider the homomorphism

Hn−k(M ;R)
h
−→ Hom(Hn−k(M ;R);R)

D∗

−→ Hom(Hk(M ;R), R).

Here h(ψ)(β) = ψ(β) for β ∈ Hn−k(M ;R) and ψ ∈ Hn−k(M ;R) and D∗ is the dual
map to duality. The homomorphism h is an isomorphism by the universal coefficient
theorem and D∗ is an isomorphism since so is D. Now it suffices to prove that the
composition D∗h is the homomorphism induced from the bilinear form (∗). For ψ ∈
Hn−k(M ;R) and ϕ ∈ Hk(M ;R) we get

(D∗h(ψ)) (ϕ) = (h(ψ))D(ϕ) = (h(ψ)) ([M ] ∩ ϕ) = ψ([M ] ∩ ϕ) = (ϕ ∪ ψ)[M ].

�

This theorem gives us a further tool for computing the cup product structure in
cohomology of closed manifolds.

Consequence. Let M be a closed orientable manifold of dimension n. Then for every
ϕ ∈ Hk(M ; Z) of infinite order which is not of the form ϕ = mϕ1 for m > 1, there is
ψ ∈ Hn−k(M ; Z) such that ϕ ∪ ψ is a generator of Hn(M ; Z) ∼= Z.

Example. We will prove by induction that H∗(CPn; Z) = Z[ω]/〈ωn+1〉 where ω ∈
H2(CPn; Z) is a generator. For n = 1 the statement is clear. Suppose it holds for
n− 1. From the long exact sequence for the pair (CPn,CPn−1) we get that

H i(CPn; Z) = H i(CPn−1; Z)

for i ≤ 2n − 1. Now, using the consequence above for ϕ = ω we obtain that ωn is a
generator of H2n(CPn; Z).

9.10. Manifolds with boundary. A manifold with boundary of dimension n is a
Hausdorff space M in which each point has an open neighbourhood homeomorphic
either to Rn or to the half-space

Rn
+ = {(x1, x2, . . . , xn) ∈ Rn; xn ≥ 0}.

The boundary ∂M of the manifold M is formed by points which have all neighbour-
hoods of the second type. The boundary of a manifold of dimension n is a manifold
of dimension n− 1. In a similar way as for a manifold we can define orientation of a
manifold with boundary and its fundamental class [M ] ∈ Hn(M ; ∂M ;R).

Theorem. Suppose that M is a compact R-orientable n-dimensional manifold whose
boundary ∂M is decomposed as a union of two compact (n−1)-dimensional manifolds
A and B with common boundary ∂A = ∂B = A ∩B. Then the cap product with the
fundamental class [M ] ∈ Hn(M, ∂M ;R) gives the isomorphism

DM : Hk(M,A;R) → Hn−k(M,B;R).
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For the proof and many other applications of Poincaré duality we refer to [Ha],
Theorem 3.43 and pages 250 – 254, and [Br], Chapter VI, Sections 9 and 10, pages
355 – 366.

9.11. Alexander duality. In this paragraph we introduce another version of duality.

Theorem (Alexander duality). If K is a proper compact subset of Sn which is a
deformation retract of an open neighbourhood, then

H̃i(S
n −K; Z) ∼= H̃n−i−1(K; Z).

Proof. For i 6= 0 and U a neighbourhood of K we have

Hi(S
n −K) ∼= Hn−i

c (Sn −K) by Poincaré duality

∼= lim−→ UH
n−i(Sn −K,U −K) by definition

∼= lim−→ UH
n−i(Sn, U) by excision

∼= lim−→ UH̃
n−i−1(U) connecting homomorphism

∼= H̃n−i−1(K) K is a def. retract of some U

First three isomorphisms are natural and exist also for i = 0. So using these facts
we have

H̃0(S
n −K) = Ker (H0(S

n −K) → H0(S
n))

= Ker
(

lim−→ Hn(Sn, U) → Hn(Sn)
)

= lim−→ Ker (Hn(Sn, U) → Hn(Sn))

= lim−→ Hn−1(U) = Hn−1(K).

�

Consequence. A closed nonorientable manifold of dimension n cannot be embedded
as a subspace into Rn+1.

Proof. Suppose that M can be embedded into Rn+1. Then it can be embedded also
in Sn+1. By Alexander duality

Hn−1(M ; Z) ∼= H1(Sn+1 −M ; Z).

According to the universal coefficient theorem

H1(Sn+1 −M ; Z) ∼= Hom(H1(S
n+1 −M ; Z),Z) ⊕ Ext(H0(S

n+1 −M ; Z))

is a free Abelian group. On the other hand

Z2 = Hn(M ; Z2) ∼= Hn(M ; Z) ⊗ Z2 ⊕ Tor(Hn−1(M,Z),Z2).

According to (b) of Theorem 9.3 the tensor product has to be zero, and sinceHn−1(M ; Z)
is free, the second summand has to be also zero, which is a contradiction. �
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10. Homotopy groups

In this section we will define homotopy groups and derive their basic properties.
While the definition of homotopy groups is relatively simple, their computation is
complicated in general.

10.1. Homotopy groups. Let In be the n-dimensional unit cube and ∂In its bound-
ary. For n = 0 we take I0 to be one point and ∂I0 to be empty. Consider a space
X with a basepoint x0. Maps (In, ∂In) → (X, x0) are the same as the maps of the
quotient (Sn = In/∂In, s0 = ∂In/∂In) → (X, x0). We define the n-th homotopy group
of the space X with the basepoint x0 as

πn(X, x0) = [(Sn, s0), (X, x0)] = [(In, ∂In), (X, x0)].

π0(X, x0) is the set of path connected components of X with the component containing
x0 as a distinguished element. For n ≥ 1 we can introduce a sum operation on πn(X, x0)

(f + g)(t1, t2, . . . , tn) =

{

f(2t1, t2, . . . , tn) t1 ∈ [0, 1
2
],

f(2t1 − 1, t2, . . . , tn) t1 ∈ [1
2
, 1].

This operation is well defined on homotopy classes. It is easy to show that πn(X, x0)
is a group with identity element represented by the constant map to x0 and with the
inverse represented by

−f(t1, t2, . . . , tn) = f(1 − t1, t2, . . . , tn).

For n ≥ 2 the groups πn(X, x0) are commutative. The proof is indicated by the
following pictures.

f g
f

g g

f
g f

In the interpretation πn(X, x0) as [(Sn, s0), (X, x0)] the sum f+g is the composition

Sn
c
−→ Sn ∨ Sn

f∨g
−−→ X

where c collapses the equator Sn−1 of Sn to a point, s0 ∈ Sn−1 ⊂ Sn.
Any map F : (X, x0) → (Y, y0) induces the homomorphism F∗ : πn(X, x0) →

πn(Y, y0) by composition
F∗([f ]) = [Ff ].

Hence πn is a functor from T OP∗ to the category of Abelian groups AG for n ≥ 2,
to the category of groups G for n = 1 and to the category of sets with distiguished
element SET ∗ for n = 0.

10.2. Relative homotopy groups. Consider In−1 as a face of In with the last
coordinate tn = 0. Denote Jn−1 the closure of ∂In − In−1. Let (X,A) be a pair with
basepoint x0 ∈ A. For n ≥ 1 we define the n-th relative homotopy group of the pair
(X,A) as

πn(X,A, x0) = [(Dn, Sn−1, s0), (X,A, x0)] = [(In, ∂In, Jn−1), (X,A, x0)].
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A sum operation on πn(X,A, x0) is defined by the same formula as for πn(X, x0) only
for n ≥ 2. (Explain why this definition does not work for n = 1.) Similarly as in the
case of absolute homotopy groups one can show that πn(X,A, x0) is a group for n ≥ 2
which is commutative if n ≥ 3.

Sometimes it is useful to know how the representatives of zero (neutral element)
in πn(X,A, x0) look like. We say that two maps f, g : (Dn, Sn−1, s0) → (X,A, x0)
are homotopic rel Sn−1 if there is a homotopy h between f and g such that h(x, t) =
f(x) = g(x) for all x ∈ Sn−1 and all t ∈ I.

Proposition. A map f : (Dn, Sn−1, s0) → (X,A, x0) represents zero in πn(X,A, x0)
iff it is homotopic rel Sn−1 to a map with image in A.

Proof. Suppose that f ∼ g rel Sn−1 and g(Dn) ⊂ A. Then g is homotopic to the
constant map into x0 ∈ A. Hence [f ] = [g] = 0.

Let f be homotopic to the constant map via homotopy h : Dn × I → X. Let
r : Dn → Dn × {1} ∪ Sn−1 × I be a a homeomorphism shown in the picture below.
Then g = hr : Dn → A and g ∼ f rel Sn−1.

�

A map F : (X,A, x0) → (Y,B, y0) induces again the homomorphism F∗ : πn(X,A, x0)
→ πn(Y,B, y0). Since πn(X, x0, x0) = πn(X, x0) the functor πn on T OP∗ can be ex-
tended to a functor from T OP2

∗ to Abelian groups AG for n ≥ 3, to the category of
groups G for n = 2 and to the category SET ∗ of sets with distinguished element for
n = 1.

From definitions it is clear that homotopic maps induce the same homomorphisms
between homotopy groups. Hence homotopy equivalent spaces have the same homo-
topy groups. Particularly, contractible spaces have trivial homotopy groups.

10.3. Long exact sequence of a pair. Relative homotopy groups fit into long exact
sequence of a pair.

Theorem. Let (X,A) be a pair of spaces with a distinguished point x0 ∈ A. Then
the sequence

· · · → πn(A, x0)
i∗−→ πn(X, x0)

j∗
−→ πn(X,A, x0)

δ
−→ πn−1(A, x0) → . . .

where i : A →֒ X, j : (X, x0) →֒ (X,A) and δ comes from restriction, is exact.
More generally, any triple B ⊆ A ⊆ X induces the long exact sequence

· · · → πn(A,B, x0)
i∗−→ πn(X,B, x0)

j∗
−→ πn(X,A, x0)

δ
−→ πn−1(A,B, x0) → . . .
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Proof. We will prove only the version for the pair (X,A). δ is defined on [f ] ∈
πn(X,A, x0) by

δ[f ] = [f/In−1].

Exactness in πn(X, x0). According to the previous proposition j∗i∗ = 0, hence
Im i∗ ⊆ Ker j∗. Let [f ] ∈ Ker j∗ for f : (In, ∂In) → (X, x0). Using again Proposition
10.2 f ∼ g rel ∂In where g : In → A. Hence [f ] = i∗[g].

Exactness in πn(X,A, x0). δj∗ = 0, hence Im j∗ ⊆ Ker δ. Let [f ] ∈ Ker δ, i. e.
f(In, ∂In, Jn−1) → (X,A, x0) and f/In−1 ∼ const. Then according to HEP there
is f1 : (In, ∂In, Jn) → (X, x0, x0) homotopic to f . Therefore [f1] ∈ πn(X, x0) and
[f ] = j∗[f1].

Exactness in πn(A, x0). Let [F ] ∈ πn+1(X,A, x0). Then i ◦ F/In : In → X is a map
homotopic to the constant map to x0 through the homotopy F . (Draw a picture.)

Let f : (In, ∂In) → (A, x0) and f ∼ 0 through the homotopy F : In × I → X such
that F (x, 0) = f(x) ∈ A, F/Jn = x0. Hence [F ] ∈ πn+1(X,A, x0) and δ[F ] = [f ]. �

Remark. The boundary operator for a triple (X,A,B) is a composition

πn(X,A)
delta
−−→ πn(A)

j∗
−→ πn−1(A,B).

10.4. Changing basepoints. Let X be a space and γ : I → X a path connecting
points x0 and x1. This path associates to f : (In, ∂In) → (X, x1) a map γ · f :
(In, ∂In) → (X, x0) by shrinking the domain of f to a smaller concentric cube in In

and inserting the path γ on each radial segment in the shell between ∂In and the
smaller cube.

f x0

It is not difficult to prove that this assigment has the following properties:

(1) γ · (f + g) ∼ γ · f + γ · g for f, g : (In, ∂In) → (X, x1),
(2) (γ + κ) · f ∼ γ · (κ · f) for f : (In.∂In) → (X, x2), γ(0) = x0, γ(1) = x1 = κ(0),

κ(1) = x2.
(3) If γ1, γ2 : I → X are homotopic rel ∂I = {0, 1}, then γ1 · f ∼ γ2 · f .

Hence, every path γ defines an isomorphism

γ : πn(X, γ(1)) → πn(X, γ(0)).

Particulary, we have a left action of the group π1(X, x0) on πn(X, x0).

10.5. Fibrations. Fibration is a dual notion to cofibration. (See 1.7.) It plays an
important role in homotopy theory.

A map p : E → B has the homotopy lifting property, shortly HLP, with respect
to a pair (X,A) if the following commutative diagram can be completed by a map
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X × I → E

X × {0} ∪A× I //

i
��

E

p

��
X × I //

77p
p

p
p

p
p

p

B

A map p : E → B is called a fibration (sometimes also Serre fibration or weak
fibration), if it has the homotopy lifting property with respect to all disks (Dk, ∅).

Theorem. If p : E → B is a fibration, then it has homotopy lifting property with
respect to all pairs of CW-complexes (X,A).

Proof. The proof can be carried out by induction from (k − 1)-skeleton to k-skeleton
similarly as in the proof of Theorem 2.7 if we show that p : E → B has the homotopy
lifting property with respect to the pair (Dk, ∂Dk = Sk−1). It follows from the fact that
the pair (Dk×I,Dk×{0}∪Sk−1×I) is homeomorphic to the pair (Dk×I,Dk×{0}),
see the picture below, and the fact that p has homotopy lifting property with respect
to the pair (Dk, ∅).

�

Proposition. Every fibre bundle (E,B, p) is a fibration.

Proof. For the definition of a fibre bundle see 8.1. Let Uα be an open covering of
B with trivializations hα : p−1(Uα) → Uα × F . We would like to define a lift of a
homotopy G : Ik× I → B. (We have replaced Dk by Ik.) From compactness of Ik× I
there is a division

0 = t0 < t1 < · · · < tm = 1, Ij = [tj−1, tj ],

such that G(Ij1 ×· · ·×Ijk+1
) lies in some Uα. Now we make a lift H : Ik×I → E of G,

first on (I1)
k+1 and then we add successively the other small cubes. We need retractions

r of cubes C × Ijk+1
=
∏k+1

i=1 Iji to a suitable part of the boundary C ×{0} ∪A× Ijk+1

where H is already defined. A is a CW-subcomplex of the cube C and we are in the
following situation

C × {0} ∪A× I
g //

i

��

Uα × F

p1

��
C × I

G
//

H

66n
n

n
n

n
n

n

Uα
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Now, we can define

H(x, t) = (G(x, t), p2 ◦ g ◦ r)(x, t)

where p2 : Uα × F → F is a projection. �

Example. Here you are several examples of fibre bundles.
(1) The projection p : Sn → RPn determines a fibre bundle with the fibre S0.
(2) The projection p : S2n+1 → RCn determines a fibre bundle with the fibre S1.
(3) The special case is so called Hopf fibration

S1 → S3 p
−→ CP1 = S2.

(4) Similarly, as complex projective space we can define quaternionic projective space
HPn. The definition determines the fibre bundle

S3 → S4n+3 → HPn.

(5) The special case of the previous fibre bundle is the second Hopf fibration

S3 → S7 → HP1 = S4.

(6) Similarly, the Cayley numbers enable to define another Hopf fibration

S7 → S15 → S8.

(7) Let H be a Lie subgroup of G. Then we get a fibre bundle with the projection
p : G→ G/H with fibre H .
(8) Let n ≥ k > l ≥ 1. Then the projection

p : Vn,k → Vn,l, p(v1, v2, . . . , vk) = (v1, v2, . . . , vl)

determines a fibre bundle with fibre Vn−l,k−l.
(9) Natural projection p : Vn,k → Gn,k is a fibre bundle with the fibre O(k).

10.6. Long exact sequence of a fibration. Consider a fibration p : E → B. Take
a basepoint b0 ∈ B, put F = p−1(b0) and choose x0 ∈ F .

Lemma. For all n ≥ 1

p∗ : πn(E,F, x0) → πn(B, b0)

is an isomorphism.

Proof. First, we show that p∗ is an epimorphism. Consider f : (In, ∂In) → (B, b0).
Let k : Jn−1 → E be the constant map into x0. Since p is a fibration the commutative
diagram

Jn−1 = In−1 × {1} ∪ ∂In−1 × I
k //

��

E

p

��
In−1 × I

f
//

g

55kkkk
kkkkk

B

can be completed by g : (In, ∂In, Jn−1) → (E,F, x0). Hence p∗[g] = [f ].
Now we prove that p∗ is a monomorphism. Consider f : (In, ∂In, Jn−1) → (E,F, x0)

such that p∗[f ] = 0. Then there is a homotopy G : (In×I, ∂In×I) → (B, b0) between
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pf and the constant map into b0. Denote the constant map into x0 by k. Since p is a
fibration, we complete the following commutative diagram:

Jn−1 × I ∪ In × {0} ∪ In × {1}
k∪f∪k//

��

E

p

��
In × I

G
//

H

55kkkkkkkkkk

B

by H : (In × I, ∂In × I, Jn−1 × I) → (E,B, x0) which is a homotopy between f and
the constant map k. �

The notion of exact sequence can be enlarged to groups and also to the category
SET ∗ of sets with distinquished elements. Here we have to define Ker f = f−1(b0) for
f : (A, a0) → (B, b0).

Theorem. If p : E → B be a fibration with a fibre F = p−1(b0), x0 ∈ F and B is
path connected, then the sequence

· · · → πn(F, x0)
i∗−→ πn(E, x0)

p∗
−→ πn(B, b0)

δ
−→ πn−1(F, x0) → . . .

· · · → π0(F )
i∗−→ π0(E)

p∗
−→ π0(B).

is exact.

Proof. Substitute the isomorphism p∗ : πn(E,F, x0) → πn(B, b0) into the exact se-
quence for the pair (E,F ). In this way we get the required exact sequence ending
with

· · · → π0(F, x0) → π0(E, x0).

We can prolong it by one term to the right. The exactness in π0(E, x0) follows from
the fact that every path in B ending in b0 can be lifted to a path in E ending in F . �

The direct definition of δ : πn(B, b0) → πn−1(F, x0) is given by

δ[f ] = [g/In−1]

where g is the lift

Jn−1
x0 //

��

E

p

��
In

f
//

g

<<z
z

z
z

B

Some applications of this long exact sequence to computations of homotopy groups
will be given in Section 14.

11. Fundamental group

The fundamental group of a space is the first homotopy group. In this section we
describe two basic methods how to compute it.
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11.1. Covering space. A covering space of a space X is a space X̃ together with a
map p : X̃ → X such that (X̃,X, p) is a fibre bundle with a discrete fibre.

In the previous section we have proved that every fibre bundle has homotopy lifting
property with respect to CW-complexes. In the case of covering spaces the lifts of
homotopies are unique:

Proposition. Let p : X̃ → X be a covering space and let Y be a space. If a homotopy
F : Y × I → X and a map f̃ : Y × {0} → X̃ such that F (−, 0) = pf̃ are given, there

is a unique homotopy F̃ : Y × I → X̃ making the following diagram commutative:

Y × {0}

��

f̃ // X̃

p

��
Y × I

F
//

F̃

;;vvvvvvvvvv
X

Proof. Since the proof follows the same lines as the proof of the analogous proposition
in 10.5 we outline only the main steps.

(1) Using compactness of I we show that for each y ∈ Y there is a neighbourhood

U such that F̃ can be defined on U × I.
(2) F̃ is uniquely determined on {y} × I for each y ∈ Y .
(3) The lifts of F defined on U1 × I and U2 × I concide on (U1 ∩ U2) × I.

�

From the uniquiness of lifts of loops and their homotopies starting at a fixed point
we get immediately the following

Consequence. The group homomorphism p∗ : π1(X̃, x̃0) → π1(X, x0) induced by a
covering space (X̃,X, p) is injective. The image subgroup p∗(π1(X̃, x̃0)) in π1(X, x0)

consists of loops in X based at x0 whose lifts in X̃ starting at x̃0 are loops.

11.2. Group actions. A left action of a discrete group G on a space Y is a map

G× Y → Y, (g, y) 7→ g · y

such that 1 · y = y and (g1g2) · y = g1 · (g2 · y). We will call this action properly
discontinuous if each point y ∈ Y has an open neighbourhood U such that g1U∩g2U 6=
∅ implies g1 = g2.

An action of a group G on a space Y induces the equivalence x ∼ y if y = g · x for
some g ∈ G. The orbit space Y/G is the factor space Y/ ∼.

A space is called Y simply connected if it is path connected and π1(Y, y0) is trivial
for some (and hence all) base point y0.

The following theorem provides a useful method for computation of fundamental
groups.

Theorem. Let Y be a path connected space with a properly discontinuous action of
a group G. Then

(1) The natural projection p : Y → Y/G is a covering space.
(2) G ∼= π1(Y/G, p(y0))/p∗π1(Y, y0). Particularly, if Y is simply connected, then

π1(Y/G) ∼= G.
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Proof. Let y ∈ Y and let U be a neighbourhood of y from the definition of prop-
erly discontinuous action. Then p−1(p(U)) is a disjoint union of gU , g ∈ G. Hence
(Y, Y/G, p) is a fibre bundle with the fibre G.

Applying the long exact sequence of homotopy groups of this fibration we obtain

0 = π1(G, 1) → π1(Y, y0)
p∗
−→ π1(Y/G; p(y0))

δ
−→ π0(G) = G→ π0(Y ) = 0.

In general π0 of a fibre is only the set with distinguished point. However, here it has
the group structure given by G. Using the definition of δ from 10.3 one can check that
δ is a group homomorphism. Consequently, the exact sequence implies that

G ∼= π1(Y/G, p(y0))/p∗π1(Y, y0).

�

Example. Z acts on real numbers R by addition. The orbit space is R/Z = S1.
According to the previous theorem

π1(S
1, s) = Z.

The fundamental group of the sphere Sn with n ≥ 2 is trivial. The reason is that any
loop γ : S1 → Sn is homotopic to a loop which is not a map onto Sn and Sn without
a point is contractible.

Next the group Z2 = {1,−1} has an action on Sn, n ≥ 2 given by (−1) · x = −x.
Hence

π1(RPn) = Z2.

Example. The abelian group Z ⊕ Z acts on R2

(m,n) · (x, y) = (x+m, y + n).

The factor R2/(Z ⊕ Z) is two dimensional torus S1 × S1. Its fundamental group is
Z ⊕ Z.

Example. The group G given by two generators α, β and the relation β−1αβ = α−1

acts on R2 by

α · (x, y) = (x+ 1, y), β · (x, y) = (1 − x, y + 1).

The factor R2/G is the Klein bottle. Hence its fundamental group is G.

11.3. Free product of groups. As a set the free product ∗αGα of groups Gα, α ∈ I
is the set of finite sequences g1g2 . . . gm such that 1 6= gi ∈ Gαi

, αi 6= αi+1, called
words. The elements gi are called letters. The group operation is given by

(g1g2 . . . gm) · (h1h2 . . . hn) = (g1g2 . . . gmh1h2 . . . hn)

where we take gmh1 as a single letter gm ·h1 if both elements belong to the same group
Gα. It is easy to show that ∗αGα is a group with the empty word as the identity
element. Moreover, for each β ∈ I there is the natural inclusion iβ : Gβ →֒ ∗αGα.

Up to isomorhism the free product of groups is characterized by the following uni-
versal property: Having a system of group homomorphism hα : Gα → G there is just
one group homomorphism h : ∗αGα → G such that hα = hiα.

Exercise. Describe Z2 ∗ Z2.
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11.4. Van Kampen Theorem. Suppose that a space X is a union of path connected
open subsets Uα each of which contains a base point x0 ∈ X. The inclusions Uα →֒ X
induce homomorphisms jα : π1(Uα) → π1(X) which determine a unique homomorhism
ϕ : ∗απ1(Uα) → π1(X).

Next the inclusions Uα ∩Uβ →֒ Uα induce the homomorphisms iαβ : π1(Uα ∩Uβ) →
π1(Uα). We have jαiαβ = jβiβα. Consequently, the kernel of ϕ contains elements of
the form iαβ(ω)iβα(ω

−1) for any ω ∈ π1(Uα ∩ Uβ).
Van Kampen Theorem provides the full description of the homomorphism ϕ which

enables us to compute π1(X) using groups π1(Uα) and π1(Uα ∩ Uβ).

Theorem (Van Kampen Theorem). If X is a union of path connected open sets
Uα each containing a base point x0 ∈ X and if each intersection Uα ∩ Uβ is path
connected, then the homomorhism ϕ : ∗απ1(Uα) → π1(X) is surjective. If in addition
each intersection Uα ∩ Uβ ∩ Uγ is path connected, then the kernel of p is the normal
subgroup N in ∗απ1(Uα) generated by elements iαβ(ω)iβα(ω

−1) for any ω ∈ π1(Uα∩Uβ).
So ϕ induces an isomorphism

π1(X) ∼= ∗απ1(Uα)/N.

Example. If Xα are path connected spaces, then

π1(
∨

Xα) = ∗απ1(Xα).

Outline of the proof. For simplicity we suppose that X is a union of only two open
subsets U1 and U2.

Surjectivity of ϕ. Let f : I → X be a loop starting at x0 ∈ U1 ∪ U2. This loop
is up to homotopy a composition of several paths, for simplicity suppose there are
three such that f1 : I → U1, f2 : I → U2 and f3 : I → U1 with end points succesively
x0, x1, x2, x0 ∈ U1∩U2. Since U1∩U2 is path connected there are paths g1 : I → U1∩U2

and g2 : I → U1 ∩ U2 from x0 to x1 and x2, respectively. Then the loop f is up to
homotopy a composition of loops f1 − g1 : I → U1, g1 + f2 − g2 : I → U2 and
g2 + f3 : I → U1. Consequently, [f ] ∈ π1(X) lies in the image of ϕ.

Kernel of ϕ. Suppose that the ϕ-image of a word withm letters [f1][g1][f2] . . . , where
[fi] ∈ π1(U1), [gi] ∈ π1(U2), is zero in π1(X). Then there is a homotopy F : I× I → X
such that

F (s, 0) = f1 + g1 + f2 + . . . , F (s, 1) = x0, F (0, t) = F (1, t) = x0

where we suppose that fi is defined on [2i−2
m
, 2i−1

m
] and gi is defined on [2i−1

m
, 2i
m

]. Since
I × I is compact, there is an integer n, a multiple of m, such that

F ([
i

n
,
i+ 1

n
] × [

j

n
,
j + 1

n
])

is a subset in U1 or U2. Using homotopy extension property, we can construct a
homotopy from F to F̃ rel J1 such that again

F̃ ([
i

n
,
i+ 1

n
] × [

j

n
,
j + 1

n
])

is a subset in U1 or U2, and moreover,

F̃ (
i

n
,
j

n
) = x0.
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Further, F̃ (s, 0) = f ′
1 + g′1 + f ′

2 + . . . where f ′
i ∼ fi, g

′
i ∼ gi in U1 and U2, respec-

tively, rel the boundary of the domain of definition. We want to show that the word
[f ′

1]1[g
′
1]2[f

′
2]1 . . . belongs to N . Here [ ]i stands for an element in π1(Ui).

We can decompose

I × I =
⋃

i

Mi

where Mi is a maximal subset with the properties:

(1) Mi is a union of several squares [ i
n
, i+1
n

] × [ j
n
, j+1

n
].

(2) intMi is path connected.

(3) F̃ (Mi) is a subset in U1 or U2.

For simplicity suppose that we have four sets Mi as indicated in the picture.

f’ g’ f’

x x

x

M

M

M

M
k

l

p

0

0

0

1 21

1

2

3

4

In this situation there are three loops k, l and p starting at x0 and lying in U1 ∩U2.
They are defined by F̃ on common boundary of M1 and M2, M2 and M3, M3 and M4,
respectively. Now, we get

[f ′
1]1[g

′
1]2[f

′
2]1 = [k]1[−k + l]2[−l + p]1 = [k]1[−k]2[l]2[−l]1[p]1

= [k]1[−k]2[l]2[−l]1 ∈ N.

�

Consequence. Let X be a union of two open subsets U and V where V is simply
connected and U ∩ V is path connected. Then

π1(X) = π1(U)/N

where N is the normal subgroup in π1(U) generated by the image of π1(U ∩ V ).

Exercise. Use the previous statement to compute the fundamental group of the Klein
bottle and other 2-dimensional closed surfaces.
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11.5. Fundamental group and homology. Here we compare the fundamental
group of a space with the first homology group. We obtain a special case of Hurewitz
theorem, see 13.6.

Theorem. By regarding loops as 1-cycles, we obtain a homomorphism h : π1(X, x0) →
H1(X). If X is path connected, then h is surjective and its kernel is the commutator
subgroup of π1(X). So h induces isomorphism from the abelization of π1(X, x0) to
H1(X).

For the proof we refer to [Ha], Theorem 2A.1, pages 166–167.

12. Homotopy and CW-complexes

This section demonstrates the importance of CW-complexes in homotopy theory.
The main results derived here are Whitehead theorem and theorems on approximation
of maps by cellular maps and spaces by CW-complexes.

12.1. n-connectivity. A space X is n-connected if πi(X, x0) = 0 for all 0 ≤ i ≤ n
and some base point x0 ∈ X (and consequently, for all base points).

A pair (X,A) is called n-connected if each component of path connectivity of X
contains a point from A and πi(X,A, x0) = 0 for all x0 ∈ A and all 1 ≤ i ≤ n

We say that a map f : X → Y is an n-equivalence if f∗ : πi(X, x0) → πi(Y, f(x0)) is
an isomorphism for all x0 ∈ X if 0 ≤ i < n and an epimorphism for all x0 if i = n.

Exercise. Prove that a pair (X,A) is n-connected if and only if the inclusion i : A →֒
X is an n-equivalence.

12.2. Compression lemma. Let (X,A) be a pair of CW-complexes and (Y,B) a
pair with B 6= ∅. Suppose that πn(Y,B, y0) = 0 for all y0 ∈ B whenever there is a cell
in X − A of dimension n. Then every f : (X,A) → (Y,B) is homotopic rel A with a
map g : X → B.

A

��

f/A
// B

��
X

∼f
//

g
>>~

~
~

~

Y

If n = 0, the condition π0(Y,B, y0) = 0 means that (Y,B) is 0-connected.

Proof. By induction we will define maps fn : X → Y such that fn(X
n∪A) ⊆ B, and fn

is homotopic to fn−1 rel A∪Xn−1. Put f−1 = f . Suppose we have fn−1 and there is a
cell en inX−A. Let ϕ : Dn → X be its characteristic map. Then fn−1ϕ : (Dn, ∂Dn) →
(Y,B) represents zero element in πn(Y,B). According to Proposition 10.2 it means
fn−1ϕ : (Dn, ∂Dn) → (Y,B) is rel ∂Dn homotopic to a map hn : (Dn, ∂Dn) → (B,B).
Doing it for all cells of dimension n in X − A we obtain a map fn : Xn ∪ A → B
homotopic relA with fn−1 restricted toXn∪A. Using the homotopy extension property
of the pair (X,Xn∪A) we can conclude that fn can be extended to a map fn : X → Y
which is homotopic rel A to fn−1. Now for x ∈ Xn define g(x) = fn(x). By the same
trick as in the proof of Theorem 2.7 we can construct homotopy rel A between f and
g. �
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Similar to the previous lemma is the following extension lemma the proof of which
is easier and left to the reader.

Lemma. Consider a pair (X,A) of CW-complexes and a map f : A → Y . If Y is
path connected and πn−1(Y, y0) = 0 whenever there is a cell in X −A of dimension n,
then f can be extended to a map X → Y .

12.3. Whitehead Theorem. The compression lemma has two important conse-
quences.

Corollary. Let h : Z → Y be an n-equivalence and let X be a finite dimensional
CW-complex. Then the induced map h∗ : [X,Z] → [X, Y ] is

(1) a surjection if dimX ≤ n,
(2) a bijection if dimX ≤ n− 1.

Proof. First, suppose that h : Z → Y is an inclusion. Put B = Z, A = ∅ and consider
a map f : X → Y . If dimX ≤ n then all the assumptions of the compression lemma
are satisfied. Consequently there is a map g : X → Z such that hg ∼ f . Hence
h∗ : [X,Z] → [X, Y ] is surjection.

Let dimX ≤ n − 1 and let g1, g2 : X → Z be two maps such that hg1 ∼ hg2 via a
homotopy F : X×I → Y . Then we can apply the compression lemma in the situation
of the diagram

X × {0, 1}
g1∪g2 //

��

Z

h

��
X × I

F
//

H

::t
t

t
t

t
t

Y

to get a homotopy H : X × I → Z between g1 and g2.
If h is not an inclusion, we use the mapping cylinder Mh. (See 1.5 for definition and

basic properties.) Let f : X → Y be a map. Apply the result of the previous part of
the proof to the inclusion iZ : Z →֒ Mh and to the map iY f : X → Y →֒ Mh to get
g : X → Z such that izg ∼ iY f .

Z

h~~||
||

||
||

iZ
��

h

  B
BB

BB
BB

B

X

g

77n
n

n
n

n
n

n
n

f
// Y

iY

// Mh p
// Y

Since the middle and the right triangle commutes up to homotopy and iY and p are
homotopy inverses, we get

hg ∼ piZg ∼ piY f ∼ f.

The statement (2) can be proved in a similar way. �

A map f : X → Y is called a weak homotopy equivalence if f∗ : πn(X, x0) →
πn(Y, f(x0)) is an isomorphism for all n and all base points x0.

Theorem (Whitehead Theorem). If a map h : Z → Y between two CW-complexes is
a weak homotopy equivalence, then h is a homotopy equivalence.

Moreover, if Z is a subcomplex of Y and h is an inclusion, then Z is even deformation
retract of Y .
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Proof. Let h be an inclusion. We apply the compression lemma in the following situ-
ation:

Z
idZ //

h
��

Z

h
��

Y
idY

//

g
??~

~
~

~

Y

Then gh ∼ idY rel Z and consequently hg = idZ . So Z is a deformation retract of Y .
The proof in a general case again uses mapping cylinder Mh. �

12.4. Simplicial approximation lemma. The following rather technical statement
will play important role in proofs of approximation theorems in this section and in the
proof of homotopy excision theorem in the next section. Under convex polyhedron we
mean an intersection of finite number of halfspaces in Rn with nonempty interior.

Lemma (Simplicial approximation lemma). Consider a map f : In → Z. Let Z be a
space obtained from a space W by attaching a cell ek. Then f is rel f−1(W ) homotopic
to f1 for which there is a simplex ∆k ⊂ ek with f−1

1 (∆k) a union (possibly empty)
of finitely many convex polyhedra such that f1 is the restriction of a linear surjection
Rn → Rk on each of them.

The proof is elementary but rather technical and we omit it. See [Ha], Lemma 4.10,
pages 350–351.

12.5. Cellular approximation. We recall that a map g : X → Y between two
CW-complexes is called cellular, if g(Xn) ⊆ Y n for all n.

Theorem (Cellular approximation theorem). If f : X → Y is a map between CW-
complexes, then it is homotopic to a cellular map. If f is already cellular on a sub-
complex A, then f is homotopic to a cellular map rel A.

Consequence. πk(S
n) = 0 for k < n.

Consequence. Let (X,A) be a pair of CW-complexes such that X−A contains only
cells of dimension greater then n. Then (X,A) is n-connected.

Proof of the cellular approximation theorem. By induction we will construct maps fn :
X → Y such that f−1 = f , fn is cellular on Xn and fn ∼ fn−1 rel Xn−1 ∪A. Then we
can define g(x) = fn(x) for x ∈ Xn and by the same trick as in the proof of Theorem
2.7 we can construct homotopy rel A between f and g.

Suppose we have already fn−1 and there is a cell en such that fn−1(e
n) does not

lie in Y n. Then f(en) meets a cell ek in Y of dimension k > n. According to the
simplicial approximation lemma fn−1/en is homotopic rel ∂en to h : en → Y with the
property that there is a simplex ∆k ⊂ ek and h(en) ⊂ Y − ∆k. (Since n < k, there

is no linear surjection Rn → Rk.) ∂ek is a deformation retract of ek − ∆k and that is
why h is homotopic rel ∂en to a map g : en → Y − ek. Since f(en) meets only a finite
number of cells, repeating the previous step we get a map fn defined on en such that
fn(e

n) ⊆ Y n and homotopic rel ∂en to fn−1/en. In the same way we can define fn
on A ∪Xn homotopic to fn−1/A∪Xn rel A ∪Xn−1. Then using homotopy extension
property we obtain fn : X → Y homotopic to fn−1 rel A ∪Xn−1. �
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12.6. Approximation by CW-complexes. Consider a pair (X,A) where A is a
CW-complex. An n-connected CW model for (X,A) is an n-connected pair of CW-
complexes (Z,A) together with a map f : Z → X such that f/A = idA and f∗ :
πi(Z, z0) → πi(X, f(z0)) is an isomorphism for i > n and a monomorphism for i = n
and all base points z0 ∈ Z.

If we take A a set containing one point from every path component of X, then
0-connected CW model gives a CW-complex Z and a map Z → X which is a weak
homotopy equivalence.

Theorem (CW approximation theorem). For every n ≥ 0 and for every pair (X,A)
where A is a CW-complex there exists n-connected CW-model (Z,A) with the addi-
tional property that Z can be obtained from A by attaching cells of dimensions greater
than n.

Proof. We proceed by induction constructing Zn = A ⊂ Zn+1 ⊂ Zn+2 ⊂ . . . with Zk
obtained from Zk−1 by attaching cells of dimension k, and a map f : Zk → X such
that f/A = idA and f∗ : πi(Zk) → πi(X) is an injection for n ≤ i < k and a surjection
for n < i ≤ k. For simplicity we will consider X and A path connected with a fixed
base point x0 ∈ A.

Suppose we have already f : Zk → X. Let ϕα : Sk → Zk be maps representing
generators in Ker f∗ : πk(Zk) → πk(X). Put

Yk+1 = Zk ∪ϕα

⋃

α

Dk+1
α .

Since the map f : Zk → X restricted to the boundaries of new cells is trivial, it can
be extended to a map f : Yk+1 → X.

By the cellular approximation theorem πi(Yk+1) = πi(Zk) for all i ≤ k − 1. Hence
the new f∗ has the same properties as the old f∗ on homotopy groups πi with i ≤
k−1. Since the composion πk(Zk) → πk(Yk+1) → πk(X) is surjective according to the
induction assumptions, f∗ : πk(Yk+1) → πk(X) has to be surjective as well.

We prove that it is injective. Let [ϕ] ∈ πk(Yk+1) and let fϕ ∼ 0. By cellular
approximation ϕ : Sk → Yk+1 is homotopic to ϕ̄ : Sk → Y k

k+1 = Zk ⊆ Yk+1 and
[fϕ̄] = 0 in πk(X). Hence [ϕ̄] ∈ Ker f∗ is a sum of [ϕα], and consequenly, it is zero in
πk(Yk+1).

Next let ψα : Sk+1
α → X represent generators of πk+1(X). Put

Zk+1 = Yk+1 ∨
∨

α

Sk+1
α

and define f = ψα on new (k + 1)-cells. It is clear that f∗ : πk+1(Zk+1) → πk+1(X) is
a surjection. Using cellular approximations it can be shown that πi(Zk+1) = πi(Yk+1)
for i ≤ k. �

Corollary. If (X,A) is an n-connected pair of CW-complexes, then there is a pair
(Z,A) homotopy equivalent to (X,A) rel A such that the cells in Z−A have dimension
greater than n.

Proof. Let f : (Z,A) → (X,A) be an n-connected model for (X,A) obtained by
attaching cells of dimension > n to A. Then f∗ : πj(Z) → πj(X) is a monomorphism
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for j = n and an isomorphism for j > n. We will show that f∗ is an isomorphism also
for j ≥ n. Consider the diagram:

A

iZ
��

iX

  @
@@

@@
@@

Z
f

// X

The inclusions iX and iZ are n-equivalences. Consequently, f∗iZ∗ = iX∗ : πj(A) →
πj(X) is an epimorphism for j = n. Hence so is f∗. Next, iX∗ and iZ∗ are isomorphisms
for j < n, hence so is f∗.

Finally, according to Whitehead Theorem, the weak homotopy equivalence f be-
tween two CW-complexes is a homotopy equivalence. �

Theorem. Let f : (Z,A) → (X,A) and f ′ : (Z ′, A′) → (X ′, Z ′) be two n-connected
CW-models. Given a map g : (X,A) → (X ′, A′) there is a map h : (Z,A) → (Z ′, A′)
such that the following diagram commutes up to homotopy rel A:

Z
f //

h
��

X

g

��
Z ′

f ′
// X ′

The map h is unique up to homotopy rel A.

Proof. By the previous corollary we can suppose that Z−A has only cells of dimension
≥ n + 1. We can define h/A as g/A.

A
h/A

//

��

Z ′

f ′

��
Z

gf
// X ′

Replace X ′ by the mapping cylinder Mf ′ which is homotopy equivalent to X ′. Since
f ′ : Z ′ → X ′ is an n-connected model, we get πi(Mf ′ , Z

′) = 0 for i ≥ n+1. According
to Compression lemma 12.2 there exists h : Z → Z ′ such that the diagram

A
h/A

//

��

Z ′

��

Z //
h

>>|
|

|
|

Mf ′

commutes up to homotopy rel A. This h has required properties. The proof that it is
unique up to homotopy follows the same lines. �

13. Homotopy excision and Hurewitz theorem

One of the reasons why the computation of homotopy groups is so difficult is the
fact that we have no general excision theorem at our disposal. Nevertheless, there is
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a restricted version of such a theorem. It has many consequences, one of them is the
Freudenthal suspension theorem which enables us to compute πn(S

n). At the end of
this section we define the Hurewitz homomomorphism which under certain conditions
compares homotopy and homology groups.

13.1. Homotopy excision theorem (Blakers-Massey theorem). Let A and B be
subcomplexes of CW-complex X = A ∪ B. Suppose that C = A ∩ B is connected,
(A,C) is m-connected and (B,C)is n-connected. Then the inclusion

j : (A,C) →֒ (X,B)

is (m+ n)-equivalence, i. e. j∗ : πi(A,C) → πi(X,B) is an isomorphism for i < m+ n
and an epimorphism for i = m+ n.

Proof. We distinguish several cases.

1. Suppose that A = C ∪
⋃

α e
m+1
α and B = C ∪ en+1. First we prove that j∗ :

πi(A,C) → πi(X,B) is surjective for i ≤ m+ n.
Consider f : (I i, ∂I i, J i−1) → (X,B, x0). Using simplicial approximation lemma

12.4 we can suppose that there are simplices ∆m+1
α ⊂ em+1

α and ∆n+1 ⊂ en+1 such that
their inverse images f−1(∆m+1

α ), f−1(∆n+1) are union of convex polyhedra on each of
which f is a linear surjection Ri onto Rm+1 and Rn+1, respectively. We will need the
following statement.

Lemma. If i ≤ m+ n then there exist points pα ∈ ∆m+1
α , q ∈ ∆n+1 and a continuous

function ϕ : I i−1 → [0, 1) such that

(a) f−1(pα) lies above the graph of ϕ,
(b) f−1(q) lies below the graph of ϕ,
(c) ϕ = 0 on ∂I i−1.

f
−1

    (q)

f −1(p)

Let us postpone the proof of the lemma for a moment. The subspace M = {(s, t) ∈
I i−1 × I; t ≥ ϕ(s)} is a deformation retract of I i with deformation retraction h :
I i × I → I i, h(x, 0) = x, h(x, 1) ∈M . Then

H = fh : I i × I → X
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provides a homotopy between f and

g : (I i, ∂I i, J i−1) → (X − {q}, X − {q} −
⋃

{pα}, x0).

Obviously, g is homotopic to g̃ : (I i, ∂I i, J i−1) → (A,C, x0). Hence j∗[g̃] = [f ].
The fact that j∗ : πi(A,C) → πi(X,B) is monomorphism for i ≤ m + n − 1 can

be proved by the same way as above replacing f by homotopy h : I i × I → (X,B).
(Notice that i+ 1 ≤ m+ n now.)

To prove the lemma choose arbitrary q ∈ ∆n+1. Then f−1(q) is a union of convex
simplices of dimension ≤ i − n − 1. Denote π : I i → I i−1 the projection given
by omitting the last coordinate. π−1(π(f−1(q))) is the union of convex simplices of
dimension ≤ i− n. On the set π−1(π(f−1(q))) ∩ f−1(∆m+1

α ) is f linear, hence

f(π−1(π(f−1(q)))) ∩ ∆m+1
α

is the union of simplices of dimension at most i−n < m+1 for i ≤ m+n. Consequently,
there is pα ∈ ∆m+1

α such that

f−1(pα) ∩ π
−1(πf−1(q)) = ∅.

Since Im f meets only finite number of cells em+1
α , the set

⋃

π(f−1(pα)) is compact and
disjoint from π(f−1(q)). Hence there is continuous function ϕ, ϕ = 0 on

⋃

π(f−1(pα))
and ϕ = 1 − ε on π(f−1(q)) with required properties.

2. Suppose that A is obtained from C by attaching cells em+1
α and B is obtained

by attaching cells e
nβ

β of dimensions ≥ n + 1. Consider a map f : (I i, ∂I i, J i−1) →

(X,B, x0). f meets only finite number of cells e
nβ

β . According to the case 1 we can
show that f is homotopic to

f1 :(I i, ∂I i) → (X − en1 , B − en1),

f2 :(I i, ∂I i) → (X − en1 − en2, B − en1 − en2),

. . .

fr :(I i, ∂I i) → (A,C).

3. Suppose that A is obtained from C by attaching cells of dimensions ≥ m + 1
and B is obtained by attaching cells of dimensions ≥ n + 1. We may assume that
the dimensions of new cells in A is ≤ m + n + 1 since higher dimensional ones have
no effect on πi for i ≤ m + n by cellular approximation theorem 12.5. Let Ak be a
CW-subcomplex of A obtained from C by attaching cells of dimension ≤ k, similarly
let Xk be a CW-subcomplex of X obtained from B by attaching cells of dimension
≤ k. Using the long exact sequences for triples (Ak, Ak−1, C) and (Xk, Xk−1, B), the
previous step, the induction and the 5-lemma for the diagram

πi+1(Ak, Ak−1) //

∼=
��

πi(Ak−1, C) //

��

πi(Ak, C) //

��

πi(Ak, Ak−1) //

∼=
��

πi−1(Ak−1, C)

��
πi+1(Xk, Xk−1) // πi(Xk−1, B) // πi(Xk, B) // πi(Xk, Xk−1) // πi−1(Xk−1, B)

we can complete the proof also in this case.
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4. Consider a general case. Then according to Corrolary 12.6 there is a CW-pair
(A′, C) homotopy equivalent to (A,C) and a CW-pair (B′, C) homotopy equivalent
to (B,C) such that A′ − C contains only cells of dimension ≥ m + 1 and B′ − C
contains only cells of dimension ≥ n + 1. Then X ′ = A′ ∪ B′ is homotopy equivalent
to X = A ∪ B. According to the previous case j′ : (A′, C) → (X ′, B′) is an (m + n)-
equivalence, consequently j : (A,C) → (X,B) is an (m+ n)-equivalence as well. �

Corollary. If a CW-pair (X,A) is r-connected and A is s-connected with r, s ≥ 0,
then the homomorphism

πi(X,A) → πi(X/A)

induced by the quotient map X → X/A is an isomorphism for i ≤ r + s and an
epimorhism for i ≤ r + s+ 1.

Proof. Consider the diagram:

πi(X,A) // πi(X ∪ CA,CA)

��

// πi(X ∪ CA/CA)
∼= // πi(X/A)

πi(X ∪ CA)

∼=

OO

∼=

55kkkkkkkkkkkkkk

The first homomorphism is (r+s+1)-equivalence by the homotopy excision theorem for
(s+1)-connected pair (CA,A) and r-connected pair (X,A). The vertical isomorphism
comes from the long exact sequence for the pair (X ∪ CA,CA) and the remaining
isomorphisms are induced by a homotopy equivalence and the identity X ∪CA/CA =
X/A. �

13.2. Freudenthal suspension theorem. Let X be (n−1)-connected CW-complex,
n ≥ 1. Then the suspension map πi(X) → πi+1(SX), f 7→ Sf is an isomorphism for
i ≤ 2n− 2 and an epimorphism for i ≤ 2n− 1.

Proof. The suspension SX is a union of two cones C+X and C−X with intersection
X. Now, we get

πi(X) ∼= πi+1(C+X,X) → πi+1(SX,C−X) ∼= πi+1(SX)

where the first and the last isomorphisms come from the long exact sequences for pairs
(C+X,X) and (SX,C−X), respectively, and the middle homomorphism comes from
homotopy excision theorem for n-connected pairs (C+X,X) and (C−X,X). What
remains is to show that the induced map on the level of homotopy groups is the same
as suspension map. �

13.3. Stable homotopy groups. The Freudenthal suspension enables us to define
stable homotopy groups. Given a based space X and an integer j choose n ≥ j + 2.
Then SnX is at least (n−1)-connected. Applying the Freudenthal suspension theorem
for i = j + n ≤ 2n− 2 we get

π2j+2(S
j+2X) ∼= π2j+3(S

j+3X) ∼= π2j+4(S
j+4X) ∼= . . .

We define the i-th stable homotopy group of the space X as

πsi (X) = lim
n→∞

πi+n(S
nX).
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We will write πsi for the i-th stable homotopy group of S0.

13.4. Computations. In this paragraph we compute n-th homotopy groups of (n−1)-
connected CW-complexes.

Theorem. πn(S
n) ∼= Z generated by the identity map for all n ≥ 1. Moreover, this

isomorphism is given by the degree map πn(S
n) → Z.

Proof. Consider the diagram

π1(S
1)

epi //

∼=

��

π2(S
2)

∼= // π3(S
3)

∼= // . . .

Z

where the horizontal homomorphisms are suspension homomorphisms and the vertical
isomorphism is known from Section 11 and determined by degree. The statement
follows now from the fact that deg f = deg Sf . �

Exercise. Prove that πn(
∏

α∈AXα) =
∏

α∈A πn(Xα).

Example. πn(
∨

α∈A S
n
α) =

⊕

α∈A Z for n ≥ 2.
Suppose first that A is finite. Then CW-complex

∨

α∈A S
n
α is a subcomplex of CW-

complex
∏

α∈A S
n
α. The pair

(

∏

α∈A

Snα,
∨

α∈A

Snα
)

is (2n − 1)-connected since
∏

α∈A S
n
α is obtained from

∨

α∈A S
n
α by attaching cells of

dimension ≥ 2n. Hence

πn(
∨

α∈A

Snα) = πn(
∏

α∈A

Snα) =
∏

α∈A

πn(S
n
α) =

⊕

α∈A

πn(S
n
α) =

⊕

α∈A

Z.

If A is infinite, consider homomorphism φ :
⊕

α∈A πn(S
n
α) → πn(

∨

α∈A S
n
α) induced

by inclusions πn(S
n
α) →

∨

α∈A S
n
α. φ is surjective since any f : Sn →

∨

α∈A S
n
α has a

compact image and meets only finitely many Snα’s. Similarly, if h : Sn× I →
∨

α∈A S
n
α

is homotopy between f and the constant map, it meets only finitely many Snα’s, so
φ−1([f ]) is zero.

Example. Suppose n ≥ 2. If X is obtained from
∨

α∈A S
n
α by attaching cells en+1

β via
base point preserving maps ϕβ : Sn →

∨

α∈A S
n
α, then

πi(X) =

{

0 if i < n,
⊕

α∈A πn(S
n
α)/N if i = n.

where N is a subgroup of
⊕

α∈A πn(S
n
α) generated by [ϕβ].

Proof. The first equality is clear from the cellular approximation theorem. Consider
the long exact sequence for the pair (X,Xn =

∨

α∈A S
n
α)

πn+1(X,X
n)

∂
−→ πn(X

n) → πn(X) → 0.
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The pair (X,Xn) is n-connected, Xn is (n− 1)-connected, hence

πn+1(X,X
n) → πn+1(X/X

n) = πn+1(
∨

β∈B

Sn+1
β ) =

⊕

β∈B

Z

is an isomorphism. Hence

πn(X) = πn(X
n)/ Im ∂ = πn(

∨

α∈A

Snα)/N

since Im ∂ is generated by [ϕβ]. �

13.5. Hurewitz homomorphism. The Hurewitz map h : πn(X,A, x0) → Hn(X,A)
assigns to every element in πn(X,A, x0) represented by f : (Dn, ∂Dn, s0) → (X,A, x0)
the element f∗(ι) ∈ Hn(X,A) where ι ∈ Hn(D

n, ∂Dn) = Hn(∆
n, ∂∆n) is the generator

induced by the identity map ∆n → ∆n. In the same way we can define the Hurewitz
map h : πn(X) → Hn(X).

Proposition. The Hurewitz map is a homomorphism.

Proof. Let c : Dn → Dn ∨ Dn be the map collapsing equatorial Dn−1 into a point,
q1, q2 : Dn ∨Dn → Dn quotient maps and i1, i2 : Dn → Dn ∨Dn inclusions. We have
the diagram

Hn(D
n, ∂Dn)

c∗ // Hn(D
n ∨Dn, ∂Dn ∨ ∂Dn)

f∨g //

q1∗⊕q2∗
��

Hn(X,A)

Hn(D
n, ∂Dn) ⊕Hn(D

n, ∂Dn)

i1∗+i2∗

OO

Since i1∗ + i2∗ is an inverse to q1∗ ⊕ q2∗, we get

h([f ] + [g]) = (f + g)∗(ι) = (f ∨ g)∗c∗(ι)

=
(

(f ∨ g)∗(i1∗ + i2∗)
)(

(q1∗ ⊕ q2∗)c∗
)

(ι) = (f∗ + g∗)(ι⊕ ι)

= f∗(ι) + g∗(ι) = h([f ]) + h([g]).

�

We leave the reader to prove the following properties of the Hurewitz homomorphism
directly from the definition:

Proposition. The Hurewitz homomorphism is natural, i. e. the diagram

πn(X,A)
f∗ //

hX

��

πn(Y,B)

hY

��
Hn(X,A)

f∗
// Hn(Y,B)

commutes for any f : (X,A) → (Y,B).
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The Hurewitz homomorphisms make commutative also the following diagram with
long exact sequences of a pair (X,A):

πn(A) //

hA

��

πn(X) //

hX

��

πn(X,A)
∂ //

h(X,A)

��

πn−1(A)

hA

��
Hn(A) // Hn(X) // Hn(X,A)

∂ // Hn−1(A)

13.6. Hurewitz theorem. The previous calculations of πn(
∨

α∈A S
n
α) enable us to

compare homotopy and homology groups of (n− 1)-connected CW-complexes via the
Hurewitz homomorphism.

Theorem (Absolute version of the Hurewitz theorem). Let n ≥ 2. If X is a (n− 1)-
connected, then H̃i(X) = 0 for i < n and h : πn(X) → Hn(X) is an isomorphism.

For the case n = 1 see Theorem 11.5.

Proof. We will carry out the proof only for CW-complexes X. For general method
which enables us to enlarge the result to all spaces see [Ha], Proposition 4.21.

First realize that h : πn(S
n) → Hn(S

n) is an isomorphism. It follows from the
characterization of πn(S

n) by degree in Theorem 13.4.
According to Corollary 12.6 every CW-complex X is homotopy equivalent to a CW-

complex obtained by attaching cells of dimension ≥ n to a point. Moreover cells of
dimension ≥ n + 2 do not play any role in computing πi and Hi for i ≤ n. Hence we
may suppose that

X =
∨

α∈A

Snα ∪ϕβ

⋃

β∈B

en+1
β = Xn+1

where ϕβ are base point preserving maps. Then H̃i(X) = 0 for i < n.
Using the long exact sequences for the pair (X,Xn) and the Hurewitz homomor-

phisms between them we get

πn+1(X,X
n)

∂ //

h
��

πn(X
n) //

h
��

πn(X) //

h
��

0

Hn+1(X,X
n)

∂ // Hn(X
n) // Hn(X) // 0

Since πn+1(X,X
n) is isomorphic to πn+1(X/X

n) =
⊕

πn+1(S
n+1
β ) and πn(X

n) =
⊕

πn(S
n
α), the first and the second Hurewitz homomorphisms are isomorphisms. Ac-

cording to the 5-lemma so is h : πn(X) → Hn(X). �

Let [γ] ∈ π1(A, x0), [f ] ∈ πn(X,A, x0). Then γ · f and f are homotopic (although
the homotopy does not keep the base point x0 fixed), and consequently,

(γ · f)∗(ι) = f∗(ι)

for ι ∈ Hn(D
n, ∂Dn). Hence h([γ] · [f ]) = h([f ]).

Let π′
n(X,A, x0) be the factor of πn(X,A, x0) by the normal subgroup generated by

[γ] · [f ] − [f ]. Let h′ : π′
n(X,A, x0) → Hn(X,A) be the map induced by the Hurewitz

homomorphism h.
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Theorem (Relative version of the Hurewitz theorem). Let n ≥ 2. If a pair (X,A)
of the path connected spaces is (n − 1)-connected, then Hi(X,A) = 0 for i < n and
h′ : π′

n(X,A, x0) → Hn(X,A) is an isomorphism.

Proof. We will prove the theorem for a pair (X,A) of CW-complexes where A is
supposed to be simply connected. In this case π′

n(X,A, x0) = πn(X,A, x0) and h′ = h.
For general proof see [Ha], Theorem 4.37, pages 371–373.

Since (X,A) is (n− 1)-connected and A is 1-connected, Corollary 13.1 implies that
the quotient map πn(X,A) → πn(X/A) is an isomorhism andX/A is (n−1)-connected.
The absolute version of the Hurewitz theorem and the commutativity of the diagram

πn(X,A)
∼= //

h
��

πn(X/A)

h∼=
��

Hn(X,A)
∼= // Hn(X/A)

imply immediately the required statement. �

13.7. Homology version of Whitehead theorem. Since computations in homol-
ogy are much easier that in homotopy, the following homology version of the Whitehead
theorem gives a method how to prove that two spaces are homotopy equivalent.

Theorem (Whitehead theorem). A map f : X → Y between two simply connected
CW-complexes is homotopy equivalence if f∗ : Hn(X) → Hn(Y ) is an isomorphism for
all n.

Proof. Replacing Y by the mapping cylinder Mf we can consider f to be an inclusion
X →֒ Y . Since X and Y are simply connected, we have π1(Y,X) = 0. Using the
relative version of the Hurewitz theorem and induction we get successively that

πn(Y,X) = Hn(Y,X) = 0.

Hence f∗ : πn(X) → πn(Y ) is an isomorphism for all n. Applying now the Whitehead
theorem 12.3 we get that f is a homotopy equivalence. �

14. Short overview of some further methods in homotopy theory

We start this sections with two examples of computations of homotopy groups.
These computations demonstrate the fact that the possibilities of methods we have
learnt so far are very restricted. Hence we outline some further (still very classical)
methods which enable us to prove and compute more.

14.1. Homotopy groups of Stiefel manifolds. Let n ≥ 3 and n > k ≥ 1. The
Stiefel manifold Vn,k is (n− k − 1)-connected and

πn−k(Vn,k) =











Z for k = 1,

Z for k 6= 1 and n− k even,

Z2 for k 6= 1 and n− k odd.
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Proof. The statement about connectivity follows from the long exact sequence for the
fibration

Vn−1,k−1 → Vn,k → Vn,1 = Sn−1

by induction.
As for the second statement, it is sufficient to prove that

πn−2(Vn,2) =

{

Z for n even,

Z2 for n odd

and to use the induction in the long exact sequence for the fibration above.
We have the fibration

Sn−2 = Vn−1,1 → Vn,2
p
−→ Vn,1 = Sn−1

which corresponds to the tangent vector bundle of the sphere Sn−1. If n is even,
there is a nonzero vector field on Sn−1 and hence a map s : Sn−1 → Vn,2 such that
ps = idSn−1. Such a map is called a section and its existence ensures that the map
p∗ : πn−1(Vn,2) → πn−1(S

n−1) is an epimorphism. Hence we get the following part of
the long exact sequence

πn−1(Vn,2)
epi
−→ πn−1(S

n−1)
0
−→ πn−1(S

n−2)
∼=
−→ πn−1(Vn,2) → 0.

Consequently, πn−2(Vn,2) = Z.
The case n odd is more complicated. We need the fact that the Euler class of tangent

bundle of Sn−1 is twice a generator ι ∈ Hn−1(Sn−1). We obtain the following part of
the Gysin exact sequence for cohomology groups with integer coefficients

0 → Hn−2(Vn,2)
0
−→ H0(Sn−1)

∪2ι
−−→ Hn−1(Sn−1) → Hn−1(Vn,2) → 0.

Next from the Hurewitz theorem and the universal coefficient theorem we get that

0 = Hn−2(Vn,2; Z) ∼= Hom(Hn−2(Vn,2),Z)

Z2
∼= Hn−1(Vn,2) ∼= Hom(Hn−1(Vn,2),Z) ⊕ Ext(Hn−2(Vn,2),Z)

which implies that Hn−2(Vn,2; Z) ∼= Z2. The Hurewitz theorem now yields πn−1(Vn,2) ∼=
Z2. �

14.2. Hopf fibration. Consider the Hopf fibration

S1 → S3 η
−→ S2

defined in 10.5. From the long exact sequence for this fibration we get

πi(S
2) ∼= πi(S

3) for i ≥ 2.

Particularly,
π3(S

2) ∼= Z

with [η] as a generator. By the Freudenthal theorem Z ∼= π3(S
2)

epi
−→ π4(S

3)
∼=
−→ πs1.

The methods we have learnt so far give us only that π4(S
3) ∼= πs1 is a factor of Z with

the generator Ση.

14.3. Exercise. Try to compute as much as possible from the long exact sequences
for the other two Hopf fibrations in 10.5.
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14.4. Composition methods were developed in works of I. James and the Japanese
school of H. Toda in the 1950-ies and are described in the monograph [To]. They enable
us to find maps which determine the generators of homotopy groups πn+k(S

n) for k
not very big (approximately k ≤ 20). For these purposes various types of compositions
and products are used.

Having two maps f : Si → Sn and g : Sn → Sm their composition gf : Si → Sm

determines an element [gf ] ∈ πi(S
m) which depends only on [f ] and [g]. If the target

of f is different from the source of g, we can use suitable multiple suspensions to be
able to make compositions. For instance, if f : S6 → S4 and g : S7 → S3 we can make
composition g ◦ (Σ3f) : S9 → S3. In this way we get bilinear map πsa × πsb → πsa+b.

More complicated tool is the Toda bracket . Consider three maps

W
f
−→ X

g
−→ Y

h
−→ Z

such that gf ∼ 0 and hg ∼ 0. Then gf can be extended to a map F : CW → Y and
hg can be extended to a map G : CX → Z. Define 〈f, g, h〉 : SW = C+W ∪C−W → Z
as G ◦Cf on C+W and h ◦F on C−W . (Draw a picture.) This definition depends on
homotopies gf ∼ 0 and hg ∼ 0. So it defines a map from πsi × πsj × πsk to cosets of
πsi+j+k−1.

The Whitehead product [ , ] : πi(X) × πj(X) → πi+j−1(X) is defined as follows:
f : I i → X and g : Ij → X define the map f × g : I i+j = I i × Ij → X and we put
[f, g] = f × g/∂I i+j .

Having a map f : S2n−1 → Sn, n ≥ 2, we can construct a CW-complex Cf =
Sn ∪f e

2n with just one cell in the dimensions 0, n and 2n. Denote the generators of
Hn(Cf ; Z) and H2n(Cf ; Z) by α and β, respectively. Then the Hopf invariant of f is
the number H(f) such that

α2 = H(f)β.

The Hopf invariant determines a homomorphism H : π2n−1(S
n) → Z.

For the Hopf map η : S3 → S2 we have Cη ∼= CP2, consequently

H(η) = 1.

For id : S2 → S2 we can make the Whitehead product [id, id] : S3 → S2 and compute
(see [Ha], page 474) that

H([id, id]) = ±2.

Since π3(S
2) ∼= Z, we get [id, id] = ±2η. One can show (see [Ha], page 474 and

Corollary 4J.4) that the kernel of the suspension Σ : π3(S
2) → π4(S

3) is generated
just by [id, id]. By the Freudental theorem Σ is an epimorphism which implies that

π4(S
3) ∼= Z2.

Consequently, πs1
∼= Z2.

Remark. J. F. Adams proved in [A1] that the only maps with the odd Hopf invariant
are the maps coming from the Hopf fibrations S3 → S2, S7 → S4 and S15 → S8.
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Another important tool for composition methods is the EHP exact sequence for the
homotopy groups of Sn, Sn+1 and S2n:

π3n−2(S
n)

E
−→ π3n−1(S

n+1)
H
−→ π3n−2(S

2n)
P
−→ π3n−3(S

n) → . . .

· · · → πi(S
n)

E
−→ πi+1(S

n+1)
H
−→ πi(S

2n)
P
−→ πi−1(S

n) → . . .

Here E stands for suspension Σ, H refers to a generalized Hopf invariant and P is
defined with connection to the Whitehead product. See [Wh], Chapter XII or [Ha],
page 474.

For n = 2 the EHP exact sequence yields

π4(S
2)

E
−→ π5(S

3)
H
−→ π4(S

4)
P
−→ π3(S

2)
E
−→ π4(S

3) → 0.

Since π4(S
3) ∼= Z2, π3(S

2) ∼= Z and π4(S
4) ∼= Z, we obtain that P is a multiplication

by 2 and H = 0. From 14.2 we have π4(S
2) ∼= π4(S

3) ∼= Z2 with generator η(Ση). So
π5(S

3) is either Z2 or 0. By a different methods one can show that

π5(S
3) ∼= Z2

with the generator (Ση)(Σ2η).

14.5. Cohomological methods have been playing an important role in homotopy
theory since they were introduced in the 1950-ies.

By the methods used in proofs in Section 12 we can construct so called Eilenberg-
McLane spaces K(G, n) for any n ≥ 1 and any group G, Abelian if n ≥ 2. These spaces
are up to homotopy equivalence uniquely determined by their homotopy groups

πi(K(G, n)) =

{

0 for i 6= n,

G for i = n.

Moreover, these spaces provide the following homotopy description of singular coho-
mology groups

[(X, ∗), (K(G, n), ∗)]
∼=
−→ Hn(X;G).

To each [f ] ∈ [(X, ∗), (K(G, n), ∗)] we assign

f ∗(ι) ∈ H̃n(X;G)

where ι is the generator of

Hn(K(G, n);G) ∼= Hom(Hn(K(G, n); Z), G) ∼= Hom(G,G)

corresponding to idG.
A system of homomorphisms θX : Hn(X;G1) → Hm(X;G2) which is natural, i. e.

f ∗θY = θXf
∗ for all f : X → Y , is called a cohomology operation. A system of coho-

mology operations θj : Hn+j → Hm+j is called stable if it commutes with suspensions
Σθj = θj+1Σ.

The most important stable cohomology operations for singular cohomology are the
Steenrod squares and the Steenrod powers:

Sqi :Hn(X; Z2) → Hn+i(X; Z2)

P i
p :Hn(X; Zp) → Hn+2i(p−1)(X; Zp) for p 6= 2 a prime.
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For their definition and properties see [SE] or [Ha], Section 4.L. These operations can
be also interpreted as homotopy classes of maps between Eilenber-McLane spaces, for
instance

Sqi : K(Z2, n) → K(Z2, n+ i).

Example. We show how the Steenrod squares can be used to prove that some maps
are not homotopic to a trivial one. Consider the Hopf map η : S3 → S2. Cη = CP2 and
H2(CP2; Z2) and H4(CP2; Z2) have generators α and α2. Since one of the properties
of the Steenrod squares is

Sqnx = x2 for x ∈ Hn(X; Z2),

we get Sq2α = α2 6= 0. We show that [Ση] ∈ π4(S
3) is nontrivial.

One can show that

CΣη = ΣCη = ΣCP2.

Then Σα and Σα2 are generators in H3(ΣCP2; Z2) and H5(ΣCP2; Z2), respectively.
Now

Sq2(Σα) = Σ(Sq2α) = Σα2 6= 0.

If Ση were homotopic to a constant map, we would have CΣη = S3 ∨ S5, and conse-
quently, Sq2(Σα) = 0.

Example. We outline how to compute πn+1(S
n) using cohomological methods. A

generator α ∈ Hn(Sn) induces up to homotopy a map Sn
α
−→ K(Z, n). Further,

Hn(K(Z, n); Z) ∼= Z with a generator ι, Hn+1(K(Z, n);G) = 0 and Hn+2(K(Z, n); Z2)
∼= Z2 with the generator Sq2ρι where ρ : Hn(X; Z) → Hn(X; Z2) is induced by
reduction mod 2. Sq2ρι induces up to homotopy a map

K(Z, n)
Sq2ρι
−−−→ K(Z2, n+ 2).

Consider the fibration

ΩK(Z2, n+ 2) → PK(Z2, n+ 2) → K(Z2, n+ 2)

where PX is the space of all maps p : I → X, p(1) = x0 and ΩX is the space of all
maps ω : I → X, ω(0) = ω(1) = x0. (These maps are called loops in X.) One can
show that ΩK(Z2, n + 2) has a homotopy type of K(Z2, n + 1). The pullback of the
fibration above by the map Sq2ρι : K(Z, n) → K(Z2, n+ 2) is the fibration

K(Z2, n+ 1) → E
p
−→ K(Z, n).

Since Sq2ρα = 0 in Hn+2(Sn; Z), one can show that the map α : Sn → K(Z, n) can
be lifted to a map f : Sn → E.

E

p

��

Sn α
//

f
::vvvvvvvvvv

K(Z, n)

One can compute f ∗ in cohomology (using the long Serre exact sequence) and then
also f∗ in homology. A modified version of the homology Whitehead theorem implies
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that f is an (n + 2)-equivalence. Hence f∗ : πn+1(S
n) → πn+1(E) is an isomorphism.

Using the long exact sequence for the fibration (E,K(Z, n), p) we get

πn+1(S
n) ∼= πn+1(E) → Z2.

For more details see [MT].

The Steenrod operations form a beginning for the second course in algebraic topology
which should contain spectral sequences, other homology and cohomology theories,
spectra. We refer the reader to [A2], [Ko], [MT], [Sw], [Wh] or to the last sections of
[Ha].
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orientation of vector bundle, 42
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