1. Bilineární a kvadratické formy I

1.1. Motivace
Budeme se zabývat zobrazeními $g : \mathbb{R}^n \to \mathbb{R}$ tvaru
\[g(x_1, x_2, \ldots, x_n) = \sum_{i,j=1}^{n} a_{ij}x_i x_j. \]

Ta se nazývají kvadratické formy. K tomu budeme potřebovat bilineární formy $f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$
\[f(x, y) = \sum_{i,j=1}^{n} a_{ij}x_i y_j. \]

1.2. Bilineární formy

Definice. Nechť U, V, Z jsou vektorové prostory nad \mathbb{K}. Zobrazení $\varphi : U \times V \to Z$ se nazývá bilineární, jestliže pro každé pevné $u \in U$ je zobrazení
\[\varphi(u, -) : V \to Z \text{ lineární}, \]
pro každé pevné $v \in V$ je zobrazení
\[\varphi(-, v) : U \to Z \text{ lineární}. \]

Totež jinak:
\[\varphi(u, av_1 + bv_2) = a\varphi(u, v_1) + b\varphi(u, v_2) \]
\[\varphi(au_1 + bu_2, v) = a\varphi(u_1, v) + b\varphi(u_2, v) \]

Příklad. $U = V = \mathbb{R}^3, Z = \text{Mat}_{3 \times 3}(\mathbb{R})$
\[\varphi \left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \end{pmatrix} \right) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \end{pmatrix} (y_1, y_2, y_3) = \begin{pmatrix} x_1 y_1 + x_1 y_2 + x_1 y_3 \\ x_2 y_1 + x_2 y_2 + x_2 y_3 \\ x_3 y_1 + x_3 y_2 + x_3 y_3 \end{pmatrix} \]
je bilineární zobrazení
\[\varphi(x, y) = x \cdot y^T \]
\[\varphi(x + \tilde{x}, y) = (x + \tilde{x}) y^T = xy^T + \tilde{y}^T = \varphi(x, y) + \varphi(\tilde{x}, y) \]

My se budeme zabývat bilineárními formami, kde $U = V$ a $Z = \mathbb{K}$.

Definice. Bilineární zobrazení $f : U \times U \to \mathbb{K}$ se nazývá bilineární forma na U.

Příklad. $U = \mathbb{R}^2$
\[f \left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right) = 2x_1 y_1 + x_1 y_2 + 3x_2 y_1 + 2x_2 y_2 \]
je bilineární forma na \mathbb{R}^2.
\[f \left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right) = f \left(\begin{pmatrix} x_1 + \tilde{x}_1 \\ x_2 + \tilde{x}_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right) = \]
\[= 2(x_1 + \tilde{x}_1)y_1 + (x_1 + \tilde{x}_1)y_2 + 3(x_2 + \tilde{x}_2)y_1 + 2(x_2 + \tilde{x}_2)y_2 = \]
\[= 2x_1 y_1 + 2\tilde{x}_1 y_1 + x_1 y_2 + \tilde{x}_1 y_2 + 3x_2 y_1 + 3\tilde{x}_2 y_1 + 2x_2 y_2 + 2\tilde{x}_2 y_2 = \]
= 2x_1y_1 + x_1y_2 + 3x_2y_1 + 2x_2y_2 + 2\tilde{x}_1y_1 + \tilde{x}_1y_2 + 3\tilde{x}_2y_1 + 2\tilde{x}_2y_2 =

= f\left(\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right), \left(\begin{array}{c} y_1 \\ y_2 \end{array}\right)\right) + f\left(\left(\begin{array}{c} \tilde{x}_1 \\ \tilde{x}_2 \end{array}\right), \left(\begin{array}{c} y_1 \\ y_2 \end{array}\right)\right)

f lze vyjádřit také tímto způsobem:

f(x, y) = 2x_1y_1 + x_1y_2 + 3x_2y_1 + 2x_2y_2 = (2x_1 + 3x_2, x_1 + 2x_2) \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = (x_1, x_2) \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}

Příklad. Bilineární forma na \(\mathbb{R}^n \)

\[f(x, y) = x^T A y = (x_1, x_2, \ldots, x_n) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \sum_{i,j=1}^{n} x_i a_{ij} y_j = \]

Důkaz bilinearity

\[f(ax + bx, y) = (ax + bx)^T A y = (ax^T + bx^T) A y = a x^T A y + b x^T A y = af(x, y) + bf(x, y) \]

Příklad. Bilineární forma na \(\mathbb{R}_2[x] \)

\[f(a_2x^2 + a_1x + a_0, b_2x^2 + b_1x + b_0) = a_2 b_1 \]

je bilineární forma na \(\mathbb{R}_2[x] \).

Příklad. Na \(\mathbb{R}_2[x] \)

\[f(a_2x^2 + a_1x + a_0, b_2x^2 + b_1x + b_0) = a_2 b_1 + a_1 \]

NENÍ BILINEÁRNÍ FORMA!

\[f(a_2x^2 + a_1x + a_0, b_2x^2 + b_1x + b_0) = a_2 b_1 b_0 \]

NENÍ BILINEÁRNÍ FORMA!

1.3. Matice bilineární formy v bází \(\alpha \)

Nechť \(\alpha = (u_1, \ldots, u_n) \) je báze prostoru \(\mathcal{U} \). Matice bilineární formy \(f : \mathcal{U} \times \mathcal{U} \to \mathbb{K} \) je matice \(A \) s

\[A_{ij} = f(u_i, u_j). \]

Příklad. Najděte matici bilineární formy \(f : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R} \), \(f(x, y) = 2x_1 y_1 + 3x_2 y_3 - 2x_1 y_2 \) ve standardní bázi \(\epsilon = (e_1, e_2, e_3) \).

\[A = \begin{pmatrix} 2 & -2 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} \]

Vyjádření bilineární formy v souřadnicích. Nechť \(f : \mathcal{U} \times \mathcal{U} \to \mathbb{K} \) má v bází \(\alpha \) matici \(\mathcal{A} = (f(u_i, u_j)) \). Potom pro \(u = \sum_{i=1}^{n} x_i u_i \), \(v = \sum_{j=1}^{n} y_j u_j \) dostáváme
Bilineární a kvadratické formy I

\[f(u, v) = f\left(\sum_{i=1}^{n} x_i u_i, \sum_{j=1}^{n} y_j u_j \right) = \sum_{i=1}^{n} f\left(\sum_{j=1}^{n} x_i u_i, y_j \right) = \sum_{j=1}^{n} f\left(x_i u_i, \sum_{j=1}^{n} y_j u_j \right) = (x_1, \ldots, x_n) \]

\[
\begin{pmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{pmatrix}
= x^T A y
\]

1.4. Matice bilineární formy při změně báze

Báze \(\alpha = (u_1, \ldots, u_n) \) určuje souřadnice \(x, y : u = \sum_{i=1}^{n} x_i u_i, v = \sum_{j=1}^{n} y_j u_j \). Báze \(\beta = (v_1, \ldots, v_n) \) určuje souřadnice \(\bar{x}, \bar{y} : u = \sum_{i=1}^{n} \bar{x}_i u_i, v = \sum_{j=1}^{n} \bar{y}_j u_j \). Platí

\[f(u, v) = x^T A y \text{ v bázi } \alpha \]

\[f(u, v) = \bar{x}^T B \bar{y} \text{ v bázi } \beta \]

Nechť \(P = (id)_{\alpha, \beta} \) je matice přechodu od \(\beta \) k \(\alpha \). Potom

\[x = (u)_{\alpha} = P(u)_{\beta} = P \bar{x} \]

\[y = (v)_{\alpha} = P(v)_{\beta} = P \bar{y} \]

Platí

\[\bar{x}^T B \bar{y} = f(u, v) = x^T A y = (P \bar{x})^T A (P \bar{y}) = \bar{x}^T P^T A P \bar{y} \]

Tedy

\[\bar{x}^T B \bar{y} = \bar{x}^T (P^T A P) \bar{y} \]

Zvolme \(\bar{x}^T = (0, \ldots, 0, 1, 0, \ldots, 0) \), \(\bar{y}^T = (0, \ldots, 0, 1, 0, \ldots, 0) \). Potom

\[\bar{x}^T B \bar{y} = B_{ij} \]

člen v \(i \)-tém řádku a \(j \)-tém sloupci

\[\bar{x}^T (P^T A P) \bar{y} = (P^T A P)_{ij} \]

člen v \(i \)-tém řádku a \(j \)-tém sloupci

Tedy

\[B = P^T A P \]

Tuto úvahu budeme používat často, takže ještě jednou:

\[(\forall \bar{x}, \bar{y}) \quad \bar{x}^T B \bar{y} = \bar{x}^T C \bar{y} \]
implikuje \(B = C \).

Závěr. Matice \(B \) bilineární formy v bázi \(\beta \) je

\[B = (id)_{\alpha, \beta}^T A (id)_{\alpha, \beta} \]

kde \(A \) je matice bilineární formy v bázi \(\alpha \).

Definice. Matice \(A, B \) se nazývají \(kongruentní \), jestliže existuje regulární matice \(P \) taková, že

\[B = P^T A P \]

Domácí úloha. Dokažte, že relace kongruence je ekvivalence.
Připomenout. Matice A, B jsou podobné, jestliže

$$ B = P^{-1} A P. $$

Podobnost se uplatňuje při transformaci matic lineárních zobrazení $\varphi : \mathcal{U} \to \mathcal{U}$.

$$ (\varphi)_{\beta, \alpha} = (\text{id})_{\alpha, \beta}^{-1} (\varphi)_{\alpha, \alpha} (\text{id})_{\alpha, \beta}. $$

1.5. Symetrické a antisymetrické bilineární formy

Bilineární forma je **symetrická**, právě když

$$ f(u, v) = f(v, u). $$

Matice symetrické bilineární formy je symetrická, neboť

$$ A_{ij} = f(u_i, u_j) = f(u_j, u_i) = A_{ji}. $$

Antisymetrická matice

Jsme-li nad \mathbb{R} nebo \mathbb{C}, pak

$$ A_{ii} = -A_{ii} \quad \Rightarrow \quad 2A_{ii} = 0 \quad \Rightarrow \quad A_{ii} = 0 $$

$$ \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & 3 \\ 2 & -3 & 0 \end{pmatrix} $$

je antisymetrická matice.

Bilineární forma je **antisymetrická**, právě když

$$ f(u, v) = -f(v, u). $$

Matice antisymetrické bilineární formy je antisymetrická

$$ A_{ij} = f(u_i, u_j) = -f(u_j, u_i) = -A_{ji}. $$

Věta. Každá bilineární forma je součtem symetrické a antisymetrické bilineární formy.

1.6. Algoritmus

Ke každé symetrické matice A nalezneme regulární matici P tak, že matice $D = P^T A P$ je diagonální.

Před důkazem: Elementární matice je matice, která realizuje řádkovou nebo sloupcovou elementární operaci:

1. Výměna 1. a 2. řádku u matice A

$$ \begin{pmatrix} 0 & 1 & \cdot & \cdot & \cdot \\ 1 & 0 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 \end{pmatrix} $$

$A = PA$ (řádky násobíme zleva), $P = P^T$.

Výměna 1. a 2. sloupce u matice A
\[
AP = A \begin{pmatrix}
0 & 1 & & \\
1 & 0 & & \\
& & \ddots & \\
& & & 1
\end{pmatrix}
\]

(2) Vynásobení 1. řádku číslem \(a \neq 0\)

\[
\begin{pmatrix}
a \\
1 \\
& \ddots \\
& & 1
\end{pmatrix}
A = PA, \ P = P^T.
\]

Vynásobení 1. sloupce číslem \(a \neq 0\)

\[
AP = A \begin{pmatrix}
a & & \\
1 & & \\
& \ddots & \\
& & 1
\end{pmatrix}
\]

(3) K 1. řádku přičteme \(a\)-násobek 2. řádku

\[
P = \begin{pmatrix}
1 & a & 0 & \cdots \\
0 & 1 & 0 & \cdots \\
0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}
, A \mapsto PA
\]

K 1. sloupci přičteme \(a\)-násobek 2. sloupce

\[
A \mapsto AP^T = A \begin{pmatrix}
1 & 0 & 0 & \cdots \\
a & 1 & 0 & \cdots \\
0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

Závěr. Máme-li matici \(A\) a na tu provádíme stejné řádkové a sloupcové operace, dostaneme matrici

\[
P_k^T \ldots P_3^T P_2^T P_1^T A P_1 P_2 P_3 \ldots P_k = P^T A P,
\]

kde \(P = P_1 P_2 \ldots P_k, \ P^T = (P_1 P_2 \ldots P_k)^T = P_k^T \ldots P_2^T P_1^T\).
Algoritmus: Pro symetrickou matici A napíšeme
\[
\left(\begin{array}{c|c} A & \mathcal{E} \\ \hline \mathcal{E} & \mathcal{E} \end{array} \right) \sim \left(\begin{array}{c|c} B & \mathcal{P}^T \\ \hline \mathcal{P} & \mathcal{P} \end{array} \right)
\]
(provádíme stejné řádkové a sloupcové operace).
Potom
\[B = \mathcal{P}^T A \mathcal{P} \]
Úpravy provádíme tak, aby B byla diagonální.

Příklad.
\[
\begin{pmatrix}
0 & 2 & 4 & 1 & 0 & 0 \\
2 & 0 & 6 & 0 & 1 & 0 \\
4 & 6 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\sim
\begin{pmatrix}
2 & 2 & 10 & 1 & 1 & 0 \\
2 & 0 & 6 & 0 & 1 & 0 \\
4 & 6 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
(2. řádek přičteme k 1., aby v poloze a_{11} bylo nenulové číslo) (totéž se sloupci)
\[
\begin{pmatrix}
4 & 2 & 10 & 1 & 1 & 0 \\
2 & 0 & 6 & 0 & 1 & 0 \\
10 & 6 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\sim
\begin{pmatrix}
4 & 2 & 10 & 1 & 1 & 0 \\
4 & 0 & 12 & 0 & 2 & 0 \\
10 & 12 & 0 & 0 & 0 & 2 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
(2. a 3. řádek vynásobíme dvěma)(totéž se sloupci)
\[
\begin{pmatrix}
4 & 4 & 20 & 1 & 1 & 0 \\
4 & 0 & 24 & 0 & 2 & 0 \\
20 & 24 & 0 & 0 & 0 & 2 \\
1 & 0 & 0 \\
1 & 2 & 0 \\
0 & 0 & 2
\end{pmatrix}
\sim
\begin{pmatrix}
4 & 4 & 20 & 1 & 1 & 0 \\
0 & -4 & 4 & -1 & 1 & 0 \\
0 & 4 & -100 & -5 & -5 & 2 \\
1 & 0 & 0 \\
1 & 2 & 0 \\
0 & 0 & 2
\end{pmatrix}
\]
(od 2. řádku odečteme 1., od 3. řádku odečteme 5krát 1.) (totéž se sloupci)
\[
\begin{pmatrix}
4 & 0 & 0 & 1 & 1 & 0 \\
0 & -4 & 4 & -1 & 1 & 0 \\
0 & 4 & -100 & -5 & -5 & 2 \\
1 & -1 & -5 \\
1 & 1 & -5 \\
0 & 0 & 2
\end{pmatrix}
\sim
\begin{pmatrix}
4 & 0 & 0 & 1 & 1 & 0 \\
0 & -4 & 4 & -1 & 1 & 0 \\
0 & 0 & -96 & -6 & -4 & 2 \\
1 & -1 & -5 \\
1 & 1 & -5 \\
0 & 0 & 2
\end{pmatrix}
\]
Věta. Nechť \(f : \mathcal{U} \times \mathcal{U} \to \mathbb{K} \) je symetrická bilineární forma. Potom existuje báze \(\beta \) prostoru \(\mathcal{U} \) tak, že matice \(f \) v bázi \(\beta \) je diagonální. Tedy v souřadnicích báze \(\beta \) je
\[
f(\vec{x}, \vec{y}) = b_{11}x_1y_1 + b_{22}x_2y_2 + \ldots + b_{nn}x_ny_n.
\]

Důkaz. Nechť \(\alpha = (u_1, \ldots, u_n) \) je nějaká báze prostoru \(\mathcal{U} \). Nechť matice \(f \) v bázi \(\alpha \) je \(A \). Podle předchozího algoritmu najdeme matici \(P \) regulární tak, že
\[
B = P^T A P
\]
je diagonální. Zvolme bázi \(\beta = (v_1, \ldots, v_n) \) tak, aby \(P \) byla matricí přechodu do \(\beta \) k \(\alpha \), tj.
\[
(v_1, \ldots, v_n) = (u_1, \ldots, u_n) P.
\]
Potom matice bilineární formy \(f \) v bázi \(\beta \) je
\[
P^T A P = B = \begin{pmatrix} b_{11} & & & \\ & b_{22} & & \\ & & \ddots & \\ & & & b_{nn} \end{pmatrix}
\]
diagonální matice.\(\square \)

Příklad. Nechť \(\mathcal{U} = \mathbb{R}^3 \) a \(f : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R} \) je bilineární forma
\[
f(\vec{x}, \vec{y}) = 2x_1y_2 + 2x_2y_1 + 4x_1y_3 + 4x_3y_1 + 6x_2y_3 + 6x_3y_2.
\]
Najděte bázi \(\beta = (v_1, v_2, v_3) \), v níž má \(f \) diagonální matici. Matice \(f \) ve standardní bázi \(\alpha = (e_1, e_2, e_3) \) je
\[
A = \begin{pmatrix} 0 & 2 & 4 \\ 2 & 0 & 6 \\ 4 & 6 & 0 \end{pmatrix}.
\]
Z předchozího příkladu výmě, že
\[
B = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -96 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -6 \\ 1 & 1 & -4 \\ 0 & 0 & 2 \end{pmatrix}^T A \begin{pmatrix} 1 & -1 & -6 \\ 1 & 1 & -4 \\ 0 & 0 & 2 \end{pmatrix}.
\]
Tedy hledaná báze je

\[
\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} -6 \\ 0 \\ 2 \end{pmatrix}
\]

Presvědčme se, že

\[
f(\mathbf{v}_1, \mathbf{v}_2) = 2.1.1 + 2.1.1 + 4.1.0 + 4.0.1 + 6.1.0 + 6.0.1 = 4
\]

\[
f(\mathbf{v}_1, \mathbf{v}_2) = 2.1.1 + 2.1.(-1) + 4.1.0 + 4.0.(-1) + 6.1.0 + 6.0.1 = 2 - 2 = 0
\]

atd.

1.8. **Kvadratické formy** Nechť \(\mathcal{U} \) je vektorový prostor nad \(\mathbb{K} \). Zobrazení \(g : \mathcal{U} \to \mathbb{K} \) se nazývá kvadratická forma, jestliž existuje symetrická bilineární forma \(f : \mathcal{U} \times \mathcal{U} \to \mathbb{K} \) tak, že

\[
g(\mathbf{u}) = f(\mathbf{u}, \mathbf{u}).
\]

Příklad. \(g : \mathbb{R}^3 \to \mathbb{R}, \ g(\mathbf{x}) = x_1^2 + x_1x_2 + x_2^2 - 3x_2x_3 \) je kvadratická forma, nebot' vznikla z bilineární formy

\[
f(\mathbf{x}, \mathbf{y}) = x_1y_1 + \frac{1}{2}x_1y_2 + \frac{1}{2}x_2y_1 + x_3y_3 - \frac{3}{2}x_2y_3 - \frac{3}{2}x_3y_2.
\]

Presvědčme se a tom:

\[
f(\mathbf{x}, \mathbf{x}) = x_1^2x_1 + \frac{1}{2}x_1x_2 + \frac{1}{2}x_2x_1 + x_3x_3 - \frac{3}{2}x_2x_3 - \frac{3}{2}x_3x_2 = x_1^2 + x_1x_2 + x_2^2 - 3x_2x_3 = g(\mathbf{x}).
\]

Věta. Nechť \(\mathbb{K} = \mathbb{R} \) nebo \(\mathbb{C} \). Symetrická bilineární forma je pak určena kvadratickou formou jednoznačně.

Důkaz. Nechť \(g(\mathbf{u}) = f(\mathbf{u}, \mathbf{u}) \), kde \(f \) je symetrická bilineární forma. Potom platí

\[
f(\mathbf{u}, \mathbf{v}) = \frac{1}{4}(f(\mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v}) - f(\mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v})).
\]

Počítejme pravou stranu:

\[
f(\mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v}) - f(\mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v}) = f(\mathbf{u}, \mathbf{u}) + f(\mathbf{v}, \mathbf{v}) + f(\mathbf{u}, \mathbf{v}) + f(\mathbf{v}, \mathbf{u}) - (f(\mathbf{u}, \mathbf{u}) + f(\mathbf{v}, \mathbf{v}) - f(\mathbf{u}, \mathbf{v}) - f(\mathbf{v}, \mathbf{u})) = 4f(\mathbf{u}, \mathbf{v})
\]

Matice kvadratické formy je matice příslušné bilineární formy. Vyjádření kvadratické formy v souřadnicích báze \(\alpha \) je

\[
g(\mathbf{u}) = f(\mathbf{u}, \mathbf{u}) = (\mathbf{u})^T_\alpha A(\mathbf{u})_\alpha = \mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i,j=1}^{n} a_{ij} x_i x_j \quad (a_{ij} = a_{ji}).
\]

Věta. Ke každé kvadratické formě \(g \) existuje báze \(\beta \), v jejíchž souřadnicích je

\[
g(\mathbf{x}) = \sum_{i=1}^{n} b_i \bar{x}_i^2.
\]

Důkaz. Vezmeme příslušnou symetrickou bilineární formu \(f \) a pro tu najdeme vhodnou bázi \(\beta \) tak, aby

\[
f(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} b_i \bar{x}_i \bar{y}_i.
\]
Definice. Báze s výše uvedenou vlastností se nazývá polární báze kvadratické formy.

Příklad. Najděte polární bázi ke kvadratické formě

\[g(x) = 4x_1x_2 + 8x_1x_3 + 12x_2x_3. \]

Matice příslušné bilineární formy je \(A = \begin{pmatrix} 0 & 2 & 4 \\ 2 & 0 & 6 \\ 4 & 6 & 0 \end{pmatrix} \). Použijme předchozí příklad a dostaneme, že polární báze je

\[
\begin{align*}
\mathbf{v}_1 &= \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \\
\mathbf{v}_2 &= \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \\
\mathbf{v}_3 &= \begin{pmatrix} -6 \\ -4 \\ 2 \end{pmatrix}.
\end{align*}
\]